

Process Synchronization -1

CH6 Process Synchronization
Why need process synchronization?

 Consider two cooperating process:

 Producer:

 item nextProduced;

while (1) {

 while (counter == BUFFER_SIZE)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

 }

 Consumer:

 item nextConsumed;

while (1) {

 while (counter == 0)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 counter--;

 }

Execution sequence: initially, counter=5

 5 different

 4 counter?!!

 6 values

A “cooperating” process is one that can affect or be affected by

the other processes executing in the system.

(可能 share data or logical address space => data consistency)

Process Synchronization -2

register1=counter

register1= register1 +1

counter= register1

如果這 3 個指令不可分＝>則不會出事！

(p.156)

producer: register1 = counter (register1 = 5)

producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)

consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)

consumer: counter = register2 (counter = 4)

A situation like this, where several processes access and

manipulate the same data concurrently, and the outcome of the

execution depends on the particular order in which the access

takes place, is called a race condition.

Process Synchronization -3

The Critical –Section problem (臨界區)

˙ Def: Design a protocol that processes can use to cooperate.

Where each process has a segment of code, called a

critical section, whose execution must be mutually

exclusive

˙ A general structure

 do {

～permission request

 critical section;

～exit notification

 remainder section;

 } while(1);

˙ Solution: Three requirements:

1. Mutual Execution: only one process can be in its critical

section (互斥，有你就沒有我)

2. Progress: (No deadlock)

a. Only processes not in their remainder section can

decide which will enter its critical section

b. The selection cannot be postponed indefinitely

3. Bounded Waiting: (no starvation)

A waiting process only wait for a bounded number of

processes to enter their critical sections

race condition : the outcome of the execution depends on

the particular order in which the access take place.

entry section;

exit section;

Process Synchronization -4

An OS is composed of several concurrent processes.

Processes are concurrent if they exist at the same time.

These processes have to exchange information for their

proper function.

Data sharing is one method of information exchange.

Uncontrolled access to shared data by concurrent processes
can make the data inconsistent.

Examples of data sharing:

--Memory Management:

 Processes: User processes, Garbage Collector.

 Shared data: memory allocation table.

--UNIX Shell Pipelining:

 cat file1 file2 | lpr

 shared data: the printer buffer

 one is writing while one is reading.

➔ the producer-consumer problem

 (the bounded buffer problem).

Access to shared data must be done in an orderly fashion.

* Mutual Exclusion→each process accessing the shared data
excludes all others from doing so simultaneously.

Only one process at a time holds a resource or modifies
shared information.

A mechanism for mutual exclusion must guarantee three
properties: mutual exclusion , deadlock-free ,starvation-free.

Process Synchronization -5

* Critical Section: a code segment in a process in which some

shared resource is referenced.

During the execution of a CS, mutual exclusion with respect to

certain information or resources must be ensured.

* If no synchronization, what will happen?

EX. X=X+1; initially, X=5; processes A and B read X at the

same time; after execution, X(A)=X(B)=6.

* Dijkstra introduced semaphores for this purpose.

* A synchronization mechanism must provide a means of

expressing exclusion and priority.

Exclude certain process from the resource under some

circumstances.

Scheduling access to the resource according to given priority.

* Synchronization mechanisms:

1) busy waiting.(CPU is active→ waste CPU time)
2) block and sleep; semaphore.(CPU is passive)
3) event counter
4) monitor
5) message passing.(send/receive)
6) serializer.
7) Path expression.

* Examples

1) the bounded buffer problem (producer/consumer).
2) the reader/writer problem.
3) The disk-head scheduler

Process Synchronization -6

臨界段落

定 義

 針對任何共用資源，每一程序中有一段程式碼可以管理此共用
資源。如果已有一個程序已進入此管理共用資源的程式段時，則其

他的程序就不能使用此共用資源，即其他程序不能進入管理此共用

資源的程式段。此程式段的執行對所有程式而言是互斥的。因此此
程式段稱為臨界段落。

臨界段落的條件
1.互斥性：僅能有一個程序進入臨界段落。

2.進展性（progress）：當在臨界段落的程序離開了，則必有一

個等待進入的程序能進入臨界段落。(No deadlock)

3.有限等待（Bounded waiting）：所有等待進入臨界段落的程

序皆能在有限的時間內進入臨界段落。 (No starvation)

臨界段落的結構
 如圖 7-3 所示臨界段落分有入口區，臨界段落本身，出口區。

期中入口區與出口區的設計是為了滿足臨界段落的條件。

entry section

 critical

 section

exit section

 圖 7-3 臨界段落的結構

Process Synchronization -7

6.2 Two-Process Solution

– Pi & Pj ; where j=1-i; (P0 , P1)

– Assumptions

 Every basic machine-language instruction is atomic

Algorithm 1

 Idea: Remember which process is allocated to enter its

critical section, i.e., process I can enter its critical section if

turn = i (輪到我，我進去)

do {

 critical section

 remainder section

} while (1) ;

* Fail the progress requirement:

P0 SS or quit ! Time

 turn=0 exit

 turn=1

P1 Time

 exit Blocked on Time P1

 turn=0 entry section

得證明 no progress

 while (turn != i) ;

 turn =j ; (下一個人)

Process Synchronization -8

i→j→i→j (no problem)

i→i (有問題 ➔ 誰都進不去)

turn=0

i = 0
while(t != 0)

i = 1
while (t != 1)

Process Synchronization -9

Algorithm 2

 Idea: Remember the state of exch process

 flag[i] = true => Pi is ready to enter its critical section

 do {

 critical section

 } while(1);

* Fail the progress requirement (兩人均進不去)

 when

 flag[0]=flag[1]=true;

 => The correctness of Algorithm 2 depends on the

 exact timing of the two processes!

Alg.1 問題在它沒有足夠 interaction about the state of each

processes.

* flag：shared variable

* 0→1→0→1 (ok)

0→0→0 (ok)

* if (1),(2) 順序交換 ➔ 連 ME 均不滿足

flag[i] = true; - (1)
while (flag[j]); - (2)

flag[i] =false;

flag[0] = T;
while (flag[1]);

flag[1] = T;
while (flag[0]);

Process Synchronization -10

Algorithm 3

Idea: Combine ideas of Algorithm 1 & 2

 fag[i]

 => Pj must wait

 turn=i

 do {

 (* 只要別人不想盡去，我就可以進行；破其一條

件即可進去*)

critical section

 remainder section

 } while(1);

 Initially, flag[i]=flag[j]=false, and

turn = 0 or 1

˙mutual exclusion: turn can be either 0 or 1

˙progress: a process can only be stucked in the
 while loop & processes which can stuck it must be

 in their critical sections

˙bounded waiting: at most one entry by the other

 processes

flag[i] =true;
turn =j;
while (flag[j] && turn == j);

flag[i] =false;

Process Synchronization -11

＊turn：shared variable

i flag[j] Turn=?

ID=0 0：我進去

1：我不可

 0

1

ID=1 0：不可

1：進去

 0

1

P0

(1) flag[0] = T

(4) turn = 1

(5) while (T && turn == 1)

waiting

(8) while (F && turn == 1)

 CS

P1

(2) flag[1] = T

(3) turn = 0

(6) while (T && turn==1) False

 CS

(7) flag[1] = F

我去

可

T

T

F

F

只要某一為 False 即可進去！

Process Synchronization -12

˙Multiple-Process Solution

 Idea: Processes which are ready to enter their critical

section must take a number and wait till the

number becomes the lowest

 (*沒人號碼比我小 ➔ 我進去*)

 number[i]: Pi’s number if it is nonzero

 choosing[i]:Pi is taking a number(等他一下)

 do {

 critical section

 remainder section

 } while(1);

* An observation: If Pi is in its critical section, and Pk (k !=i) has

already chosen its number[k], then

number[i,i] < number[k,k]

choosing[i] =true;
number[i]=max(number[j])+1;
choosing[i] =false;
for (j =0 ; j<n ; j++)
{
 while (choosing[j]);
 while ((number[j] !=0) && (number[j,j] < number[i, i]));
}

number[i] =0;

Process Synchronization -13

軟體的臨界段落設計

Dekker algothm

 Dekker algothm 是 2 個 processes 的臨界段落設計方法，其方式為：

 The two processes, p0 and p1 , share the following variables:

 var flag: array[0..1] of boolean ; (* initially false*)

 turn: 0..1;

The program below is for process pi (I=0 or 1) with process pj

(i=1 or 0) being the other one.

The structure of process pi is:

do {

 critical section

 remainder section

} while(1);

choosing[i] =true;
number[i] =max(number[0],number[1],…,number[n-1])+1;
choosing[i] =false;
for (j =0 ;j<n ;j++) {
 while (choosing[j]);
 while ((number[j]!=0)
 && (number[j,j] < number[i,I]));
 };

number[i] =0;

Process Synchronization -14

bakery 演算法

 bakery 演算法是 n 個 processes 的臨界段落設計方式，其方式為：

 The common data structures are:

 Var choosing: array[0..n-1] of boolean ;

number: array[0..n-1] of integer;

Initially these data structures are initialized to false and 0 ,

 respectively. For convenience, we define the following notation:

˙(a,b)<(c,d) if a<c or if a=c and b<d.

˙max(a0,…,an-1)is a number, k ,such that k≧ ai for i=0…,n-1

do {

 …

 critical section

 …

 …

 remainder section

 } while(1);

flag[i] =true;
while (flag[j])
 { if (turn == j)
 {
 flag[i] =false;
 while (turn == j);
 flag[i] =true;
 }

turn =j;
flag[i] =false;

Process Synchronization -15

當 turn = 0 ，而此時 p1想進入臨界段落，則表示當 p0不在臨界
段落時，p1亦不能進入，因此不滿足 prgress 的條件。

例題 若有二個 processes 內有下列的臨界段落。其中 turn 為

common integer variable ，其值為 0或是 1，初值為 0。
即如果 turn= i ，則程序 Pi被允許進入臨界段落。

 do {

 critical section

 remainder section

 } while(1);

 試問此軟體設計方式是否滿足臨界段落條件。

while (turn != i);

turn =j;

Process Synchronization -16

Synchronization Hardware

˙Motivation: make programming easier and improve system

performance

 ˙Approach:

- Disable interrupt

Protect code where shared variables are modified!

*Infeasible in multiprocessor environment where msg

 passing is used

 *Potential impact on interrupt-driven system clock

- Test and set(Hardware support?)

 An atomic instruction

 boolean Test-and-set(boolean &target)

 {

 Test-and-set =target; (*第一個人，我一進門

 target =true; ，就把門鎖上*)

 }

Boolean lock=false;

 do {

 critical section

 remainder section

 }

➔ Starvation

while (TestAndSet(lock));

lock =false;

Process Synchronization -17

swap(Hardware support?!)

An atomic instruction

 void Swap(boolean &a, boolean &b) {

 Boolean temp =a;

 a =b;

 b =temp;

 }

 do {

 critical section

 remainder section

 }

- lock : global variable i false initially

- key : local variable

➔starvation (no bounded waiting)

key =true;
while (key==true)

swap(lock, key);

lock =false;

Process Synchronization -18

one correct algorithm

 shared variables (* global i false initially *)

 boolean lock;

 boolean waiting[n];

 var j:0..n-1; (* local *)

 boolean key;

 do {

 critical section

remainder section

 } while(1);

* Atomic Test-and-set is hard to implement in a

 multiprocessor environment

➔ 解掉 Starvation

waiting[i] =true;
key =true;
while (waiting[i] && key)
 key =TestAndSet(lock);

j =(i+1) % n;
while ((j !=i) && (not waiting[j]))
 j = (j+1) % n;
if (j==I) lock =false;
 else waiting[j] =false;
waiting[i] = false; (*)

Process Synchronization -19

硬體的臨界段落設計

若有一個 atomic instruction Test-and-set 定義如下：

 boolean TestAndSet(boolean &target)
 {
 boolean rv=target;
 target =true;

 return rv;

}

則下列的臨界段落設計可滿足臨界段落的三條件

 The common data structure are:

 boolean waiting[n];
 boolean lock;

 These data structure are initialized to false.
 The structure of process Pi is :

 var j: 0..n-1;
 boolean key;
 do {

 critical section

 remainder section

 } while(1);

waiting[i] = true;
key =true;
while (waiting[i] &&

key==TestAndSet(lock));
waiting[i] =false;

j =(i+1) % n;
while ((j!=i) && (not waiting[j])) j =(j+1)% n;
if (j==I) lock =false;
else waiting[j] =false;

Process Synchronization -20

由於所有等待進入臨界段落的程序可能搶著執行 atomic instruction

Test-and-set，因 atomic instruction 是由硬體結構完成，故在一個

指令週期內就能完成。故而有些程序可能一直搶不到執行，而造成

starvation 的現象，因此不能滿足”bounded waiting”的條件。

例題 若有 n 個 processes 具有下列型態的臨界段落，其中布

林變數 lock 被設定為 false，

 do {

 critical section

 remainder section

 }

 試問此設計能否滿足臨界段落條件。

while (TestAndSet(lock));

lock =false;

Process Synchronization -21

§6.4 Semaphores

˙Motivation: A high-level solution intended for more complex

problems (* a new data structure *)

˙Two atomic operations

 wait(s): /* P */

 while s<=0 do no-op;

 s--;

 signal(s); /* S */

 s++;

˙Usage:

– critical section problems (* S=1 initially *)

 do { for ME

 critical section

remainder section

 }while(1);

– procedure enforcement (* S=0 initially *)

 P1: 兩人同步

 S1;

 signal(synch);

 P2

 wait(synch);

 S2;

wait(mutex);

signal(mutex);

Process Synchronization -22

˙Implementation

– Spinlock～a type of semaphore involving busy waiting such as

wait(s):

while s<=0 do no-op; ←CPU cycles wasted!

˙advantage: when locks are held for short time ,it is useful since

no context switching is involved

– Block-waiting～no busy waiting from the entry to the critical

section only! (* block itself → 用一個 waiting queue, control 交

 給 CPU)

 Define a semaphore as a record

 typedef struct {

 int value;

 struct process *L;

 } semaphore;

 wait(s):

 S.value--;

 if (S.value<0) {

 add this process to S.L;

 block; ←system call

 }

 signal(s):

 S.value ++;

 if (S.value<=0) { (* 表示有人 waiting *)

 remove a process P from s.L;

 wakeup(p); ←system call

 }

Process Synchronization -23

– Queueing strategy can be arbitrary, but there is a restriction for

the bounded-waiting requirement (no starvation)

– Mutual exclusion in wait() & signal()

~ uniprocessor

 ~interrupt

 ~test-and-set

 ~swap

 ~software methods in section 6.2

 ~and more

 ~multiprocessor

– Remarks: busy-waiting is limited to only the critical sections of

the wait() & signal()

Process Synchronization -24

*6.4.3 Deadlock

 A set of processes is in a deadlock state when every process

in the set is waiting for a event that can be caused only by

another process in the set

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

starvation (Indefinite blocking)

 processes wait indefinitely(within a semaphore)

~e.g., the queuing mechanism is by LIFO

Process Synchronization -25

* Semaphore

A semaphore is an integer variable S and an associated group of

waiting processes (i.e., a waiting queue) upon which only two

operations may be performed:

1) P(S): if S ≧1 then S =S-1

 else the execution process places itself in S’s waiting

group and relinquishes the CPU by invoking CPU

scheduler

 endif;

 2) V(S): if S’s waiting queue is nonempty then remove one

waiting process and make it available for execution

(some implementations invoke a CPU scheduler)

 else S =S+1

 end if;

*Let S be a boolean semaphore. Initialization:: S =false.

Two operations P and V are defined on S:

 P(S):: if S then block; S =true; (* wait *)

 V(S):: S =false; unblock; (* signal *)

*Generalized(integer) semaphores

Let S be an integer semaphore.

P and V operations are defined as follows:

 P(S):: S =S-1;

 if (S<0) block;

 V(S):: S =S+1;

 if (S<=0) unblock;

Process Synchronization -26

*To mutual exclusion access to a shared resource:

1) allocate an integer semaphore with the resource.
Initialization ::S =1.

2) perform a P operation before using the resource.

(* lock *)
3) perform a V operation to release the resource.

(* unlock *)

*Example:

 Sa = Sb = (mutual exclusion semaphore)=1
 (* the first person can access; for mutual exclusion *)
 (* enter the same procedure *)

 S1 (resource semaphore)=0
 (* to suspend; to block; to wait; between procedures *)

 procedure 1; procedure 2;
 P(Sa); P(Sb);
 If.. then P(S1); if.. then V(S1);
 (* to wait *) (* to signal *)
 V(Sa); V(Sb);

*Consumer<-->Producer (many to many)
 S1=n (space); (* for wait/signal *)
 S2=0 (source); (* for wait/signal *)
 Sa=Sb=1; (* for mutual exclusion *)

Producer aa consumer bb
P(Sa);.. P(Sb);..
if …then P(S1); if … then P(S2);
… …
if … then V(S2); if … then V(S1)
… V(Sa); … V(Sb);

Process Synchronization -27

*6.4.4 Binary Semaphore

 Its value ranges from 0 to 1

 bounded value range

 =>easy to implement!

– Implement a counting semaphore by binary semaphore

Var

 binary semaphore S1=1,S2=0;

 int c;

wait(S):

 wait(S1); /* protect c */

 c--;

 if (c<0) {

 signal(S1);

 wait(S2);

 }

 signal(S1);

signal(S);

 wait(S1);

 c++;

 if (c<=0) signal(S2);/*wakeup processes queued in S2.L*/

 else signal(S1);

Process Synchronization -28

信號機 （semaphore）

P 與 V 運算的定義

 若共用變數 S 用來做計數用，S 稱為 Semaphore，P 與 V 運算

定義如下：

 P(S): while S≦0 do skip;

 S:=S-1;

 V(S): S:=S+1;

臨界段落的設計

 若有 n 個 processes 共用一個 semaphore 為 mutex，其初值
為 1，則每個 process 皆有臨界段落設計如下：

 do {

 critical section

 remainder section

 }

P(mutex);

V(mutex);

Process Synchronization -29

§6.5 Classical Synchronization Problems

The Bounded-Buffer Problem

 Producer, consumer, and a pool of buffers

 empty =n; full =0;

 mutex =1; (* for ME *)

Producer

 do {

 …

 produce an item in nextp;

 …

 wait(empty);<--control buffer availability

 wait(mutex);<--mutual execution

 …

 add nextp to buffer

 …

 signal(mutex);

 signal(full);

 } while(1);

Consumer

 do {

 wait(full);

 wait(mutex);

 …

 remove an item from buffer to nextc;

 …

 signal(mutex);

 signal(empty);

 …

 consume the item in nextc;

 …

} while (1);

Process Synchronization -30

*Common Synchronization Problems

1) mutual exclusion: a signal semaphore.

2) Producer/consumer: a set of producer processes supplies

messages to a set of consumer processes.

They all share a common pool of spaces into which

messages may be placed by producers or removed by

consumers.

-->a circular buffer and semaphores.

(nrfull/nrempty-->the no. of full/empty buffers; prevent a

producer from overwriting a message or a consumer from

obtaining an already used message.)

If only one producer or consumer exists, then the

semaphore Sa or Sb unnecessary.

3) reader/writer: any number of readers should be allowed to

proceed concurrently in the absence of a writer, but only

one writer may execute at a time while readers are

excluded.(one writer or many readers)

Several ways to handle priority:

-FCFS

-a strong reader preference.

-a weak reader preference.

-a strong writer preference.

Process Synchronization -31

*The mutual exclusion problem using semaphores

 Shared Variable
 var S: semaphore:=1;
 Process i Process j
 loop loop
 … …

P(S); P(S);
Access shared data safely Access shared data safely
V(S); V(S);
… …

endloop
*The Producer/Consumer problem using semaphores

 Shared Variables
 var nrfull: semaphore:=0;
 nrempty: semaphore:=N;
 mutualP: semaphore:=1;
 mutualC: semaphore:=1;
 buffer: array[0..N-1] of message;
 in, out:0..N-1 :=0,0;
 Producer i Consumer j
 loop loop
 … …
 Create a new message m; …
 __one producer at a time; __one consumer at a time;
 P(mutualP); P(mutualC);
 __Await an empty cell; __Await a message;
 P(nrempty); P(nrfull);
 Buffer[in]:=m; m:=buffer[out];
 in:=(in+1)mod N; out:=(out+1)mod N;
 __signal a full buffer; __signal an empty buffer;
 V(nrfull); V(nrempty);
 __Allow other producers; __Allow other consumers;
 V(mutualP); V(mutualC);
 … Consume message m;
 … …
 endloop; endloop;

Process Synchronization -32

信號機的實際應用

生產/消費（producer/consumer）問題

有一個 buffer，共有 n 個位置。兩個 processes 使用此 buffer，其

中之一產生資料到此 buffer，另外一個 process 則從 buffer 取出資

料。

使用的 semaphore 如下：

1. mutex：作為存取 buffer 的互斥 semaphore，其初值為 1。

2.empty 與 full：當作計算 buffer 的空位置數與滿的位置數，empty

的初值為 n，而 full 的初值為 0。

對於 producer 與 consumer 的程式可編寫如下：

Process Synchronization -33

 type item =… ;
 var buffer=… ;
 full, empty, mutex: semaphore;
 nextp, nextc: item;
 {
 full =0;
 empty =n;
 mute =1;
 parbegin
 producer :repeat
 …
 produce an item in nextp
 …
 p(empty);
 p(mutex);
 …
 add nextp to buffer
 …
 V(mutex);
 V(full);
 until false;

consumer :repeat
 P(full);
 P(mutex);
 …

 remove an item from buffer to nextc
 …
 V(mutex);
 V(empty);
 …
 consume the item in nextc
 …
 until false;
 parend;
 }

Process Synchronization -34

˙The Readers and Writers Problem

Readers: Processes only read the shared object

Writers: else

Access Rules:

2. Multiple reads can occur simultaneously

3. Every write is exclusive in accessing the shared object

– The first reader-writers problem: (* strong reader *)

 No readers will be kept waiting unless a writers has

already obtained permission to use the shared object

=>potential hazard to writers!

– The second reader-writers problem: (* strong writer *)

Once a writer is ready, it performs its write as soon as

possible !(No new read will be allowed) => potential

hazard to readers !

– many others !

(* 除非有 acting writer,

否則 no waiting reader *)

(* 只要有 waiting writer, new

reader waits *)

Process Synchronization -35

– A solution to the R-W Problem: (* Weak reader *)

semaphore wrt, mutex; (initialize to 1)

integer readcount; (initialize to 0)

writer:

 wait(wrt);

 …

 writing is performed

 …

 signal(wrt);

Reader

 wait(mutex); (* (n-1)個 reader 可能 block 在此 *)

 readcount++;

if (readcount==1) wait(wrt); <-- only one reader pending

here!

 (* 第一個 reader 去與 writer 爭 *)

signal(mutex);

…

reading is performed

…

wait(mutex);

readcount--;

if (readcount==0) signal(wrt); (* 最後一個 reader 去叫

signal(mutex); writer *)

*Queuing mechanisms decide whether a waiting reader or a

writer resume execution once a appropriate semaphore is

signaled!

W

R

W

R

W

R

Process Synchronization -36

讀寫（reader/writer）問題

有一個 data object (可能是 file 或 record)被多個 processes 同時

使用，有些 processes 僅是作 read 的工作，另外一些則是作 write

的處理。問題條件是只要有一個 process 再作 read，則所有 writer

processes 皆不能使用此 data object，但允許其他的 reader

processes 可使用此 data object。然而若是有一個 writer process

在使用此 data object 時，其他的 processes（無論是 reader 或
writer）皆不能使用此 processes。

 使用的變數如下：

1. readcount :為 reader processes 的共同變數，紀錄使用 data

object 的 reader processes 數。初值為 0。

2. mutex:為一個 semaphore，保證 read count 在被使用時能具

有互斥性。

3. wrt:作為 writer processes 的互斥 semaphore。

Reader 與 Writer 的程式結構如下：

writer :
 p(wrt);
 …
 writing is performed
 V(wrt);

reader :
 P(mutex);
 readcount++;
 if (readcount==1) P(wrt);
 V(mutex);
 …
 reading is performed
 …
 P(mutex);
 readcount--;
 if (readcount==0) V(wrt);
 V(mutex);

Process Synchronization -37

＊ The Reader/Writer Problem

1) Weak reader priority: an arriving writer waits until there are no

more active readers.

When waiting occurs (writer is inside, and readers and other

writers are waiting) →

FCFS (first reader compete with writers).

2) strong reader priority: conditions of weak reader priority

solution apply, but also a waiting reader has priority over a

waiting writer.

When waiting occurs, waiting reader has high priority. (all readers

have a higher priority than a writer, regardless of the order of their

arrival.)

3) writer priority: an arriving reader waits until there are no more

active or waiting writers.

When waiting occurs, waiting writer has higher priority. Moreover,

when waiting occurs, waiting readers wait until waiting writers

have finished.

Fig. A weak reader preference solution

w1

r1

r2
r3

w2

r4 r5

r6

w3
w4

r7

r8

0 1 2 3 2 1 2 1 0 1 2 1 0 1 2 1 0

T

nreaders

(w2, r4),(r5, w3),(w4, r7) (FCFS)

Process Synchronization -38

Fig. A strong reader preference solution

Fig. A strong writer preference solution

w1

r1

r2
r3

w2

r4 r5

r6

w3
w4

r7

r8

0 1 2 3 2 1 2 1 0 1 2 1 0 1 2 1 0

T

nreaders

(w2, r4),(r5, w3),(w4, r7)

w1

r1

r2
r3

w2

r4 r5

r6

w3
w4

r7

r8

0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 1 0

T

nreaders

(w2, r4),(r5, w3),(w4, r7)

Process Synchronization -39

*A weak reader preference solution using semaphores

Shared Variables

semaphore wmutex=1, rmutex=1;

integer nreaders =0;

A Reader
loop

__Readers enter one at a time
P(rmutex);
__First reader waits for
reader’s turn,
__then inhibits other writers;
if nreaders=0 then

P(wmutex);
endif
nreaders:=nreaders+1;
__Allow other reader enter entries/exits;
V(rmutex);
Perform read operations;
__Readers exit one at a time;
P(rmutex);
nreaders:=nreaders-1;
Last reader allows writers;
If nreaders=0 then

V(wmutex)
endif;
__Allow reader entry/exit
V(rmtuex);

endloop;

B Writer
loop
__Each writer operates alone;
P(wmutex);

Perform write operations;
V(wmutex);
endloop;

Process Synchronization -40

* The Dining-Philosopher Problem

 semaphore chopstick[5]; (initially all values are 1)

 do{

 wait(chopstick[i]);

 wait(chopstick[(i+1)% 5]);

 …

 eat

 …

 signal(chopstick[i]);

 signal(chopstick[(i+1)% 5]);

 …

 think

 …

 } while(1);

* Deadlock can occur!

– Solutions (deadlock free → starvation free)

 1. At most 4 philosophers appear !

 2. Pick up only two chopsticks at a time. (全拿到才行)

 3. Order their behavior:

 odd one → pick up his left chopstick

 even one → pick up his right chopstick

 →binary semaphore 來 implement counting semaphore

think hungry

die eating

Process Synchronization -41

* Dining philosopher problem

有五個哲學家，其生活形態只有吃和想，他們為做成如圖

7-4。每個哲學家想吃時就會拿取相鄰的一雙筷子。吃完後就會放

下筷子。為了防止”deadlock”的現象，即每個人都拿一隻筷子致使
所有人都不能拿一雙筷子而吃。因此利用 P 與 V 運算解決之。

使用的 semaphores 如下：

chopstick: array[0..4] of semaphore，指每個筷子相對一個

semaphore，故對第 i 個哲學家的程式結構如下：

 do{

 P(chopstick[i]);

 P(chopstick[(i+1)% 5]);

 …

 eat

 …

 V(chopstick[i]);

 V(chopstick[(i+1)% 5]);

 …

 think

 …

 } while(1);

圖 7-4 哲學家問題

Process Synchronization -42

＊ AND Synchronization

-->Deadlock problem.

 Process A Process B

 P(Dmutex) P(Emutex)

 P(Emutex) P(Dmutex)

Solution 1: restrict the order in which request can be made.

Solution 2: request at once all the resources necessary and

acquires either all of them or none.

*Dining Philosopher Problem (AND) (Dijkstra)

Five philosophers sit around a table.

Each philosopher alternates between thinking and eating.

In front of each philosopher there is a rice bowel.

When a philosopher wishes to eat, he picks up two chopsticks

(forks) next to his plate.(only five chopsticks)

So, a philosopher can eat only when neither of his neighbors is

eating.

The problem is to write the algorithm for philosopher(0≦i≦4).

Solution based on semaphores cannot prevent a philosopher
(process) from being permanently locked out by two conspiring

neighbor processes; otherwise, it will result in starvation

or infinite delay.

Process Synchronization -43

＊ 6.6 Critical Regions

˙Motivation: need high-level language construct to reduce the

possibility of errors (* Semaphore is too low level *)

 e.g., programming errors in using semaphores

interchange the order of wait & signal

miss some waits or signals

replace waits with signals,…

˙Def. Var V: shared T;

 region v when B do S;

 e.g., a piece of code for consumer & producer

 struct buffer {

 int pool[n];

 int count, in, out;

 }

producer: …

 region buffer when (count<n)

 {

 pool[in] =nextp;

 in =(in+1)% n;

 count++;

 }

consumer:…

 region buffer when (count>0)

 {

 nextc =pool[out];

 out =(out+1) % n;

 count --;

 }

Process Synchronization -44

˙Implement by semaphores
 region x when B do S;

 var

 semaphore mutex; /* mutual exclusion of critical section

 -->initial 1*/

 semaphore first-delay, second-delay; /* B evalution */

 integer first-count, second-delay; /*# of processes */

 wait(mutex);

 while not B

 do {

- first-delay (剛進 waiting queue, priority 最高)

- mutex (想進此門之人)

- second-delay (已在 waiting queue, 試著出來, 不一定成功)

- B : 每次有人離開 CS, 都得重新 test 一次

Overhead
of reevaluation
or Pi
fails B
 fail B

first-delay

second-delay

}
evaluate S;

first-count++;
if (second-count>0)

signal(second-delay);
else signal(mutex);
wait(first-delay);
first-count --;
second-count++;
if (first-count>0)

signal(first-delay);
else signal(second-delay);
wait(second-delay);
second-count--;

B if (first-count>0)
 signal(first-delay);
 else if (second-count>0)
 signal(second-delay);
 else signal(mutex);

- 總是去叫醒別人，自己才睡。

Process Synchronization -45

6.7 Monitor
--Def.

 monitor monitor-name

 {

shared variable declaration

 procedure entry P1(…)

{…}

procedure entry P2(…)

{…}

procedure entry Pn(…)

{…}

{

initialization code

}
}
 entry queues
var
condition x,y;

x.wait();
x.signal();

*only one process can be active within a monitor at a time

…………………

operations

shared data
x
y

Initialization
code

Process Synchronization -46

˙Semantics of signal & wait
˙x.signal resume one suspend process or if there is

done ,no effect is imposed

˙P x.signal a suspended process Q (* P,Q 均在 monitor，不

行 *)

1. P either waits until Q leaves the monitor or waits for

another condition

2. Q either waits until P leaves the monitor, or waits for

another condition (會出問題，因為 Q 可能下次就永遠出

不來了！可能 waiting condition 又被改了！)

3. else…

Process Synchronization -47

˙Example: Implement of the Dining Philosopher Problem

monitor dp

 {

 enum {thinking, hungry, eating} state[5];

 condition self[5];

 void pickup(int i) // following slides

 void putdown(int i) // following slides

 void test(int i) // following slides

 void init() {

 for (int i = 0; i < 5; i++)

 state[i] = thinking; (* No deadlock; but starvation *)

 }

 }
void pickup(int i) {

state[i]=hungry;
test[i];
if (state[i]!=eating) self[i].wait();

}

void putdown(int i) {
state[i] =thinking;
test((i+4)% 5);
test((i+1)% 5);

}

void test(int i)

{
if (state[(i+4) % 5] !=eating && (state[i]==hungry)
&& (state[(i+1) % 5] !=eating)) { (我想吃，且左右沒人吃*)

state[i] =eating; self[i].signal();
 }

}

Process Synchronization -48

─Implementation a monitor by using semaphores

mutex /* protect the monitor */ (* for ME *)

next /* initialized to zero to handle signaling &

resumption of processes */

-Every external function F

=>wait(mutex);

 …

 body of F;

if (next-count>0)

signal(next); (*有人在 monitor 內 waiting*)

else

signal(mutex);(*叫外面人進來*)

-For every condition x, have a semaphore x-sem & an

integer variable x-count

˙x.wait:

x-count++;

if (next-count>0)

signal(next); (*priority 高*)(*原就在 monitor

else signal(mutex); 內之人*)

wait(x-sem); (* wait for condition *)

x-count--;

˙x.signal:

if (x-count>0)

{

next-count++;

signal(x-sem); (* 我去叫醒別人 *)

wait(next); (* 我再去睡覺 *)

next-count--;

}

Process Synchronization -49

˙Process-resumption order (*在 waiting queue 中,想重新開始*)

<~> Queuing mechanism in a monitor

A solution:

x.wait(c);

where the expression c is evaluated to determine its

process’s resumption order.

˙Another difficulty:

Motivation: resource allocation

R.acquire(t);
………

access the resource;

R.release;

Concerns:

-processes may access resource without consulting the
monitor

-processes may never release resources

-processes may release resources never requested
-processes may even request resources twice

Remark: whether the monitor is correctly used?

=>Requirements for correct computations

1. processes always make their calls on the monitor in
correct order.

2. No uncooperative process can access resource directly

without using the access protocols

Note: Scheduling behavior should consult the built-in

monitor scheduling algorithm if resource access PRC are

built inside the monitor.

Process Synchronization -50

*Language mechanisms for concurrency

*So far, the synchronization mechanisms-->too low level;

assembly language programming.

It is useful for implementing the primitives typically offered by

operating system; too primitive to build large, reliable systems.

Therefore, we need higher level concepts integrated into

modern programming so that correctness is supported and

underlying hardware implementations are of no importance to

the programmer.(the object model)

==>Monitor, Serializer, Path Expression.

*Basic concepts of concurrent programming

1) monitor. (serializer; path expression; concurrent pascal)

2) messages.(smalltalk)

3) input/output statements.

(CSP: communicating sequential processes)

4) procedures.(DP: distributed processes)

5) guarded commands.(Argus)

6) rendezvous: ADA.

The Producer/Consumer problem Using Direct

Interprocess Communication.

Producer Pi
var m1: message;
loop
 …

Create a new message m1;
send(Pj,m1);
…

endloop

Consumer Pj
var m2: message;
loop
 …

receive(Pi,m2)
Use message m2;
…

endloop

Process Synchronization -51

*Monitor

An abstract data type implementation of the object model with
additional capabilities for process synchronization with respect
to resource objects of the type.
(for centralized computer systems)

A monitor is a data type used manage an operating system
resource ,either hardware or software.

The monitor allows only one process to be active (executing a
procedure) within the monitor at a time automatically.

Six parts:

1) resource.
2) local data.
3) scheduler: control the order of resource allocation.

(implicit)(for those who want to enter the monitor)
(wait outside the monitor)

4) Queues (condition variables): if a process has to wait, it
will be placed in a queue and the next process is allowed to
enter into the monitor.(wait inside the monitor)

Condition variables are explicitly referenced by processes
executing procedures(local variables).
The associated queues hold processes that are blocked by
each condition variable.

The guard (implicit) performs this regulation.

Each condition variable has an implicit (FIFO or Priority)
queue.

Wait causes the process to be added at the end of the queue.

Signal wakes up the process at the front of the queue.

Process Synchronization -52

5) procedures: operations.

(only this part is visible outside the monitor)

6) Initialization code: is executed when an instance of the

monitor is defined.

Since the monitor definition includes provision for mutual

exclusive execution of any procedure automatically, the

procedures themselves need not be written to solve any

associated problem.(good)

*The reasons of condition variables:

1) for an executing process to be delayed until a specified

condition is satisfied.

2) avoid the case: only one process may execute in a monitor

at a time precludes a busy waiting form the resource to

become free.(release CPU)

One(condition variable) is declared for each different condition

that may cause an executing process to wait.

*Three operations:

1) wait: join the queue.

(clear the way for another process to enter/resume).

2) signal: cause one process (waiting in the queue) to begin

immediate execution.

3) Queue: boolean variable. true when queue is not empty.

Process Synchronization -53

Bad: since mutual exclusive execution is the rule (in a monitor),

we cannot encapsulate the data shared by readers and writers

within the monitor itself (i.e., shared data must be put outside the

monitor); simultaneous access by readers would be impossible.

When resource is inside the monitor -->no concurrency.

But by excluding the shared data from the monitor, we must once

again rely on correct behavior by reader and writer process.

In this case, the monitor has not added to the reliability of the

solution.(allow concurrency)

Bad: Explicit signal.

Expressive power, easy of use and modifiability are good.

Modularity and correctness are poor.

Process Synchronization -54

This signal causes one

of the processes waiting

in the “cond” queue to

become the executing

process.

(This guard allows one

process at a time

within the monitor;

waiting processes are

placed in queue.)

Resource

Local data

Scheduler

Queues (condition
variables

Procedure 1

Procedure 2
 cond.wait

Procedure n

cond.signal
Initialization code

Exit

If a process has to

wait, it will be placed

in a queue and the

next process is

allowed to enter into

the monitor
Entrance

process

Guard

Monitor

Fig. Components of a Monitor

Process Synchronization -55

Monitor_name: monitor

Declarations of data local to the monitor

…

CV1, CV2, …: condition;

Declaration of procedures to implement operations

…

Procedure Name (… formal parameters …);

begin

…

procedure body may include

“Cvi.wait” and

“Cvi.signal” statements

…

end;

… (more procedures)

begin

 Initialization statements for local DATABASE

end

Process Synchronization -56

＊ A strong reader preference solution based on monitors

readers_and_writers: monitor
var readercount: integer;
 busy: Boolean;
 Oktoread, Oktowrite: condition;

void starread()
{
 if (busy) Oktoread.wait ;
 readercount++;
 if (Oktoread.queue) Oktoread.signal;
}

void endread()
{
 readercount --;
 if (readercount == 0) Oktowrite.signal;
}

void starwrite()
{
 if (readercount != 0 || busy) Oktowrite.wait;
 busy = true;
}

void endwrite()
{
 busy = false;
 if (Oktoread.queue) Oktoread.signal (***);
 else Oktowrite.signal ;
}
void main()
{
 readercount = 0;
 busy = false;
}

Process Synchronization -57

＊ A bounded buffer based on monitor

bound_buffer: monitor;
var buffer: array 0 .. N-1 of portion;
 lastpointer: 0 .. N-1;
 count: 0 .. N;
 nonempty, nonfull: condition;

void append (x: portion) (* producer *)
{
 if (count == N) nonfull.wait;
 buffer[lastpointer] = x;
 lastpointer++;
 count++;
 nonempty.signal;
}

void remove (result x: portion) (* consumer *)
{
 if (count == 0) nonempty.wait;
 X = buffer[lastpointer – count];
 (* X:= buffer[(lastpointer – count + N) mod N] *)
 count--;
 nonfull.signal;
}
void main()
{
 count = 0;
 lastpointer = 0;
}

Process Synchronization -58

Fig. A disk-head scheduler

7 1 5 6 3

(a) FCFS

3 4 5 6 1 1 2 2 3 4 5 6 7

7 1 5 6 3

(b) Elevator

0 5 10 15 20 25 30 35 Cylinder

Initial position
Pending requests

Sequence of seeks

Shortest first (SSF) disk scheduling algorithm.

Time

0 5 10 15 20 25 30 35 Cylinder

Initial position

Sequence of seeks

Time

The elevator algorithm for scheduling disk requests.

Process Synchronization -59

＊ A disk-head scheduler

Resource schedulers often use information about requests to

dynamically determine the order in which requests will be

satisfied.

To reduce seek time, the algorithm gives preference to requests

nearest the current cylinder.

Look algorithm: the algorithm sweeps in one direction until no

outstanding requests “lie ahead” and then reverses to sweep

cylinders in the other direction until requests in that direction are

exhausted.

＊ The Elevator Algorithm

We have a fixed-head disk where data is stored on several

cylinders.

To serve a user request for data on a particular cylinder, the

disk-head has to be first moved to that cylinder.

Latency times in disk-head movement can be quite high and can

affect the total performance of a file system.

We need a scheduling algorithm that minimizes the head

movement.

The well known Elevator Algorithm serves our purpose.

1) if the head is already in one direction, it looks only for

requests still pending in that direction.

2) When no more requests are pending in the direction of

head movement, the direction is reversed and serving of

requests that are pending in the new direction starts.

At any time, the heads are kept moving in the given direction, and

they serve the program requesting the nearest cylinder in that

direction.

If there is no such request, the direction changes, and the heads

make another sweep across the surface of the disk.

Process Synchronization -60

＊A disk-head scheduler based on
monitors
diskhead: monitor

Var headpos, maxcylinderindex: cylinderindex;

direction: (up, down);

busy: Boolean;

upsweep, downsweep: condition;

void request (dest: cylinderindex)

{

if (busy){

if ((headpos < dest) ||

(headpos == dest && direction == up))

upsweep.wait(dest);

else downsweep.wait(maxcylinderindex – dest);

}

busy = true;

headpos = dest;

move disk head to cylinder dest

}

void release()

{

busy = false;

if (direction == up) {

if (upsweep.queue) upsweep.signal;

else {

direction = down; downsweep.signal; }

}

else {

if (downsweep.queue) downsweep.signal;

else {

direction = up ; upsweep.signal;

Process Synchronization -61

}

}

}

void main()

{

headpos = 0;

direction = up;

busy = false;

}

Process Synchronization -62

type dining-philosophers = monitor

var state : array[0..4] of (thinking, hungry, eating);

var self : array[0..4] of condition;

void pickup (int i)

{

state [i] = hungry;

test (i);

if (state[i] != eating) self[i].wait();

}

void putdown (int i)

{

state[i] = thinking;

test ((i+4)% 5);

test ((i+1)% 5);

}

void test (int i)

{

if ((state[(i+4)% 5] != eating) && (state[i] == hungry) &&

(state[(i+1)% 5] !=eating))

{

state[i] = eating;

self[i].signa()l;

}

}

void main()

{

for (i = 0 ;i<5; i++)

state[i] = thinking;

}

Figure 5.21 A monitor solution to the dinning-philosopher problem.

Process Synchronization -63

＊Nested monitor calls

Deadlock can occur.

Example. (process A call M first; wait)

M monitor;

{

call N;

}

N monitor

{

if .. the P.wait; (* A satisifies *)

if .. then P.signal (* B satisifies *)

}

＊ Bad about monitor:

(1) nested monitor calls (solution ?)

(2) restricted concurrency.

All procedures defined by a monitor are mutually

exclusive.

We would like several users to read a database

simultaneously.

(3) poor resource abstraction.

Monitor → resource manager.

But, where do we put resource?

Outside the monitor: danger of unlocked ccess.

Inside the monitor: monitor is locked while resource is in

use.

Serializer → hind the resource but still allow independent

access.

Process Synchronization -64

(4) unstructed synchronization constructs.

The conditions on which a process Waits are not easily

visible.

Signals have to be explicitly specified (not automatic).

If put signals at the end of a procedure → good?

Protected Resource Abstraction

Resource

(with
access
operations)

Monitor
(synchronization
abstract ==>
state information +
synch. operations)

Process Synchronization -65

＊Implementations P and V (acquire and release) by
using monitors

SingleResource : monitor;

var busy : boolean;

nonbusy : condition;

void acquire (* P *)

{

if (busy) nonbusy.wait();

busy = true;

}

void release (* V *)

{

busy = false;

nonbusy.signal();

}

void main()

{

busy = false;

}

Process Synchronization -66

＊Using P & V to implement Monitors

How to implement monitors by using P and V ?

Monitors and semaphores are equivalent.

* Implementation of monitors

For mutual exclusion use an integer semaphore mutex.

Initialization :: mutex = 1;

For each procedure of the monitor:

P(mutex) is executed on entry;

V(mutex) is executed on exit;

For each condition variable cond that is used in the monitor, the

implementation uses an integer semaphore condem.

Initialization :: condem = 0;

We need to implement cond.wait and cond.signal.

When a process signals a condition on which another process

waiting, the signaling process must wait (somewhere) until the

resumed process permits it to proceed.

We use another integer semaphore urgent for this purpose.

Initialization :: urgent = 0;

We maintain a count of urgent processes in urgentcount.

*Each exit from a monitor procedure should be coded as :

if (urgentcount > 0) V(urgent) ;

else V(mutex);

Process Synchronization -67

*Cond.wait ::

condcount ++;

if (urgentcount > 0) V(urgent) ;

else V(mutex);

P(condsem);

Condcount --;

*Cond.signal ::

urgentcount ++;

if (condcount > 0) {

 V(condsem);

P(urgent) ;

}

urgentcount --;

Process Synchronization -68

*SingleResource after compilation

SingleResource : class;

var busy : Boolean;

condcount, urgentcount : integer;

mutex, urgent, condsem : semaphore;

void acquire()

{

P(mutex);

if (busy)

{

condcount ++;

if (urgentcount > 0) V(urgent);

else V(mutex);

P(condsem);

condcount --;

}

busy = true;

if (urgentcount > 0) V(urgent);

else V(mutex);

}

void release()

{

P(mutex);

busy = false;

urgentcount ++;

if (condcount > 0)

{

V(condsem);

P(urgent);

}

Process Synchronization -69

urgentcount --;

if (urgentcount > 0) V(urgent) ;

else V(mutex);

}

void main()

{

busy = false;

condcount=0; urgentcount = 0;

mutex=1 ; urgent=0; condsem = 0;

}

