[}

o -

A=
=

4.Processes

* J %] : Concurrent execution. (multiprogramming)

s E
— A program in execution. (# program)

— Basic unit of work in OS (for cpu scheduling)
— 7 OS process ¥ user’s process

— an active entry vs. program (4 %)

— need ? resources

— a “running” car!

— z4%H current activity, 7 program counter, register,
stack, data segment (open 7R file,:§ ¥ 7%...)

Process State

terminated

admitted

) exit
interrupt

scheduled running

I/O or event wait

waiting

Processes - 1

* Process control block (PCB)

— Process state

— Program counter

— CPU regqister

— CPU scheduling (ex.2 {7 % 4 7))

— Memory — management (_F T)

— Accounting information

— 1/O status information (¢ open ¥R files)

PCB[]

NPROC-1

Processes - 2

pointer

Process state

pcC

reqgister

stack

Opened files (riw 3|78 - 2t)

* Process vs. thread (a light weight process)

Selected by dispatcher

Termination

Initiation

Completion of
Expiry of quantum
11O transter, ar

allocation of & rezource S
Initiation of

I/O transfer, or
BL OC KED

request for a resource

pointer Process state

Process number

Program counter

registers

Memory limits
List of open files

Process Control Block (PCB)

Processes - 3

“T3) A2 5 (process) HAp 4 17 ¢ chfrst o d AT RSN Y

a4 4.d computation 45 4 £ /O 4 £ “THE & > F]pt T AR
- B 7] CPU burst £ 1/O burst #7 = » 4o] T 242
A= e P

R NERT ARG 0T At
a program in execution

an asynchronous activity

the “animated spirit” of a procedure

the “locus of control” of a procedure in execution
that entity to which processors are assigned

the “dispatchable” unit

LOAD
STORE
ADD CPU burst
STORE
READ from file

} I/O burst
STORE
INCREMENT INDEX } CPU burst
WRITE to file

} /0 burst
LOAD
STORE
ADD CPU burst
STORE
READ from file

} /O burst

Fig. CPU £ 1/O burst 1% 3 {7 5 7|

Processes - 4

CSE
* #2 5K & (process state)

FRANGTE S VIR SE I RE R c A
B runnlng Ry 0 R T tbﬁiﬁm_ Lt * CPU-o %ﬁzﬁ{
hlready ik o B SRR EST T AR Tk L 0 L A D oo
CPU # 7 - #4285 4_"blocked” (& "waited”) » A" ﬁﬁr
FEFLEE (event) o d (Iel/Ohz) 873w &
S e AR TR o FARS A new auk ik o Bl & T
7F.r_f FAjobpool’? @ ABEHEN T HFHRE - FE KD
BiLATNTESY o

Blocked

Wakeup

Fig. f2 /7RG

Dispatch (process name): ready—running
Timerrunout (process name): running—ready
Block (process name): running— blocked
Wakeup (process name): blocked—ready

TR dARE P ek A E§ _blocks @ H s =
fak L # E 0 25 b chentities (4 O.S & timer)
a’ﬁr;é’_«,;g,s o

Processes - 5

[}

[z

: 5
v fee

ﬁ};‘;#*}.%*}#(process control block)

£ R SR %\T%Lgmﬁ‘}l‘ifﬁmﬁ.nﬁ:}”’“ﬁf] *?
mﬁﬁ‘PCB)’ HRN Z4e™ Bl9rT 0 & e {D“P .

1. 42 5 & & new, running, ready, waiting, ¢ halted -

2. f2. 5" *L&@? (program counter) : 35 7 A2 e7F — B3 {7
i %

’ ——.ﬁ,”;?‘

\" 3%’%3
ﬂ?\}
SN
;.?'\t\'

=k
R

o it
R
RN
o
p
I
R

4. =% 8 LT - base & bound register & page table -

5. 53t F AL 1 4o CPU ehid * PERF » pERF o 4] & > 425 P
% #ic (process number) % o

6.1/0 it T4 (1/O status mformatlon) Az 2O F
R (/O request) fie & Tl 425 1 1/O &K % > 22 % open
L EE

7.CPU #.31 54 (CPU schedullng information) : 42 5
mlﬁsi EL (pnonty) ip ¥l scheduling queue =i 1% &
22 d 5 4p B 9 scheduling parameters -

pointer Process state

Process number

Program counter

Registers
Memory limits

List of open files

Fig. 2 f £ % 4

Processes - 6

* Process scheduling

Basic goal of multiprogramming, maximize CPU utilization!
— Scheduling queues (% f& queue)

PCB 1 PCB 2
Ready head “-~*
queue _ -
\b

_ head
Disk

. . PCB 3
unit 0 tail \\\\\\\\\\
Tape head | —_
unit 1 tail —

Fig. 4.4
dispatch End
> Ready queue P :CU/ >
I/O queue | I/0 request

Time slice expired

A

Child terminate Child execute Fork a child

A

Interrupt occurs Wait for an interrupt

Queue Diagram
Fig. 4.5

Processes - 7

* Schedulers (select process)

— Long-term scheduler (4 job g {4 » 4 % & long-term
schedule)
long-term £ short-term % 4~ — frequency of execution

job scheduler
(#€_Disk #* » memory) CPU

Job pool

Goal: select a good mix of 1/O-bounded and
CPU-bounded processes
Remarks:
a.control the degree of multiprogramming.(sc 3 % > * &
memory *)

v

Memory

b.can take more time in selecting a process because of
longer interval between execution.

— Short-term ~ CPU scheduler (¢ # memory ¥)

Goal: efficiently allocate the CPU to one of the ready
processes according to some criteria.

— mid-term scheduler
swap processes (@ %34 {7 ¢) in and out memory to
control the degree of multiprogramming. (ex. threshing
proo IR P -)

Processes - 8

|~
ww [2
Z

[o]
=

Swap in) Swap out
Partially executed <

swapped-out processes

Ready queue CPU

YVY

I/O counting queue y

Fig. 4.6

Permission to Enter Completion Termination

Job pool

Running

Created

Preempted

I/O call or
suspension

Permission to Dispatched

vie for CPU

) 4

(Iocked

Call completed or

Process states OK to resume is given

Short-term scheduler

Processes - 9

* context switch ~pure overhead (switching CPU to

another process) (* take time *)
saving the state of the old process and loading the state

of newly scheduling process.

Issue:

— Cost depends on hardware support
e.g., multiple register sets

Threads, light-weight process (LWP) are introduced
to break this bottleneck!

Processes - 10

* Qperation on processes

— Process creation & termination
(restricting a child process to a subset of the parent’s
resources prevents any process from overloading the
system by creating too many subprocesses.)
Issue:

— Restrictions on resource usage.
— Concurrent execution.
— Process duplication or reconstruction.

— Cascading termination (VMS).
(RAif 3 5 > jj,}.;z Gt tree BLA

Example:
So;
if (proc_id=fork())==o0 {
..... }
[* code executed by child process */ —atree 5 F ¥ 3|
else { resources

[* code executed by parent process */
[* wait() for child to die */
}
. a copy of parent address space +
context is made for child. Except, on return from fork():
. child returns with a value 0
. parent returns with process id of child
. No shared data structures between parent and child
—> communicate via shared files + pipes
. use execve() to load a new program

Processes - 11

|~
wo [2
Z

[o]
=

U3

UNIX
root
| l
Paged damon swapper init
| l
Ul U2
Fig. 4.7
%Eﬁix I—J—&Eﬁ
L 2E B —_

Processes - 12

[}

o

A=
=

*

25 FE T

R R T R A sk
— Create a process

— destroy a process
— suspend a process
— resume a process
— change a process’s priority
— block a process
— wakeup a process
— dispatch a process
3= > — B process = %
— name the process
— insert it in the system’s list of known process
— determine the process’s initial priority
— create the process control block

— allocate the process’s initial resources

Processes - 13

[}

o

A=
=

* %:ﬁ:}i}éﬁ:%;\

- BAET P 2R N BRIOFRR > P ATORRR
=+ F 4 A (child process) > @ h kenfe B AL € AR
(parentprocess)e m ' = 2 B d&i PP e {7 o L 2
22 FERBEGD N (TRT) e RER B
(hierarchical process structure) -

Fig. JEXIMER&tE

Processes - 14

[9]

[es] -

: 5
Z

* %% (suspend) g2¥w% (resume)

ST AR - BARA A PR AR RE (22
2R) e — BAARIER - «;m R FEDY - BAR
FBw(resume)v > ¥ L BT o4 iyt 3 w5 32 d 5

1 % tesin P00 B AR PR B R 72 DR o

fe B 3 (T oo

2.1 % HARGEAR G o PSR 0 B RIFERRE AR TS
@-B’»r}«*{ 7 o

R R R
FiE %) E'J?%frf%‘%ﬁif B ﬁ\i\,ﬁkﬂgﬂia—'%g—-

SR

WAv b # g fs > ARARKER TV IFES TR o H P T
ok A G
suspend (processname) : ready—suspended ready
resume (processname) : suspended ready—ready
suspend (processname) : blocked—suspended blocked
resume (processname) : suspended blocked—blocked
completion (processname) : suspended blocked—
suspended ready

Processes - 15

[}

o

: 5
=

I/O completion or

event completion

Ready Blocked

Dispatch

Timer .
runout I/O wait for
event wait
Suspend Resume
Resume

Suspend
Suspended
ready

Suspended

1/0 completion or blocked

event completion

Fig. £+ suspend £ resume 2 5 K & B

Processes - 16

[}

o

A=
=

* Cooperating processes

cooperating processes can affect or be affected by the
other processes. (ex. Share data)

2
2y
e
Buffer [0..n-1]
n-1
Initially, in=out=0;
n-2
(27 2%)

(* # s s - 7 5 read = E—need synchronization *)
Producer:
repeat

while ((in+1) mod n) = out do no-op;(*# -+ (n-1):%*)
buffer [in] := nextp;
in := (in+1) mod n;
(*Load in; Add 1 in, mod n, store in *)
until false;

Considering: n=7

In: slot 0,1,2,3,4,5 have been filled up = in then = 6,
next time, stop

Or

Out: O, stop

Processes - 17

Consumer: (* ¥ 3z n-1 items *)
repeat I e S
while in = out do no-op; in=out# >;% or > %%
nextc ;= buffer [out];
out := (out+1) mod n;
consume the item in nextc;
until false;
* 4.5 Threads

Reduce context switch overhead
— Light weight process (LWP): a basic unit of CPU
utilization.

— Threads consist of
program counter
a register set
a stack space
= share code, data

— < Program counter
P

Code segment

Task

Data segment

Processes - 18

|~
ww [2
Z

[o]

SE

— A (traditional) process, i.e.., a heavy weight process, is
a take with one thread!

— Threads creation and context switching is efficient at the
cost of no mutual protection.
ex, producer + consumer, %ﬂfﬁ Gl

Different threads in a process are not quite as
independent as different processes, however. All threads
have exactly the same address space, which means that
they also share the same global variables. Since every
thread can access every virtual address, one thread can
read, write, or even completely wipe out another thread’s
stack. There is no protection between threads because (1)
it is impossible, and (2) it should not be necessary. Unlike
different processes, which may be form different users and
which may be hostile to one another, a process is always
owned by a single user, who had presumably created
multiple threads so that they can cooperate, not fight. In
addition to sharing an address space, all the threads share
the same set of open files, child processes, timers, and
signals, etc. as shown in Fig. Thus the organization of Fig
would be used when the three processes are essentially
unrelated, whereas Fig would be appropriate when the
three threads are actually part of the same job and are
actively and closely cooperating with each other,

Processes - 19

CSE
Per thread items Per process items
Program counter Address space
Stack Global variable
Register set Open files
Child threads Child processes
State Timers
Signals
Semaphores
Accounting information

Fig. Per thread and per process concepts.

Like traditional processes (i.e., process with only
one thread), threads can be in any one of several states:
running, blocked, ready, or terminated. A running thread
currently has the CPU and is active. A blocked thread is
waiting for another thread to unblock it (e.g., on a
semaphore). A ready thread is scheduled to run, and will
as soon as its turn comes up. Finally, a terminated thread
is one that has exited, but which has not yet been
collected by its parent (in UNIX terms, the parent thread
has not yet done a WAIT).

Processes - 20

* Interprocess

— shared memory

— message passing ~ gernel properties such as msg
size,comm.,links, ...

— Naming
Process must have a way to refer to each other!

(A) Direct Communication
Process must explicit name the recipient or sender of
a communication
send (P, msg)
receive (Q, msg)
properties:

a. Communication links are established
automatically.

b. Two process / a link
c. One link / a pair of processes
d. Bidirectional or unidirectional

Issues:
Symmetric addressing vs. asymmetric addressing
receive (id, msg)

Difficulty:

Process naming vs. modulability
(B> 2 FE R >FRT 47 3])

Processes - 21

[o]

Loz} —
A =
s [

(B) Indirect Communication
Two processes can communicate only if the
process share a mailbox (or ports)

Send (A, msg) —> | | ——> Receive (A, msg)
Properties:
a. A link is established between a pair of

processes only if they share a mailbox.
b. N processes / link & n>=2

C. N links / a pair of processes & n>=1
one link / a mailbox

d. Bidirectional or unidirectional
Issues:
a. Who is the recipient of a message (msg)? (# #v)

pp ——* 2
msg TN\

b. Owners vs. users
- process— owner as the sole recipient?
privileges can be passed?
- O.S.—creator as owner?
privileges can be passed?
garbage collection?

Processes - 22

* Interprocess communication snF_&

RIEARR B AT LB Ef c FHBE LA A

1.shared memory: # = - i buffer i # processes i e

7L % B~ > 4 producer / consumer e

2.message system: d OS o BiEfFHE = 3 B

LL

processes ¥ communication link 70 & d ﬁ*“? o
HL i ¥ o

* i B2 (communication link) ez = 3 0

1:\7

4_ 0y
ft-‘q‘;’ "\
processes i 3 ¥ % o 4o

=
[bal \fm\-

:f%-ﬁ &k seered (system call) 14 dp 7w

A
e
W

send (P, message): Send a message to process P.
receive (Q, message): Receive a message from
process Q.

Processes - 23

|~
ww [2
Z

[o]
=

|42 : producer ¥ consumer s processes [ene il
5 HARN e
type item = ...;
var nextp, nextc: item;
parbegin
producer: repeat

produce an item in nextp;
send (consumer, nextp);
until false;

consumer: repeat
receive (producer, nextc);

consume the item in nextc
until false;
parend;

(* buffer fom ? % 5L f %)

R

PERERpAER processes 2Eey - MER n-\q_d - BH S
mailbox 7 buffer iid = 3% (port) - Trid 3 &0 processes
3z 3w gt mailbox & A0 Bilde

send (A, message). Send a message to mailbox A.

receive (A, message): Receive a message from
mailbox A.

Processes - 24

[}

o

A=
=

* Buffering

A link capacity — # of msgs held in a link

A. Zero capacity (no buffering)
Msg transfer must be synchronized
~rendezvous! (- i — § 7))

B. Bounded capacity
Sender can continue execution without waiting till
the link is full!

C. Unbounded capacity
Sender is never delayed!

* ltems B & C are for asynchronous communication
and may need acknowledgement.

— Special cases

a. Msgs may be lost if the receiver can not catch up
with msg sending — synchronization

b. Sender are blocked until the receiver have received

msgs and replied by reply msgs
—Remote Procedure Call (RPC) framework

Processes - 25

[}

o

A=
=

* Exception Conditions
— Process termination (H ¢ 5 - % ¢ 72 3 &)
a. Sender termination — notify or terminate receiver!

b. Receiver termination
no capacity — server is blocked
buffering — msgs are accumulated!

— Lost msg (due to hardware or network failure)
Ways to recover errors:

a. O.S. detects & resends msgs

b. Sender detects & resends msgs

c. O.S. detects & notify sender to handle it.
Issue:

a. Detecting methods such as timeout!

b. Distinguish multiple copies if retransmitting is
possible.

— Scrambled messages
Usually, O.S. adds checksums such as CRC inside
messages & resend them as necessary!

Processes - 26

