

Deadlock - 1

8. Deadlocks
* Def: A set of process is in a deadlock state when

every process in the set is waiting for an event that

can be caused by only another process in the set.

* A system model – distributed or not.

– Competing process

– Resources: CPU, files, printer, memory …..

Several instances of the same type!

– A normal operation mode

1.Request: granted or kept waiting (*open*)

2.Use

3.Release (*close*)

* Remarks

 No request exceeds the system capacity!

 Deadlock can involve different resource types!

Deadlock - 2

* Deadlock: A situation in which one or more processes in

a system are blocked forever because of requirements

that can never be satisfied.

A set of processes is deadlocked if each process in the

set is waiting for an event that only another process in

this set can cause.

Permanent blocking of a set of processes that either

compete for system resources or communication with

each other.

Non-preemptable resource: one that can not be taken

away from its current owner without causing the

computation to fail. Ex. Printer.

Deadlock occurs if each process holds one resource

and requests another.

A deadlocked process waits for resource (held by

another process) that will never be released.

(* different from starvation: Starvation occurs when

some process waits for resources that periodically

become available but are never allocated to that

process due to some scheduling policy. *)

* For Example

Process: P1, P2.

Resource: R1, R2.

R1→P1; R2→P2.

P1? R2; P2? R1.

P1 and P2 are deadlocked.

* Deadlock Examples

1 1

2 2

Hold

Hold

? ?

Process

Resource

Deadlock - 3

Example: (No deadlock)

* Vertices 2 Edges

- P= { P1, P2, P3 }

- R= { R1, R2, R3, R4 }

- E= { P1→R1, P2→R3, R1→P2, R2→P2, R2→P1,

 R3→P3 }

* Resources

R1:1 R2:2 R3:1 R4:3

* Deadlock ↔ The existence of a cycle

- One instance / Resource type  Yes!!

- Else  Only a necessary condition!! (but not

sufficient)

P1 P3 P2

R1 R3

R2 R4

.

.

.

P1 P3

P2

P4

A cycle but no deadlock

No cycle → no deadlock

deadlock → 必存在 cycle

有 cycle → ?

Deadlock - 4

(1) P1 P2

request (D) request (T)

request (T) request (D)

release (T) release (D)

request (D) release (T)

(* resource deadlock *)

(2) Total memory size= 20 KB

P1 P2

request 8KB request 7KB

request 6KB request 8KB

(* but memory is preemptable→use swaping to solve *)

(3) P1 P2

receive (P2, M) receive (P1, M)

send (P2, M’) send (P1, M’)

(* communication deadlock *)

* One easy solution→time-out.

* Deadlock policies

(1) Detection and recovery.

(2) Prevention.

(3) Avoidance.

Deadlock - 5

* How to deal with the deadlock problem?

Solutions:

1. Make sure that the system never enter a deadlock

state!

– Deadlock Prevention: fail any one of the necessary

conditions.

– Deadlock Avoidance: Processes provide

information regarding their resource usage. Make

sure that the system stays at a “safe” state!

2. Do recovery if the system is deadlocked.

– Deadlock Detection

– Recovery

3. Ignore the possibility of deadlock occurrences!

– Restart the system “manually” if the system

“seems” to be deadlocked or stops functioning.

– Note that the system may be “frozen” temporarily!

(Starvation)

Deadlock - 6

* Deadlock characterization

– Necessary Conditions

(deadlock→conditions or ﹁conditions→﹁deadlock)﹂

1. Mutual Exclusion – At lease one resource must be

held in a nonsharable mode!

2. Hold and Wait – Pi is holding one resource &

waiting to acquire additional resources that are

currently held by other process.

3. No preemption – Resources are nonpreemptible!

4. Circular Wait – There exists a set { P0, P1, …, Pn }

of waiting process such that P0 want P1, P1 want P2,

…,Pn-1 want Pn, and Pn want P0.

* Condition 4 implies condition 2, and conditions are

not completely independent!

– Resource Allocation – a description!

Resource Allocation Graph

P1 P3 P2

R1 R3

R2 R4

.

.

.

Vertices Processes: { P1,…,Pn}

 Resource type: {R1,…,Rm}

Edges Request Edge: Pi→Rj

 Assignment Edge: Ri→Pj

No

deadlock

Deadlock - 7

Try to fail anyone of the necessary condition!

∵﹁ (condition i) →﹁deadlock

– Mutual Exclusion

?? Some resources such as a printer are intrinsically

nonsharable. ??

– Hold and Wait

* Acquire all needed resources before its exec.

* Release allocated resources before request

additional resources.

* Eg-

* Disadvantage:

- low resource utilization

- starvation ~ may never get all you want at a time!

(Tape Drive→Disk) (Disk→Printer)
Time

Hold Them all

Tape Drive & Disk Disk & Printer

Approach 1

Approach 2

(depend on resource types; memory, Ok;
shared files for read, ok.)

Deadlock - 8

– No Preemption

Resource preemption causes the release of resources.

Related protocols are only applied to resources whose

states can saved & restored, eg, CPU register &

memory space instead of printers or tape drives.

* Approach 1:

* Approach 2:

Resource

Request

Allocated
resources are
released

Satisfied?
No

granted

Yes

Resource

Request is

revised!

Resource

Request
Satisfied?

Yes

No

Requested

Resources

held by “Waiting”

processes?

Preempt

those

Resources

Yes

“Wait”! &

allocated

resources may

be preempted

No

Deadlock - 9

– Circular Wait

A resource-ordering approach:

 F: R→N

 Resource requests must be made in an

increasing order of enumeration.

* Type 1--strictly increasing order of resource request.

~ Initially, order any # of instances of Ri

~ Following request of any # of instances of Rj must

 satisfy F(Rj) > F(Ri), and so on.

– A single request must be issued for all needed

instance of the same resources.

* Type 2

~ Processes must release all Ri’s when they request

 any instance of Rj if F(Ri) ≧ F(Rj)

* F : R→N must be defined according to the normal

order of resource usages in a system, eg.,

F(tape drive)= 1

F(disk drive)=5

F(printer) =12

?? feasible ??

(impose a total order on
 the resource)

(常用的，放前面號碼)

Deadlock - 10

* Deadlock Prevention

Design the system so that deadlock is not possible.

A system which is not secure from deadlock can

sometimes be made secure by prohibiting operations that

may lead to deadlock.

if Secure  no deadlock; if deadlock  no secure.

* Denying at least one of the four following conditions, all

of which are necessary for deadlock to occur:

(1) Mutual exclusion: process hold resources

exclusively, making them unavailable to other

processes.

(resource in a nonsharable mode)

(attack  some resource are sharable)

(2) Partial allocation: processes may hold some

resources when they request additional units of the

same of other resource.

(hold and wait)

(attack  require all initially)

(attack  release all old resources before ask for

new resources)

(disadv: low system utilization, starvation)

(3) Nonpreemption: resources are not taken away from

a process holding them; only processes can

release resource they hold.

(attack  allow preempting the resources; some

resources are preemptable.)

(when waiting occur→release all you have.)

Deadlock - 11

(4) Resource waiting: process that request unavailable

units of resources block until they become available.

(circular waiting)

(attack  impose a total ordering of all resource

types, require that in an increasing order of

enumeration.)

* Deadlock is prevented by designing the resource

management sections of an operating so that one of the

conditions cannot occur.

* Degrade utilization of system resource, but is

appropriate in systems for which deadlock carries a

heavy penalty (ex. In a real-time system).

* Deadlock Detection

Design the system assuming that deadlock can occur.

Employ methods to detect deadlocks when they occur.

(and then do recovery)

Can recover by terminating the deadlocked processes or

by preempting the resources. (choose which one ?)

Advantage: allow higher resource utilization compared to

when deadlock is absolutely prevented.

Should be used when deadlock is not too frequent and

recovery is not too expensive.

(the inverse case for deadlock prevention)

Deadlock Secure

∑

Deadlock

∑

∑ = Secure

The system model Detection Prevention

(Avoidance)

Deadlock - 12

* Deadlock Avoidance

* Motivation:

Deadlock prevention can cause low device utilization &

reduced system throughput.

Acquire additional info. about how resources are to be

requested & have better resource allocation!

Methods that relay on some knowledge of future process

behavior to constrain the pattern of resource allocation.

(how resources are to be requested)

Each process declares the maximum number of resources

of each type that it may need, (* required *)

Deadlock Avoidance: dynamically examines the resource

allocation state to ensure that there can never be a

circular-wait condition.

*

* A simple model

– Processes declare the max # of resources of each

type that it may need. (不能>系統有)

– A deadlock-avoidance algorithm dynamically

examines the resource-allocation state and make

sure that it is safe! (如果不 safe →只是可能進入

deadlock, 但不一定會有)

(e.g., never enter a circular-wait condition)

– A resource-allocation state

< # of available resources,

 # of allocated resources,

max demands of processes >

Reject其 request

Deadlock - 13

* Safe State

– Motivation: Deadlocks are avoided if the system can

allocate resources to each process up to its maximum

request in some order. If so, the system is in a safe

state! (exist a safe sequence →exist a safe state)

– Safe Sequence: A sequence of processes

<P1, P2,…, Pn> is a safe sequence if

 Pi, need(Pi)  Available +  allocated(Pj) (j <i)

– Example: (total: 12 tapes)

 Max needs Allocated Available

P0 10 5 3

P1 4 2 <P1, P0, P2>

P2 9 2 safe sequence

* If P2 got one more, the system state is unsafe.

∵((P0, 5), (P1, 2), (P2, 3), (available, 2))

A system state is

safe: if there exists a safe state.

unsafe: otherwise

Safe
unsafe

Deadlock

Avail – Need + Max = Avail – (Max – Allocated) + Max
 = Avail + Allocated

A deadlock is an unsafe state

(reject!)

Deadlock - 14

A “safe” state: the system can allocate resource to each

process (up to its maximum) in some order and still avoid

a deadlock (some processes must wait if it cannot be

granted).

Safe sequence <Pi1, Pi2, …, Pij, Pik, …, Pin>

Piq (1  q  n), Req# (Piq)  Available # + Allocate # (Piw)

(1  w  q)

(* for single resource type *)

If can find such a safe sequence → safe state.

Deadlock

Safe Unsafe

Deadlock - 15

* How to ensure that the system will always remain in

a safe state? (*The request is granted only if the

allocation leaves the system in a safe state.)

* One instance / Resource type ~ Resource-Allocation

Graph

P1

1

P2

R1

R2

Pi

Pi

Pi

Rj

Rj

Rj

 Request Edge

 Assignment Edge

 Claim Edge

Resource
allocated

Resource
release

Request
made

P1

1

P2

R1

R2

A cycle is detected!

 The system state is unsafe!

R2 was requested & granted!

Fig. 7.5

Fig. 7.6

Safe state: no cycle

unsafe state: otherwise

Cycle detection can be

done in O(n2)

(→, claim edge, 可能會要求)

Deadlock - 16

* Multiple instance per resource type

– Banker’s algorithm

* Every new process must declare the maximum

usage of each resource type.

* A resource request is granted if the resource

allocation will leave the system in a safe state.

Data structures (n: # of processes, m: # of resources type)

* Available[m]

If Available[i]= k, there are k instances of resource

type Ri available.

* Max[n, m]

If Max[i, j]= k, process Pi may request at most k

instances of resource type Rj.

* Allocation[n. m]

If Allocation[i, j]= k, process Pi is currently allocated

k instances of resource type Rj.

* Need[n, m]

If Need[i, j]= k, process Pi may need k more

instances of resource type Rj.

* Need[i, j] = Max[i, j] – Allocation[i, j]

Deadlock - 17

* Deadlock Avoidance: ensure that the system will always

be in a safe state.

Because of waiting → low utilization.

* Several instances of a resource type

Banker’s algorithm

Declare the maximum number of instances of each

resource type that it may need.

This number can not exceed total number of resources

in the system.

n: # process

m: # resource types

X  Y iff X[i]  Y[i] for all i= 1, 2, …, n

(0, 3, 2, 1)  (1, 7, 3, 2)

Deadlock - 18

Available: A vector of length m indicating the number of

available resources of each type. If Available[j]= k, there

are k instances of resource type Rj available.

* Max: An n × m matrix defining the maximum demand of

each process. If Max[i,j]= k, then process Pi may

request at most k instances of resource type Rj.

* Allocation: An n × m matrix defining the number of

resources of each type currently allocated to each

process. If Allocation[i,j]= k, then process Pi is currently

allocated k instances of resource type Rj.

* Need: An n × m matrix indicating the remaining

resource need of each process. If Need[i,j]= k, then

process Pi may need k more instances of resource type

Rj in order to complete its task. Note that

Need[i,j]= Max[i,j] – Allocation[i,j]

Deadlock - 19

* Banker’s algorithm

Let Requesti be the request vector for process Pi. If

Requesti [j]= k, then process Pi want k instances of

resource type Rj. When a request for resources is made

by process Pi, the following actions are taken:

1. If Requesti  Needi, go to step 2. Otherwise, raise an

error condition, since the process has exceeded its

maximum claim.

2. If Requesti  Available, go to step 3. Otherwise, Pi

must wait, since the resources are not available.

3. The system pretends to have allocated the requested

resources to process Pi by modifying the state as

follows:

If the resulting resource-allocation state is safe, the

transaction is completed and process Pi is allocated its

resources. However, if the new state is unsafe, then Pi

must wait for Requesti and the old resource-allocation

state is restored.

Available := Available – Requesti;

Allocationi := Allocationi + Requesti;

Needi := Needi – Requesti;

Deadlock - 20

– Safe Algorithm (Safety: O(mxn2))

/* Find out whether or not a system is in a safe state */

1. Work := Available; Finish[i] := F, 1 ≤ i ≤ n

2. Find an i such that both

a. Finish[i]= F

b. Need i ≤ Work

If no such i exists, goto stp 4.

3. Work := Work + Allocation i;

Finish[i] := T

goto step 2

4. If Finish[i]= T for all i, the system is in a safe state.

* Where

Allocation i & Need i are the i the row of Allocation

and Need, respectively, and

X ≤ Y if X[i] ≤ Y[i] for all i,

X＜Y if X ≤ Y and Y≠X

(* m resources; n processes *)

Deadlock - 21

* Safety algorithm

The algorithm for finding out whether or not a system is in

a safe state can be described as follows:

1. Let Work and Finish be vectors of length m and n,

respectively. Initialize Work := Available and

Finish[i] := false for i= 1, 2, …, n.

2. Find an i such that both

a. Finish[i]= false

b. Needi  Work

If no such i exists, go to step 4.

3. Work := Work + Allocationi

Finish[i] := true

go to step 2

4. If Finish[i]= true for all i, then the system is in a safe

state.

The content of the matrix Need is defined to be

Max-Allocation and is:

 Allocation Max Available

 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

 Need

 A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Allocation Need Available

 A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

(* initial: 10, 5, 7*)

Deadlock - 22

Example

 Allocation Max Need Available

 A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

* A safe state !! ∵ <P1, P3, P4, P2, P0>

is a safe sequence of the state.

Let P1 make a request Request i = (1, 0, 2)

1. Request i ≤ Available ((1, 0, 2) ≤ (3, 3, 2))

2. “New” state

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

 Safe ∵ <P1, P3, P4, P0, P2> is its safe state!

  granted!

* If Request 4 = (3, 3, 0) is asked later, it must be

rejected.

* Request 0 = (0, 2, 0) must be rejected because it

results in an unsafe state.

Deadlock - 23

* Available: A vector of length m indicating the number of

available resources of each type.

* Allocation: An n × m matrix defining the number of

resources of each type currently allocated to each

process.

* Request: An n × m matrix defining the current request of

each process. If Request[i,j]= k, then process Pi is

requesting k more instances of resource type Rj.

1. Let Work and Finish be vector of length m and n,

respectively. Initialize Work := Available. For i=1,2, …,n

If Allocationi≠ 0 then Finish[i]:= false; otherwise,

Finish[i]:= true.

2. Find an index i such that:

a. Finish[i]= false, and

b. Requesti  Work.

If no such i exists go to step 4.

3. Work := Work + Allocationi

Finish[i] := true

go to step 2.

4. If Finish[i]= false, for some i, 1 i  n, then the system

is in a deadlock state. Moreover, if Finish[i]= false then

process Pi is deadlocked.

Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Request

 A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

Deadlock - 24

* Ex. (A, B, C)= (10, 5, 7) initially

(sequence <P1, P3, P4, P2, P0> satisfies the safety

criteria)

(3 3 2) →P1 (- 1 2 2) (2 1 0) (+ 3 2 2)

(5 3 2) →P3 (- 0 1 1) (5 2 1) (+ 2 2 2)

(7 4 3) →P4 (- 4 3 1) (3 1 2) (+ 4 3 3)

(7 4 5) →P2 (- 6 0 0) (1 4 5) (+ 9 0 2)

(10 4 7) →P0 (-7 4 3) (3 0 4) (+ 7 5 3)

(10 5 7)

However, if P1 requests one more A and two more C,

Request1= (1, ,0, 2) →

find safe sequence <1, 3, 4, 0, 2> → safe, OK, grant

resource to P1.

Next, if P4 ask for (3, 3, 0) → NO! (> available).

However, if P0 asks for (0, 2, 0) → NO → unsafe state.

(now available (2, 1, 0))

Performance: O(mn2)

Deadlock - 25

– Resource Allocation Algorithm

/* Request i is the request vector for Pi Request[i] = k :

Pi request k instances of resource type Rj */

1. If Request i ≤ Need i, goto step2, otherwise, reject.

2. If Request i ≤ Available, goto step3, otherwise, Pi

must wait.

3. Let the system pretend to have allocated resources

to process Pi by setting .

Available := Available – Request i;

Allocation i := Allocation i + Request i;

Need i := Need i – Request i;

Exec “Safety Algorithm”. If the system state is safe,

the request is granted; otherwise, Pi must wait; and

the old resource-allocation state is restored!

Deadlock - 26

* Deadlock Detection

* Motivation: Higher resource utilization and “may be”

lower possibility of deadlock occurrence.

* Overhead:

- Cost of info maintenance.

- Cost of executing detection algorithm.

- Potential losses inherent from a deadlock.

* Deadlock Detection

– Single instance per resource type

* Detect an cycle in O(n2) every t time unit.

* The system needs to maintain the wait-for-graph.

Rq

P5

P4

P3 P2 P1

R1 R3

R2

R4

R5

Pi

P5

P3 P1

P4

P2

A resource-allocation graph A wait-for graph

Pj Pj Pi

Deadlock - 27

* Deadlock Detection

* Single instance of each resource type.

A variant of resource graph → wait-for graph.
(By removing the nodes of type resource and collapsing
the appropriate edges).

A deadlock exists in the system if and only if the wait-for
graph contains a cycle.

To detect deadlock, the system maintains the wait-for
graph, and periodically to invoke an cycle-detection
algorithm.

Performance: (O(n2)).

* Detection algorithm usage:

When should we invoke the detection algorithm?

Consider:

1. How often is the deadlock?

(Deadlock can come only when some process

makes a request that cannot be granted

immediately.)

2. How many processes will be affected by deadlock

when it happens?

Deadlock - 28

– Multiple instance per resource type

Data Structure

Available[1..m]: # of available resource instance

Allocation[1..n, 1..m]: resource allocation

Request[1..n, 1..m]: the current request of 1

If Request[i,j]= k,Pi requests k more instance of resource

type Rj.

1. Work := Available, & for i=1, 2, …, n

If Allocation i≠0, then Finish[i]= F;

otherwise Finish[i]= T

2. Find an i such that both

a. Finish[i]= F

b. Request i  Work

If no such i, goto step 4

3. Work := Work + Allocation i

Finish[i] := true

goto step 2

4. If Finish[i]= F, for some i, then the system is in a

deadlock state. If Finish[i]= F, process Pi is

deadlock.

Deadlock - 29

Example

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

 Find a sequence <P0, P2, P3, P1, P4> such that

Finish[i]= T for all i.

* How about Request2= (0, 0 ,1)

 P1, P2, P3, and P4 are deadlocked!

But, when should we invoke the detection algorithm?

– How often

– How many processes will be affected by deadlock?

* Deadlock Detection? When? CPU utilization us a

threshold? A detection frequency? …

Every rejected

request

overhead

Processes affected

Deadlock - 30

* Recovery

* Whose responsibility to deal with deadlocks?

– Operator deals with the deadlock manually.

– The system recover from the deadlock

automatically.

* Solutions

– Process Termination

* Abort all deadlocked processes!

Simple but costly

* Abort one process at a time until the deadlock cycle

is broken!

Overhead for running the detection again and again,

and the difficulty of selecting a victim!

What is the cost of aborting a victim?

– Process priority.

– The CPU time consumed and to be consumed by

a process.

– The (# of) resources used and needed by a

process.

– Process’s characteristics such as “interactive or

batch”.

– # of processes needed to be aborted.

Deadlock - 31

But, can we abort any process? Should we compensate

any damage caused by aborting?

– Resource Preemption

Preemption some resources from processes and

give them to other processes until deadlock cycle is

broken!

Issues

* Selecting a victim:

It must be cost-effective!

* Roll-Back

How far should we roll back a process whose

resources were preempted?

* Starvation

Will we keep picking up the same process as a

victim?

How to control the # of rollbacks per process

efficient?

Deadlock - 32

* Recovery

Rollback – abort – restart.

Minimizes the cost of re-executing the rolled-back

processes: priority, type and amount of current resource

allocation.

1. Abort one or more processes in order to break the

circular wait.

Process termination.

(Abort it, reclaim all resources allocated to it.)

(a) Abort all deadlocked processes.

(b) Abort one process at a time until the deadlock cycle

is eliminated.

Terminate a process may leave a file in an incorrect
state. Which process should be terminated? (minimum
cost)
Consider (priority, how long the process has computed,
how much longer the process will compute before
completing its designated task, how many and what
type of resources the process has used, how many
more resources the process needs, how many
processes will need to be terminated…)

2. Preempt some resources from one or more of the

deadlocked processes.

Preempt some resources from processes and give
these resources to other process until the deadlock is
broken.
Select a victim (which resources and which processes
are to be preempted?)
Rollback (when the resource is preempted, what should
be done with that process?)
(total rollback, partial rollback)
Starvation!! (Avoid affect the same process again!)

