) -
The UNIX File System

* UNIX: a time-sharing system.

* UNIX: AT&T version, BSD version (Berkeley Software
Distribution).

* File: a uniform logical view of information storage.
- Afile is a collection of related information defined by
its creator.

* Why file system ?
1) when size of files is large.
2) for back-up.
3) sharing.

* We are cared about how files are structed, named,
accessed, used, protected, and implemented ==> a file
system.

* File System:

1) the directory structure.
2) the collection of actual fields.

* File structure: byte sequence, record sequence, tree.

FileSystem - 1

FileSystem - 2

ANt Fox| |Pig
1 Record
A/
Cat Cow |Dog Coat Lion| |Oowl Pony | | Rat| |Worm
Hen Ibis| |Lamb

ﬂ NSISU
CSE g

* File access:

1) sequential access: tape.
2) random access: disk.

* Types of files:
1) test files. (characters)
2) source files.
3) object files. (binary files)
4) database. (record)
or

1) regular files (user files): ASCII files/binary files.

- ASCII files: they can be displayed and printed as is,
and they can be edited with an ordinary test editor.

- binary files: consists of a collection of library
procedures compiled but not linked.

2) directories (system files).

3) character special files: related to I/O terminal, printer,
network.

4) block special files (model disk).

FileSystem - 3

ﬂ SIS
)

The UNIX File System

* A File system is the organization framework that specifies
how a mass storage device is organized.

-File systems usually contain a map, which is called the
I-node table on the UNIX system, that is used to locate a
file, given its name.

*UNIX File Types

1) ordinary files: text and binary files.

2) directory files: collections of files.

. A directory file stores the names of the files it contains
plus information that is used to locate and access the
files.

3) device files: special device files.

. A device file is a means of accessing a hardhare device,
usually an I/O device. Ex. a pseudo-tty.

4) symbolic link files.

. A symbolic link is a way to make a new name for an
existing files. It makes it easy to place “copies” of things
whenever they are needed, without the overlead (and
duplications) of truly making copies.

5) the named pipes.

* File Access Modes + Protection + Security

FileSystem - 4

) -
* The directory system can be viewed as a symbol table
that translates file names into their directory entries.
==> the directory itself can be organized in many ways.
==> problem: how to search the entry ?
1) linear search.
2) hash.

* UNIX directory
- files are organized in tree-structured directories.
- absolute/relative path name.
- working directory.

* Implementing Directories

- When a file is opened, OS uses the path name supplied
by the user to locate the directory entry.
The directory entry provides the information needed to
find the disk blocks.

- Depending on the system, the information may be the
disk address of the entire file (continuous allocation), the
number of the first block or the number of the I-node (in
UNIX).

- The main function of the directory system is to map the
ASCII name of the file to the information needed to locate
the data.

- Issue: where the attributes of a file should be stored ?
1) store them directly in the directory entry.
2) i-node: store the attributes in the i-node, rather than
directory entry.

FileSystem - 5

ASTSU

CSE|

games | attributes

g | g
mail I attributes

news attributes

work

attributes

1

games : A
Z]
mail !
|

news | -
]

work | N
|

FileSystem - 6

/TN

Data
structure
containing
the attributes

sy

CSE

vmuntx
console
dev 1p0
sh
bin csh
lib I
/ > usr
‘Jlp
user avi
passwd
group
eic
init
tmp

FileSystem - 7

D2
22D

bin
local > lib

0

» include

i

rmac

troff

e

mp

L
Directory Description
/bin Frequently used system binaries
/dev Special files for 1/0O devices
letc Miscellaneous system administration
/lib Frequently used libraries
ltmp Some utilities generate their temporary files here
lusr All user files are in this part of the tree
/usr/adm System accounting
/usr/ast Home directory for the user whose login name is ast
/usr/bin Other system binaries are kept here

/usr/include

System header files

/usr/lib Libraries, compiler passes, miscellaneous
/usr/man Online manuals

/usr/spool Spooling directories for printer and other daemous
/ustr/src System source code

Jusr/tmp Other utilities put their temporary files here

FileSystem - 8

;'sisu,

= g
4

(Root directory)

I T
0 unix.old ; | lunlx [sasewdl
— who sam brad ke lib X — motd
— date — rc0
— ttys
=y — mbox mbox |~ mbox ki
= <P — mb.d janet — junk
— In [Ee= T] — unmount
cat e X11 term- mail L fsck
: 5 Info
[: vi — mnttab
— maglc
- T 1 I | L group
Jfiles lets bin book eg -,

— inet
sam3 mmd chap1 csh L shutdown
sal adv chap1 sh3 utmp
gm.har moo chap3 sc.ex X

: : hap4 mkf
c
Jan Feb Mar XMGs
== T]
rpt.a rpt.a rpt.a adm bin lib
rpt.b rpt.b rpt.b
rpt.c rpt.c rpt.c

Figure 1 m A Simplified Diagram of a Typical UNIX File System

1
xx.347
y037xg
tt.xmm
XPIXXM.P

Y
O

Oy
O

OV
X

In this diagram, directory files are shown in triangles, special device files are shown in diamonds,
and ordinary files are shown without borders.

FileSystem - 9

CSE

* File system implementation

<

- implement file storage; keep track of which disk blocks
go with which files.

1) continuous allocation.

- simple, good performance.
- but not flexible (must know the size of the file in
advance), large fragmentation.

2) Link list allocation: a linked list of disk block.

- no space is wasted to disk fragmentation.

- it is sufficient for the directory entry to merely store the
disk address of the first block.

- however, reading a file sequentially is straightforward.

- random access is slow.

File A File B
> = > > 0 > > > 0
File File File File File File File File File
block block block block block block block block block
0 1 2 3 4 0 1 2 3
Physical
block 4 7 2 10 12 6 3 11 14

Storing a file as a linked list of disk blocks.

FileSystem - 10

NSTSU
CSE B

3) Linked list allocation using an index.
- the entire block is available for date.
- random access is much easier.
- however, the entire table must be in memory.

Physical
block

0
1
2 10
3 11
4 7 —«—— File A starts here
5

6 3 —~—— File B starts here
7

8

9

10 12

11 14

12 0

13

14 0

15 <—— Unused block

Linked list allocation using a table in main memory.

FileSystem - 11

) -
4) I-node in UNIX.
- associate with each file a little table called i-node
(index-node), which lists the attributes and disk
addresses of the file's blocks.

- for small files: all the necessary information is in
I-node.

- for large files: one of the addresses in i-node is the
address of a disk block called a single direct block.

- file descriptor is an index to a small table of open
files for this process.

- in this table, each entry contains an pointer to a file
structure, which in trun, points to the i-node.

- s -l
after get i-node number, copy i-node information from
disk to memory (called in-core i-node).

- each i-node contains 15 direct link pointer (each of
them pointing to a page <= 12 blocks), 3 inderect
block pointers (single, double, triple: indirect block
pointer).

FileSystem - 12

]

CSEj E

Bytes 1 8 3 1 2 16
File name Q
Pt 4 & A
User code ::ei:atet:gzn) Esitert Bloakealing Disk block numbers
(i) A directory that contains the disk block numbers for each file.

Bytes 2 14
File name
}
|-node
number

(>) A UNIX directory entry.

EREFLTR

101101111011011

(E&ER =] [remz]
E&LH e
[.
i
B &8 | finode "} *
_.reponagel _ J| Inode B : 10326 |ed
*fadgood 10326 " |EREHGE: 123132 |
e mEA: 72bytes |
. 3% A2 7 B X 9/26/1984
L 4 Inode__J ““““““““
5% i

FileSystem - 13

R 4
107 He turnéd to his
followers. his eyes
blazing with passionate
'gnorance. 31 22 19
26 14 1527 121 177

Inode
Filename
number
UNIX directory entry

File | Permission| Access | Modification I\/.I(.)de. : Flle table of Number
Owner | Group : : Modification | Size | contents :

type vector time time : . Of links

time (for file map)
UNIX inode
Figure 2
block 0
Boot Super Inode
block block ist pata i g
UNIX File System

Figure 3

FileSystem - 14

2
oo £

Block 0 (usually a bootstrap)
| Block 1, the superblock

Block 2 B

::]2 = fl-nodes 8/block
Block n J
Block n + 1 N

((
)
(

- Files
The last block j

Figure 3 [File Systems Traditionally Used This Simple Layout

Figure 4 [l Disks are Usually Divided into Partitions or Slices

FileSystem - 15

User

File Descriptor File Inode
Table Table Table
_____::::\ L
2 S = ===
\\\\ ______—17

........

data blocks

.....

inode list

boot
block

super
block

Figure 6 [l File System Layout

A file system has the following structure (Figure 6).

® The boot block occupies the beginning of a file system, typically the first sector,

and may contain the bootstrap code that is read into the machine to boot, or
initialize, the operating system. Although only one boot block is needed to boot
the system, every file system has a (possibly empty) boot book.

The super block describes the state of a file system — how large it is, how many
files it can store, where to find free space on the file system, and other
information.

The inode list is a list of inodes that follows the super block in the file system.
Administrators specify the size of the inode list when configuring a file system.
The kernel references inodes by index into the inode list. One inode is the root
inode of the file system: it is the inode by which the directory structure of the file
system is accessible after execution of the mount system call.

The data blocks start at the end of the inode list and contain file data and
administrative data. An allocated data block can belong to one and only one file
in the file system.

FileSystem - 16

(NSTSUI
]
CSE|

»
P —
aser — T nwdg
Prle che :
decevs plev +alble T L",g data
— blocks
wadole /"
®
1 e
[]
read (4, ...) —p
’ —\) S}’HC
—— L4
: - inode
tables of file-structure lp-cg ; list
open files table Inoge
(per process) list
disk space
user space system space
File-system control blocks.
Open file
description i-node
Parent's : File position Mode
file / R/W -
descriptor Pointer to i-node Link count
table Uid
File position !
y. R/W Gid
Child's Pointer to i-node
file File size
descriptor
table o Pa 17 Times
Unrelated Addresses of —_—m
nrelate I;_ : first 10 =E sl
process’ disk blocks —— » disk blocks
file / =
descriptor Single indirect
table
DOouble indirect
Triple indirect

A

Triple
indirect /
block Double
indirect /
block Single
indirect

FileSystem - 17

block

Per-process System
data region file table

System

i-node table

(
)]

il

((
))
)]

)
((

((

)
(«
)

— Open file descripters

Files

Figure 7 Il The Kernel Data Structure for Accessing Files

FileSystem - 18

NSTSU

I-node .
Single
Attributes indirect’ Double
[B block indirect block
4
1 /
o =S =
w
05
? ~—
8 N _
3 o
FILE SYSTEMS
¢ AghribTes)
Field Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator Id of person who created the file
Owner Current owner

Read-only flag

0 for read/write, 1 for read only

Hidden flag 0 for normal, 1 for do not display in listings
System flag 0 for normal file, 1 for system file

Archive flag 0 has been backed up, 1 for needs to be backed up
ASCll/binary flag 0 for ASCII file, 1 for binary file

Random access flag

0 for sequential access only, 1 for random access

Temporary flag

0 for normal, 1 for delete on process exit

Lock flags

0 for unlocked, nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time file was created

Time of last access

Date and time file was last accessed

Time of last change

Date and time file was last changed

Current size

Number of bytes in the file

Maximum size

Maximum size file may grow to

FileSystem - 19

Triple indirect

block

Addresses of
data blocks

Ly

Ny

4

AN

Py Y

;LSISU,

] ®
'

I-node
block
pointers

|-node

-

s

)

File blocks

LT
|

-

Y i Y

10

11

12

W
o

Triple

indirect —

block 128
double
indirect
blocks

block

128 indirect blocks

16,384
indirect
blocks

J—i—r—’;g &

1st indirect block

—JT T
ndirect L‘l T

9

.
JI=

137

— —
i B

16521
16522

U
)

i
¢

2,113,673

The file
blocks are
shown
here in
their logical
sequence,
Physically
the blocks
are scattered
throughout
the disk.

Figure 8 Il The I-node, showing How I-node Block Pointers Are Used to Locate the Blocks in a File

FileSystem - 20

NSTSU

1
(‘SE}E

Description ((7=hede dnformation)

Field
st_mode Mode word containing the protection bits
st-ino I-node number, used to identify the file
st_dev Device on which the file resides
st_nlink Number of links to the file
st_uid User id
st_gid Group id
st_size File size in bytes
st_atime Time of last access
st-mtime Time of last modification
st_ctime Time of this information was last changed

The structure used t

te

i e

o return information for the STAT system call.

Block 132 I-node 26 Block 406
]-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory [usr/ast directory
1 % mode 6 - mode 26
1 ee .Slle 1 oo SiZE 6| e
. t i
4_| bin i 19 | _dick B 64 | grants
7 | dev 132 30| erik 406 92 | books
14 lib 51 jim 60 | mbox
9 etc 26 | ast 81 | minix
6 | usr 45 bal 17 | src
8 tmp
) I-node 6 [-node 26
Look.mg up says .that [usr/ast’ says that /usr/ast/mbox
usr yields lusr is in is i-node lust/ast is in is i-node
i-node 6 block 132 26 block 406 60

The steps in looking up /usr/ast/mbox.

FileSystem - 21

File
Boot block } s;lstem
Superblock ¢ header
— ai-node)

Current -

directory

Per-process @ i-node | 4

data region — r l-nodes

>~ ' bi-node }—

)
((

. > . i-node e
%
@ b ~—
L. Current
directory

)
((
))

@ > Files

Parent
directory

((

Q
)
J)(
S

a
directory

A
file system

Figure 10 [l Kernel Operations for Following the Pathname ../a/b

FileSystem - 22

ﬂ SIS

* File Operations:

1) create

- find spce on disk for the file.
- insert the directory entry, records the name of the file and the
location in the file system.

2) open

- the open operation takes a file name, searches the
directory, copying the directory entry into the table (in
memory) of open files; then, OS returns an pointer to
the entry in the table of open files, avoiding any further
searching.

3) write

- input: the file name + data.

- according to the file name, find the directory entry.

- the directory entry will need to store a pointer to the
current block of the file. (write pointer)

4) read

5) reset

6) delete

7) link

8) unlink. (only when the number of linked file
names = 0)

* To avoid to search the directory entry again, when a file

operation is requested, an index into to this table is used
(returned), so no searching is required.

FileSystem - 23

* Disk space management: page/segment
- block size.
- keep track of free blocks.
- disk quotas of each user.

* File system reliability: backup, recovery,
consistency (concurrency control).

* Security and Protection

- (owner, group, universal) + (rwx)
-rwXrwxrwx (777)

FileSystem - 24

7

(ASTSU/
1

CSEj E

* Mount
R RASERIERFER - AFATHEBAFER
5% inode BB ? ggf??
ZHRAEMEER? s12 fI ol -
e e AR ?
CELES INODE S
REAS
MRS < /
MERFER
REFEEH
% BRHy— S 6
i e
$ 1s <1 . LY b
-ITW-C=-T-- 2 franc_:;ne 2439 Jun 18 12:53 canoe 2
-IW-T=--T -~ 1 francdine 8732 May 22 14:11 fido
drwxr-xr-x ﬁrangine 512 May 29 09:42 Funding
-TWXT -XT-X 1 francine 7820 Jun 14 10:35 mpgave
S———— > o it ettt
BR B MR MERN, EREE RL
®E wEE Uxd ®EH
! RE
is =i
Hard Hard
disk Diskette disk
/ / /

SOk

{)

FileSystem - 25

(b) After mounting.

* M_anaging your Files (utilities for file management)
-pwd, cd, Is, rm, mv, cp.
-In : create links.

. It creates a new name which references the original file.
Only one copy exists although it has two names.

a) hard links (traditional forms).

-Ex. In old new.
Those two files have the same I-node number.

-Two problems:

(1) They only work within a file system because they
are based on I-node.

(2) They can be very transitory because they operate
at such a low level in the UNIX file system.

b) symboilic links.
-Ex. Ln —s old new.
-A symbolic link operates at a higher level then a hard
link because a symbolic link refers to a file by name,

not through the I-node table. These two files (old, new)
have different I-node numbers.

FileSystem - 26

7

(NSTSU
1
CSE| E

1s-1 /etc/xc
-rW-Yw-YX-- 1 root sys 3488
AV VY

Jan 20 17:21 /etc/rc

l
l File name
Modification date
File size in bytes
Group ~

User

Number of links
L L Other privileges (readable, but not writeable or executable)

Group privileges (readable and writeable but not executable)
L User privileges (readable and writeable but not executable)
File mode (a dash indicates an ordinary file)

ls-1d /etc
ArwxXrwxr-X 41 root sys 640 Jan 23 19:32 /etc
NN Y |
I File name
Modification date
File size in bytes
Group
User
Number of links
L Other privileges (readable and executable)
L Group privileges (readable, writeable, and executable)
L User privileges (readable, writeable, and executable)
File mode (a “d” indicates a directory file)
ls -1 /dev/£40
brw-rw———-— 6 root sys 2, 0 Jan 23 19:32 /dev/£d40
NNV N 1
W T I File name
Modification date
Minor device number
Major device number
Group
User
| Number of links
|_ Other privileges (no privileges)
Group privileges (readable and writeable)
“~ User privileges (readable and writeable)
File mode (2 “b~ indicates a block special file)
1s-1 /dev/xrfd0
Crw-rw—-—--- S root sys 2, 0 Jan 23 19:32 /dev/xr£d0
N NN |
7 I File name
Modification date

Minor device number
Major device number .
Group

User
L_ Number of links
3 Other privileges (no privileges)
L Group privileges (readable and writeable)’

User privileges (readable and writeable)
File mode (a ¢~ indicates a character special file)

Figure 11 I The Long Format Output of the Ls Command
FileSystem - 27

—

oo

chapt8

introcmds

file

i-node table

Figure 12 [l A Hard Link Between introcmds and chapt8

A hard link operates at the level of the I-node table. In this example,
the file names introcmds and chapt8 both refer to the same I-node,
hence both are links to the same file.

introcmds

'

chapt8

Y

file

i-node table

Figure 13 [l A Symbolic Link Between introcmds and chapt8
Symbolic links make one file name refer to another. In this example,
the file name introcmds is a symbolic link to the file chapt8. The file
chapt8 may be modified in any way, but so long as the name chapt8
exists, the symbolic link will remain valid.

FileSystem - 28

(o)

o [r——

rgv-
wv [2

fred

bin
dev
etc
lib
tmp
usr

QO T o

N

X
¥
Z

(a)

fred /

bin
dev
etc
lib
tmp
usr

X O T oo

IN w3

(b)

Figure 14 [l (a) Before linking. (b) After linking.

FileSystem - 29

—
=

(o]

77 [rn———

o | -
a:

C’s directory B's directory g directory

B's directory

/’ \\ /, ‘\\

Owner = C OwWner =

Owner = C
Count = 1

Count = 1 Count =2

(a) (b) (c)

Figure 15 Il (a) Situation prior to linking. (b) After the link is created.

(c) After the original owner removes the file.

FileSystem - 30

ﬂ NSTST

-chamd (change file modes).
-chown (change file owners).
-chgrp (change file groups).
-mkdir, rmdir.

-find : search for files.

. Find examines a file system subtree, not just a single
directory, looking for files that match a set of criteria.

Ex. find . —-name checklist -print
find /usr —name ‘v*[0-9] -print
find /usr —size + 1000 -print
find /usr -mtime -1 -print
find / -name core —exec rm {};

-pack and compress : save space.
. When you compress a file, the programs create a new

program of the same name but with a .z(pack) or
a .Z(compress) suffix, and then delete the original.

FileSystem - 31

Tatﬁe 1 [_Find Command-line Options

-atime n

-ctime n

-depth

-follow

-fstype type

-group groupnm

-inum num

-links n

-local

-mount
-mtime n

-name file

-newer file
-nogroup

-nouser

-perm perms

Searching

Find files accessed n days ago. —n means less than n
days, n means exactly n days, while +n means more than
n days.

Find files whose i-node was modified n days ago. —n
means less than n days, n means exactly n days, while +n
means more than n days.

Perform a depth first search, which means examine a
directory’s subdirectories before examining the files in the
directory. Always true.

Follow symbolic links. Always true.

Confine the search to file systems of the specified type.
Common file system types are rfs,nfs,and s5. Always true.
Search for files belonging to the specified group.

Search for files that have the specified inum.

Search for files with n links.

Search only for files on local file systems.

Search for files within a single file system.

Search for files that have been modified in n days. —n
means less than n days, n means exactly n days, while +n
means more than n days.

Search for files with the specified name.The name may
contain shell metacharacters,but they must usually be
quoted.

Search for files newer than the specified file.

Search for files within a group, meaning files whose group
ID number doesn’t appear in /etc/group.

Search for files without an owner, meaning files whose
owner ID number doesn’t appear in /etc/passwd.

Search for files whose permissions exactly match the
specified perms, which are the files access modes in octal.
If perms is preceded by a -, all permission bits (sticky, set
UID, set GID) are included.

FileSystem - 32

CSE g
-/

-prune

-size n

-type X

-user name

(‘expr)

-exec cmds

-ok cmds

-print

Stops a search from proceeding beyond the specified
point.

Search for files that are n blocks large, -n means less than
n blocks, n means exactly n blocks, while +n means more
than n blocks.

Search for files whose type is x: f for regular files, b for
block special files, c for character special files, d for
directory files, p for fifo (pipe) files, | for symbolic link files.
Search for files owned by the specified user.

Parentheses for grouping.
Not
OR
AND (Not needed, because search criteria are ANDed left
to right by default.)

Actions

Execute the specified command, which may be many
words. The command must be terminated by an escaped
semicolon. In the command, the word {} will be replaced
by the name of the matched file.

Same as —exec, expect that it will operate interactively.
For each found file, find will print the first word of the
command, the name of the file, and then a question mark.
You can type y to execute the command or anything else
to skip the command.
Print the name of each found file.

FileSystem - 33

ﬂ SIS

-tar : collect files.

. Pack and compress are great for squeezing space from
large files, but they don’t do much for small files.

. Tar was originally designed as a program for working
files on tap; its name stands for type archive. Tapes are
usually treated as a single large file, and tar was
designed to be adept at packing sets of files into a
single file that could be stored on a type.

. Tar doesn’t remove the original files, since tar was
designed to perform backups to type.

-file : deduce file types.
-du : disk usage.

-od : dump files.

FileSystem - 34

ﬂ SIS

11.§.1 Remote File System Organization

A remote file system differs from a remote disk system
in that some of the semantics of the file and directory
system are implemented within the server as well as the
client machine. The server provides shared files,
accessible from each of the client machines. As part of the
file service, the server may provide concurrency control
and file protection.

Many contemporary network file systems are
implemented in the context of UNIX file systems, for
example, AT&T Remote File System [24] and Sun’s
Network File Systems [25,28]. Thus, our discussion is
based around many UNIX file system concepts. In
particular, we assume that the file system is hierarchical ---
tree-structured except for the case when a file is linked into
more than one directory --- and that files are named
according to path names in a tree or graph structure.

Files may be referenced on remote servers in two
general ways: superpath names and remote mounting.
Superpath names expand the normal UNIX absolute path
names to include a level above root. Names in the high
level are machine names.Two forms of superpath names
are used:

pawnee:/usr/gjn/book/chapll
and

/..[pawnee/usr/gjn/book/chapll
(The latter name is intended to mean “start at this
machine’s root, go up one level, and then choose the
machine name and the absolute path name on the
machine.) This technique causes the application software
to distinguish between local files and remote files, since
remote file names have the superlevel.

UNIX file systems include a mechanism for

FileSystem - 35

) -
incorporating subfile systems within the root file system. By
performing a mount operation, a subtree can be appended
to an existing hierarchical directory system.(see figure 16)
The remote mount approach allows the mount
operation to extend across the network, interconnecting
the logical tree in one machine into the tree structure on
another machine. The remote mount command shown in
figure 17 mounts directory b in machine A at mount point
(directory) x in machine B. Thus /a/b/c in machine A refers
to

mount b at a

Figure 16 Il The UNIX mount command

the same file as /x/b/c when referenced in machine B.
Notice that this approach causes processes on each
machine to see a different topology of the network file
system, although local and remote files have the same
form.

The issue of determining remote names also arises in
remote file systems. For a file system to be remotely
mounted or otherwise referenced from a client machine, it
may be necessary for the name to be advertised in a global
name space (see the discussion of naming in chapter 10).
Remote file systems ordinarily operate in a network
configuration that includes a name server that implements

FileSystem - 36

ﬂ\~i5t‘
the global name space.

Opening a file system on a remote file server may be a
relatively complex and time-consuming operation.
Suppose that a file name is specified as a network

reference,

Machine A Machine B

| R
ORI T /D
.

Figure 17 Il A Shared Remote Disk Server

using remotely mounted file systems. In general, the open
command causes a serial search of each directory in the
path name (see chapter 9). At each level of the search,
there is the possibility of encountering a remote mount
point(see figure 18). Each subsequent directory search
may cause the remainder of the path name to be passed to
a new file server to complete the command. For example, if
a process in machine B attempted to open /x/b/c/d/e, the
open request would have to be processed in all three
machines in order to locate the file descriptor for the leaf
node file.

In UNIX file systems, a successful file open operation
will result in the file descriptor being loaded into the client’s
memory (refer to Chapter 9). This is likely to also be
required in most systems, since the current state of the file
is saved in the descriptor. If two different client processes

FileSystem - 37

) -
open the same file, then each will have a cached version of
the open file descriptor. Depending on the operating
system policy, it may be acceptable to allow both systems
to have the file open for writing at the same time (this is
acceptable in UNIX). This situation illustrates the necessity
for storage locks to control concurrent access to a file that
has multiple open operations, at least one of which allows
writing. For example, the AT&T RFS system provides a
mechanism for locking, while the Sun NFS does not.
There are many strategies for implementing the file
read and write operations once a file has been opened.The
AT&T RFS approach and the Sun NFS approach illustrate
contrasting strategies.

Machine A Machine B
A N /
[P P ol
i
|MachincC

Figure 18 Il Opening Remote Files

FileSystem - 38

ﬂmsr
('SP,E
* More about UNIX
- CPU scheduling: priority (multi-level queue).
- Memory management: demand-paged virtual-memory
system.
- page replacement algorithm: LRU (global).

- Interprocess communication: pipe.

- a pipe is essentially a queue of bytes between two
processes.

- the pipe is accessed by a file descriptor.

- one process writes into the pipe and the other reads
from the pipe.

- in pipe, synchronization is needed because when a

procedure tries to read from an empty pipe, it is blocked
until data are available.

FileSystem - 39

Lowest

Process queued
on priority level 3

priority l
X

A,
T

User priority 3

3
2

User priority 2

—

User priority 1

User priority O

Waiting for child to exit

Processes waiting
in user mode

Y

Waiting for terminal output

Waiting for terminal input

Waiting for disk buffer

Waiting for disk 1/0

Highest

— OO
—
—

o

T

priority

FileSystem - 40

)

Process waiting
in kernel mode

Figure 19 l The UNIX scheduler is based on a multilevel queue structure.

