

 FileSystem - 1

The UNIX File System

* UNIX: a time-sharing system.

* UNIX: AT&T version, BSD version (Berkeley Software

 Distribution).

* File: a uniform logical view of information storage.

 - A file is a collection of related information defined by

 its creator.

* Why file system ?

 1) when size of files is large.

 2) for back-up.

 3) sharing.

* We are cared about how files are structed, named,

accessed, used, protected, and implemented ==> a file

system.

* File System:

 1) the directory structure.

 2) the collection of actual fields.

* File structure: byte sequence, record sequence, tree.

 FileSystem - 2

Ant Fox Pig

Cat Cow Dog Lion Coat Owl Rat Pony Worm

lbis Hen Lamb

1 Byte 1 Record

 FileSystem - 3

* File access:

 1) sequential access: tape.

 2) random access: disk.

* Types of files:

 1) test files. (characters)

 2) source files.

 3) object files. (binary files)

 4) database. (record)

 or

 1) regular files (user files): ASCII files/binary files.

 - ASCII files: they can be displayed and printed as is,

and they can be edited with an ordinary test editor.

 - binary files: consists of a collection of library

procedures compiled but not linked.

 2) directories (system files).

 3) character special files: related to I/O terminal, printer,

 network.

 4) block special files (model disk).

 FileSystem - 4

The UNIX File System

* A File system is the organization framework that specifies

how a mass storage device is organized.

-File systems usually contain a map, which is called the

i-node table on the UNIX system, that is used to locate a

file, given its name.

*UNIX File Types

1) ordinary files: text and binary files.

2) directory files: collections of files.

. A directory file stores the names of the files it contains

plus information that is used to locate and access the

files.

3) device files: special device files.

 . A device file is a means of accessing a hardhare device,

usually an I/O device. Ex. a pseudo-tty.

4) symbolic link files.

 . A symbolic link is a way to make a new name for an

existing files. It makes it easy to place “copies” of things

whenever they are needed, without the overlead (and

duplications) of truly making copies.

5) the named pipes.

* File Access Modes + Protection + Security

 FileSystem - 5

* The directory system can be viewed as a symbol table

that translates file names into their directory entries.

 ==> the directory itself can be organized in many ways.

 ==> problem: how to search the entry ?

 1) linear search.

 2) hash.

* UNIX directory

 - files are organized in tree-structured directories.

 - absolute/relative path name.

 - working directory.

* Implementing Directories

- When a file is opened, OS uses the path name supplied

by the user to locate the directory entry.

The directory entry provides the information needed to

find the disk blocks.

- Depending on the system, the information may be the

disk address of the entire file (continuous allocation), the

number of the first block or the number of the I-node (in

UNIX).

- The main function of the directory system is to map the

ASCII name of the file to the information needed to locate

the data.

- Issue: where the attributes of a file should be stored ?

 1) store them directly in the directory entry.

 2) i-node: store the attributes in the i-node, rather than

 directory entry.

 FileSystem - 6

 FileSystem - 7

 FileSystem - 8

Directory Description

 /bin Frequently used system binaries

 /dev Special files for I/O devices

 /etc Miscellaneous system administration

 /lib Frequently used libraries

 /tmp Some utilities generate their temporary files here

/usr All user files are in this part of the tree

 /usr/adm System accounting

 /usr/ast Home directory for the user whose login name is ast

 /usr/bin Other system binaries are kept here

 /usr/include System header files

 /usr/lib Libraries, compiler passes, miscellaneous

 /usr/man Online manuals

 /usr/spool Spooling directories for printer and other daemous

 /usr/src System source code

 /usr/tmp Other utilities put their temporary files here

 FileSystem - 9

Figure 1 ■ A Simplified Diagram of a Typical UNIX File System
In this diagram, directory files are shown in triangles, special device files are shown in diamonds,
and ordinary files are shown without borders.

 FileSystem - 10

* File system implementation

- implement file storage; keep track of which disk blocks

go with which files.

 1) continuous allocation.

 - simple, good performance.

 - but not flexible (must know the size of the file in

 advance), large fragmentation.

 2) Link list allocation: a linked list of disk block.

 - no space is wasted to disk fragmentation.

 - it is sufficient for the directory entry to merely store the

 disk address of the first block.

 - however, reading a file sequentially is straightforward.

 - random access is slow.

 FileSystem - 11

3) Linked list allocation using an index.

 - the entire block is available for date.

 - random access is much easier.

- however, the entire table must be in memory.

 FileSystem - 12

4) I-node in UNIX.

 - associate with each file a little table called i-node

 (index-node), which lists the attributes and disk

addresses of the file's blocks.

 - for small files: all the necessary information is in

i-node.

- for large files: one of the addresses in i-node is the

address of a disk block called a single direct block.

- file descriptor is an index to a small table of open

files for this process.

 - in this table, each entry contains an pointer to a file

 structure, which in trun, points to the i-node.

 - ls -l

 after get i-node number, copy i-node information from

disk to memory (called in-core i-node).

- each i-node contains 15 direct link pointer (each of

them pointing to a page <= 12 blocks), 3 inderect

block pointers (single, double, triple: indirect block

pointer).

 FileSystem - 13

 FileSystem - 14

Figure 2

Inode

number
Filename

Group Owner

UNIX directory entry

Permission

vector

File

type

Access

time

Modification

time

Mode

Modification

time

Size

File table of

contents

(for file map)

Number

Of links

UNIX inode

Figure 3

block 0

UNIX File System

Data
Boot

block

Super

block

Inode

list

 FileSystem - 15

Figure 3 ■ File Systems Traditionally Used This Simple Layout

Figure 4 ■ Disks are Usually Divided into Partitions or Slices

 FileSystem - 16

Figure 5 ■ File Descriptors, File Table, and Inode Table

Figure 6 ■ File System Layout

A file system has the following structure (Figure 6).

⚫ The boot block occupies the beginning of a file system, typically the first sector,

and may contain the bootstrap code that is read into the machine to boot, or

initialize, the operating system. Although only one boot block is needed to boot

the system, every file system has a (possibly empty) boot book.

⚫ The super block describes the state of a file system – how large it is, how many

files it can store, where to find free space on the file system, and other

information.

⚫ The inode list is a list of inodes that follows the super block in the file system.

Administrators specify the size of the inode list when configuring a file system.

The kernel references inodes by index into the inode list. One inode is the root

inode of the file system: it is the inode by which the directory structure of the file

system is accessible after execution of the mount system call.

⚫ The data blocks start at the end of the inode list and contain file data and

administrative data. An allocated data block can belong to one and only one file

in the file system.

 FileSystem - 17

 FileSystem - 18

Figure 7 ■ The Kernel Data Structure for Accessing Files

 FileSystem - 19

 FileSystem - 20

Figure 8 ■ The I-node, showing How I-node Block Pointers Are Used to Locate the Blocks in a File

 FileSystem - 21

 FileSystem - 22

 Figure 10 ■ Kernel Operations for Following the Pathname ../a/b

 FileSystem - 23

* File Operations:

 1) create

 - find spce on disk for the file.
- insert the directory entry, records the name of the file and the

location in the file system.

 2) open

 - the open operation takes a file name, searches the

 directory, copying the directory entry into the table (in

 memory) of open files; then, OS returns an pointer to

the entry in the table of open files, avoiding any further

 searching.

 3) write

 - input: the file name + data.

 - according to the file name, find the directory entry.

 - the directory entry will need to store a pointer to the

 current block of the file. (write pointer)

 4) read

 5) reset

 6) delete

 7) link

8) unlink. (only when the number of linked file

names = 0)

* To avoid to search the directory entry again, when a file

 operation is requested, an index into to this table is used

 (returned), so no searching is required.

 FileSystem - 24

* Disk space management: page/segment

 - block size.

 - keep track of free blocks.

 - disk quotas of each user.

* File system reliability: backup, recovery,

 consistency (concurrency control).

* Security and Protection

 - (owner, group, universal) + (rwx)

 -rwxrwxrwx (777)

 FileSystem - 25

* Mount

 FileSystem - 26

* Managing your Files (utilities for file management)

-pwd, cd, ls, rm, mv, cp.

-ln : create links.

 . It creates a new name which references the original file.

 Only one copy exists although it has two names.

a) hard links (traditional forms).

 -Ex. In old new.

 Those two files have the same I-node number.

 -Two problems:

 (1) They only work within a file system because they

are based on I-node.

 (2) They can be very transitory because they operate

at such a low level in the UNIX file system.

 b) symbolic links.

 -Ex. Ln –s old new.

 -A symbolic link operates at a higher level then a hard

link because a symbolic link refers to a file by name,

not through the I-node table. These two files (old, new)

have different I-node numbers.

 FileSystem - 27

Figure 11 ■ The Long Format Output of the Ls Command

 FileSystem - 28

Figure 12 ■ A Hard Link Between introcmds and chapt8

A hard link operates at the level of the I-node table. In this example,

the file names introcmds and chapt8 both refer to the same I-node,

hence both are links to the same file.

Figure 13 ■ A Symbolic Link Between introcmds and chapt8

Symbolic links make one file name refer to another. In this example,

the file name introcmds is a symbolic link to the file chapt8. The file

chapt8 may be modified in any way, but so long as the name chapt8

exists, the symbolic link will remain valid.

 FileSystem - 29

Figure 14 ■ (a) Before linking. (b) After linking.

 FileSystem - 30

Figure 15 ■ (a) Situation prior to linking. (b) After the link is created.

(c) After the original owner removes the file.

 FileSystem - 31

-chomd (change file modes).

-chown (change file owners).

-chgrp (change file groups).

-mkdir, rmdir.

-find : search for files.

 . Find examines a file system subtree, not just a single

directory, looking for files that match a set of criteria.

 Ex. find . –name checklist -print

 find /usr –name ‘v*[0-9]’ -print

 find /usr –size + 1000 -print

 find /usr –mtime –1 -print

 find / -name core –exec rm {};

-pack and compress : save space.

 . When you compress a file, the programs create a new

program of the same name but with a .z(pack) or

a .Z(compress) suffix, and then delete the original.

 FileSystem - 32

Table 1 ■ Find Command-line Options

 Searching

-atime n Find files accessed n days ago. –n means less than n

days, n means exactly n days, while +n means more than

n days.

-ctime n Find files whose i-node was modified n days ago. –n

means less than n days, n means exactly n days, while +n

means more than n days.

-depth Perform a depth first search, which means examine a

directory’s subdirectories before examining the files in the

directory. Always true.

-follow Follow symbolic links. Always true.

-fstype type Confine the search to file systems of the specified type.

Common file system types are rfs,nfs,and s5. Always true.

-group groupnm Search for files belonging to the specified group.

-inum num Search for files that have the specified inum.

-links n Search for files with n links.

-local Search only for files on local file systems.

-mount Search for files within a single file system.

-mtime n Search for files that have been modified in n days. –n

means less than n days, n means exactly n days, while +n

means more than n days.

-name file Search for files with the specified name.The name may

contain shell metacharacters,but they must usually be

quoted.

-newer file Search for files newer than the specified file.

-nogroup Search for files within a group, meaning files whose group

ID number doesn’t appear in /etc/group.

-nouser Search for files without an owner, meaning files whose

owner ID number doesn’t appear in /etc/passwd.

-perm perms Search for files whose permissions exactly match the

specified perms, which are the files access modes in octal.

If perms is preceded by a -, all permission bits (sticky, set

UID, set GID) are included.

 FileSystem - 33

-prune Stops a search from proceeding beyond the specified

point.

-size n Search for files that are n blocks large, -n means less than

n blocks, n means exactly n blocks, while +n means more

than n blocks.

-type x Search for files whose type is x: f for regular files, b for

block special files, c for character special files, d for

directory files, p for fifo (pipe) files, l for symbolic link files.

-user name Search for files owned by the specified user.

(expr) Parentheses for grouping.

! Not

-o OR

-a AND (Not needed, because search criteria are ANDed left

to right by default.)

Actions

-exec cmds Execute the specified command, which may be many

words. The command must be terminated by an escaped

semicolon. In the command, the word {} will be replaced

by the name of the matched file.

-ok cmds Same as –exec, expect that it will operate interactively.

For each found file, find will print the first word of the

command, the name of the file, and then a question mark.

You can type y to execute the command or anything else

to skip the command.

-print Print the name of each found file.

 FileSystem - 34

-tar : collect files.

 . Pack and compress are great for squeezing space from

large files, but they don’t do much for small files.

 . Tar was originally designed as a program for working

files on tap; its name stands for type archive. Tapes are

usually treated as a single large file, and tar was

designed to be adept at packing sets of files into a

single file that could be stored on a type.

 . Tar doesn’t remove the original files, since tar was

designed to perform backups to type.

-file : deduce file types.

-du : disk usage.

-od : dump files.

 FileSystem - 35

11.3.1 Remote File System Organization

A remote file system differs from a remote disk system

in that some of the semantics of the file and directory

system are implemented within the server as well as the

client machine. The server provides shared files,

accessible from each of the client machines. As part of the

file service, the server may provide concurrency control

and file protection.

 Many contemporary network file systems are

implemented in the context of UNIX file systems, for

example, AT&T Remote File System [24] and Sun’s

Network File Systems [25,28]. Thus, our discussion is

based around many UNIX file system concepts. In

particular, we assume that the file system is hierarchical ---

tree-structured except for the case when a file is linked into

more than one directory --- and that files are named

according to path names in a tree or graph structure.

 Files may be referenced on remote servers in two

general ways: superpath names and remote mounting.

Superpath names expand the normal UNIX absolute path

names to include a level above root. Names in the high

level are machine names.Two forms of superpath names

are used:

 pawnee:/usr/gjn/book/chap11

and

 /../pawnee/usr/gjn/book/chap11

(The latter name is intended to mean “start at this

machine’s root, go up one level, and then choose the

machine name and the absolute path name on the

machine.) This technique causes the application software

to distinguish between local files and remote files, since

remote file names have the superlevel.

 UNIX file systems include a mechanism for

 FileSystem - 36

incorporating subfile systems within the root file system. By

performing a mount operation, a subtree can be appended

to an existing hierarchical directory system.(see figure 16)

 The remote mount approach allows the mount

operation to extend across the network, interconnecting

the logical tree in one machine into the tree structure on

another machine. The remote mount command shown in

figure 17 mounts directory b in machine A at mount point

(directory) x in machine B. Thus /a/b/c in machine A refers

to

Figure 16 ▓ The UNIX mount command

the same file as /x/b/c when referenced in machine B.

Notice that this approach causes processes on each

machine to see a different topology of the network file

system, although local and remote files have the same

form.

 The issue of determining remote names also arises in

remote file systems. For a file system to be remotely

mounted or otherwise referenced from a client machine, it

may be necessary for the name to be advertised in a global

name space (see the discussion of naming in chapter 10).

Remote file systems ordinarily operate in a network

configuration that includes a name server that implements

 FileSystem - 37

the global name space.

 Opening a file system on a remote file server may be a

relatively complex and time-consuming operation.

Suppose that a file name is specified as a network

reference,

using remotely mounted file systems. In general, the open

command causes a serial search of each directory in the

path name (see chapter 9). At each level of the search,

there is the possibility of encountering a remote mount

point(see figure 18). Each subsequent directory search

may cause the remainder of the path name to be passed to

a new file server to complete the command. For example, if

a process in machine B attempted to open /x/b/c/d/e, the

open request would have to be processed in all three

machines in order to locate the file descriptor for the leaf

node file.

 In UNIX file systems, a successful file open operation

will result in the file descriptor being loaded into the client’s

memory (refer to Chapter 9). This is likely to also be

required in most systems, since the current state of the file

is saved in the descriptor. If two different client processes

Figure 17 ▓ A Shared Remote Disk Server

 FileSystem - 38

open the same file, then each will have a cached version of

the open file descriptor. Depending on the operating

system policy, it may be acceptable to allow both systems

to have the file open for writing at the same time (this is

acceptable in UNIX). This situation illustrates the necessity

for storage locks to control concurrent access to a file that

has multiple open operations, at least one of which allows

writing. For example, the AT&T RFS system provides a

mechanism for locking, while the Sun NFS does not.

 There are many strategies for implementing the file

read and write operations once a file has been opened.The

AT&T RFS approach and the Sun NFS approach illustrate

contrasting strategies.

Figure 18 ▓ Opening Remote Files

 FileSystem - 39

* More about UNIX

- CPU scheduling: priority (multi-level queue).

- Memory management: demand-paged virtual-memory

system.

 - page replacement algorithm: LRU (global).

- Interprocess communication: pipe.

 - a pipe is essentially a queue of bytes between two

 processes.

 - the pipe is accessed by a file descriptor.

- one process writes into the pipe and the other reads

from the pipe.

 - in pipe, synchronization is needed because when a

 procedure tries to read from an empty pipe, it is blocked

 until data are available.

 FileSystem - 40

Figure 19 ▓ The UNIX scheduler is based on a multilevel queue structure.

