CHG6 Process Synchronization

Why need process synchronization?
Consider two cooperating process:
Producer:
item nextProduced,;
while (1) {
while (counter == BUFFER_SIZE)
; [* do nothing */
buffer[in] = nextProduced;
in=(in + 1) % BUFFER_SIZE;
counter++;

}

Consumer:
item nextConsumed,;
while (1) {
while (counter == 0)
; [* do nothing */

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Execution sequence: initially, counter=5

5 different
4 counter?!!
6 values

A “cooperating” process is one that can affect or be affected by
the other processes executing in the system.
(¥ st share data or logical address space => data consistency)

Process Synchronization -1

registerl=counter

registerl=registerl +1
counter=registerl

ek T3 Bip s 2T A =>R2 § N E |

(p.156)

producer: registerl = counter (registerl =5)
producer: registerl =registerl +1 (registerl = 6)
consumer: register2 = counter (register2 =5)
consumer: register2 =register2 -1 (register2 = 4)
producer: counter = registerl (counter = 6)
consumer: counter =register2 (counter = 4)

A situation like this, where several processes access and
manipulate the same data concurrently, and the outcome of the
execution depends on the particular order in which the access
takes place, is called a race condition.

Process Synchronization -2

The Critical —Section problem (&% %)

o Def: Design a protocol that processes can use to cooperate.
Where each process has a segment of code, called a
critical section, whose execution must be mutually
exclusive

» A general structure

do {

entry section; ~permission request

critical section;

exit section:; ~ exit notification

remainder section;
} while(1);
e Solution: Three requirements:
1. Mutual Execution: only one process can be in its critical
section (3 % > F iRFRILF A)
2. Progress: (No deadlock)
a. Only processes not in their remainder section can
decide which will enter its critical section
b. The selection cannot be postponed indefinitely
3. Bounded Waiting: (no starvation)
A waiting process only wait for a bounded number of
processes to enter their critical sections

race condition : the outcome of the execution depends on
the particular order in which the access take place.

Process Synchronization -3

NSYS
L)

An OS is composed of several concurrent processes.

(=}

H

L

Processes are concurrent if they exist at the same time.

These processes have to exchange information for their
proper function.

Data sharing is one method of information exchange.

Uncontrolled access to shared data by concurrent processes
can make the data inconsistent.

Examples of data sharing:

--Memory Management:
Processes: User processes, Garbage Collector.
Shared data: memory allocation table.
--UNIX Shell Pipelining:
cat filel file2 | lpr
shared data: the printer buffer
one is writing while one is reading.

=>» the producer-consumer problem
(the bounded buffer problem).

Access to shared data must be done in an orderly fashion.

* Mutual Exclusion->each process accessing the shared data
excludes all others from doing so simultaneously.

Only one process at a time holds a resource or modifies
shared information.

A mechanism for mutual exclusion must guarantee three
properties: mutual exclusion , deadlock-free ,starvation-free.

Process Synchronization -4

Q
wn
=

-
-

ws]
—

*

Critical Section: a code segment in a process in which some
shared resource is referenced.

During the execution of a CS, mutual exclusion with respect to
certain information or resources must be ensured.

*

If no synchronization, what will happen?

EX. X=X+1; initially, X=5; processes A and B read X at the
same time; after execution, X(A)=X(B)=6.

* Dijkstra introduced semaphores for this purpose.

* A synchronization mechanism must provide a means of
expressing exclusion and priority.

Exclude certain process from the resource under some
circumstances.

Scheduling access to the resource according to given priority.
* Synchronization mechanisms:

1) busy waiting.(CPU is active-> waste CPU time)
2) block and sleep; semaphore.(CPU is passive)
3) event counter
4) monitor
5) message passing.(send/receive)
6) serializer.
7) Path expression.
* Examples

1) the bounded buffer problem (producer/consumer).
2) the reader/writer problem.
3) The disk-head scheduler

Process Synchronization -5

FHfEPE* Th &5 257 J—Kﬁﬁﬁﬂmgg g
FiReododk e 5 - BARA © & x pt F 128 % TRl BpF E’Jﬂ
I

R R R R TR TH B ARSE R G N FIR K
TORAAR B o ARV R PR FH T AR A 5 ELT woe Fpt gt

GRS

Tl B iz enig it
1.7 s @ & P—l[ﬁ:ﬁ}_}’xg)xq“‘g.il,‘ﬁ,wzc;
2.:£ B M4 (progress): § LfRf ERE e R T > Bl G -
B % Fie ~ ode B i i~ TR BE o (No deadlock)
3.7 "1E ¥ (Bounded waiting) : #737 ¥ Fi& » {Rf B % e
Fgae e "Lenps AP 2 o~ §R £07% o (No starvation)

%’-"'ﬁ /P TSR f#‘
Bl 73R gRh A G T R fRR A AL TR
PP orr Fod e Rkt AL B IRR R i o

entry section

critical
section

exit section

W 7-3 feh £ i i

Process Synchronization -6

6.2 Two-Process Solution
— Pi &Pj; where j=1-i; (Po, P1)

— Assumptions
Every basic machine-language instruction is atomic

Algorithm 1
Idea: Remember which process is allocated to enter its

critical section, i.e., process | can enter its critical section if
turn =i (B3] » A d)

do {
while (turn =) ;
critical section
tun=j; (F- B 4)
remainder section
} while (1) ;

* Fail the progress requirement:

PO SS or quit!, Time
turn=0 exit
turn=1
P1 | | > Time
exit Blocked on Time P1

turn=0 entry section

¥ P no progress

Process Synchronization -7

I—j—Ii—j (no problem)

i (7KL D e 4)

turn=0
=0 =1
while(t I= 0) while (t 1= 1)

Process Synchronization -8

:
-
a
(=]
—

sy
>SE
Algorithm 2

Idea: Remember the state of exch process
flag[i] = true => Pi is ready to enter its critical section

’7

do {
flag[i] = true; - (D
while (flag[j]); - (2)
critical section
flag[i] =false;
} while(1);

* Fail the progress requirement (= A 3327 3)
when
flag[O]=flag[1]=true;
=> The correctness of Algorithm 2 depends on the
exact timing of the two processes!

Alg.1 K 4% v X3 & 49 interaction about the state of each
processes.

* flag : shared variable
*0—>1->0-1 (0ok)
0—-0—0 (ok)
*if (1),2) "e B 2 > i ME 357 %

flagl0] =T flag[1] =
while (flag[1]); while (flag[Q]);

Process Synchronization -9

Algorithm 3
Idea: Combine ideas of Algorithm 1 & 2
fagli]
=> Pj must wait
turn=i
do {
flag[i] =true;
turn =j;
while (flag[j] && turn ==j);

(RRUAAREL AT sl R
AR S

critical section

flag[i] =false;

remainder section
} while(1);

Initially, flag[i]=flag[j]=false, and
turn=0o0r1l

e mutual exclusion: turn can be either 0 or 1

e progress: a process can only be stucked in the
while loop & processes which can stuck i1t must be
in their critical sections

e bounded waiting: at most one entry by the other
processes

Process Synchronization -10

% turn : shared variable

| flag][j] Turn="?
ID=0 _ 0: A3
T < 1: 272+
| F < (1)} A4
ID=1 3 0: ¥
T<l1:iez
N 0}
F =7
F<P s

r& Y- % False r¥ i3 |

PO P1
(L)flag[0] = T
(2) flag[1] = T

3)turn=0
4)turn=1
(5) while (T && turn ==1)
waiting (6) while (T && turn==1) False
CS

(7) flag[1] = F

(8) while (F && turn == 1)
CS

Process Synchronization -11

(@]
wn
=

-
-

ws]
—

M

c

ltiple-Process Solution
Idea: Processes which are ready to enter their critical
section must take a number and walit till the
number becomes the lowest
(LA G) = RS Y)
numberli]: Pi’s number if it is nonzero
choosing[i]:Pi is taking a number(% = - T)

do {

choosing(i] =true;
number[il=max(number[j])+1;
choosing[i] =false;
for (j=0;j<n;j++)
{
while (choosing[j]);
while ((number[j] '=0) && (number]j,j] < numberf]i, i]));

}
critical section
number]i] =0;
remainder section
} while(1);

* An observation: If Piis in its critical section, and Pk (k !=i) has
already chosen its number[k], then
number(i,i] < number[k,k]

Process Synchronization -12

D
eI

B TR B R

Dekker algothm
Dekker algothm §_2 7 processes e fizk it 2 » H 3 38 5 ¢

The two processes, po and p1 , share the following variables:
var flag: array[0..1] of boolean ; (* initially false*)
turn: 0..1;
The program below is for process pi(I=0 or 1) with process p;
(i=1 or 0) being the other one.

The structure of process piis:
do {

choosing[i] =true;
number[i] =max(number[0],number[1],...,number[n-1])+1;
choosing(i] =false;
for (j =0 ;j<n ;j++) {
while (choosing]j]);
while ((number[j]'=0)
&& (numberfj,j] < number]i,l]));

critical section

number]i] =0;

remainder section
} while(2);

Process Synchronization -13

bakery ¥ & ;2

bakery ;% 5 ;2 #_n i processes e BE ket N2 3 50 L

The common data structures are:

Var choosing: array[0..n-1] of boolean ;
number: array[0..n-1] of integer;
Initially these data structures are initialized to false and O,
respectively. For convenience, we define the following notation:

e (a,b)<(c,d) if a<c or if a=c and b<d.
e max(ao,...,an1)is a number, k ,such that k= a;j for i=0...,n-1

do {
flag[i] =true;
while (flag[j])
{if (turn==7j)
{
flag[i] =false;
while (turn ==j);
flag[i] =true;
}
critical section
turn =j;
flag[i] =false;
remainder section
} while(1);

Process Synchronization -14

9
=

-
-

@EE
—

E

F4edk turn= 1

while (turn !=1);

critical section

turn =j;

remainder section

} while(1);

ESAUE S S N Rl 1 A SR

common integer variable > 2 @ 5 0 & & 14 ®E 5 0o
» PIAR A Pidk w3F i~ fRih BJE o
do {

o

|4 ¥ 7 - B processes p F T A|efRA BT o H P oturn A

% tun=0 > A M EFPpEBErNRNEE > BET
BT PE o pL7t Aoa i~ o

F] Ut 7 &% X_prgress =i

Process Synchronization -15

% PoF AT
T

Vs

(@]
wn
=

-
-

ws]
—

Synchronization Hardware

» Motivation: make programming easier and improve system
performance
e Approach:
- Disable interrupt
Protect code where shared variables are modified!
*Infeasible in multiprocessor environment where msg
passing is used
*Potential impact on interrupt-driven system clock
- Test and set(Hardware support?)
An atomic instruction
boolean Test-and-set(boolean &target)

{
Test-and-set =target; (*% - B 4 » - &
target =true;) fjﬁia g %)
}
Boolean lock=false;

do {
while (TestAndSet(lock));

critical section

lock =false:

remainder section

=» Starvation

Process Synchronization -16

—swap(Hardware support?!)
An atomic instruction
void Swap(boolean &a, boolean &b) {
Boolean temp =3a;
a =b;
b =temp;
}

do {

key =true;
while (key==true)
swap(lock, key);

critical section

lock =false;

remainder section

- lock : global variable i false initially
- key : local variable

=»starvation (no bounded waiting)

Process Synchronization -17

NSTSU
®

— one correct algorithm

shared variables (* global i false initially *)
boolean lock;

boolean waiting[n];

var J:0..n-1; (* local *)
boolean key;

do {

waiting[i] =true;
key =true;
while (waiting[i] && key)
key =TestAndSet(lock);

critical section

j =(@i+1) % n;
while ((j !=i) && (not waiting[j]))
j=(+1) % n;

if j==I) lock =false;
else waiting|[j] =false;
waiting[i] = false; (*)

remainder section
} while(1);

* Atomic Test-and-set is hard to implement in a
multiprocessor environment

= f%4L Starvation

Process Synchronization -18

AR iR BE R

%7 - 1 atomic instruction Test-and-set #_& 4-

Q
=

boolean TestAndSet(boolean &target)

boolean rv=target;
target =true;

return rv;

BT Z il BLE kT s R sz ip i
The common data structure are:

boolean waiting[n];
boolean lock;

These data structure are initialized to false.
The structure of process Piis :

var j. 0..n-1;
boolean key;
do {

waiting[i] = true;

key =true;

while (waiting[i] &&
key==TestAndSet(lock));

waiting[i] =false;

critical section

j =(i+1) % n;

while ((j'=i) && (not waiting[j])) j =(+1)% n;
if j==1) lock =false;

else waiting|[j] =false;

remainder section
} while(1);

Process Synchronization -19

-
-

ws]
—

Q
=

gy B FE TR R R
Test-and- set » ¥] atomic instruction £_d & §4 ‘éﬁ&* = i e
A FH PR F okd FLEARET - BRI
starvation IR % >

#|4 7 n B processes & T A|A| i efph o2 P A

% #c lock 44 3% 7_5 false »

do {
while (TestAndSet(lock));

critical section

lock =false;

remainder section

—

A L R S

IESR IR

F#t % s s & ’bounded waiting” e i+ o

Process Synchronization -20

3

7t 38 F 24 {7 atomic instruction

I
A

86.4 Semaphores

e Motivation: A high-level solution intended for more complex
problems (* a new data structure *)
e Two atomic operations

wait(s): [* P *
while s<=0 do no-op;
S--,

signal(s); [* S */
S++;

e Usage:
— critical section problems (* S=1 initially *)
do { for ME
wait(mutex);

critical section

signal(mutex);

remainder section
twhile(1);

— procedure enforcement (* S=0 initially *)
P1: BoA e
S1;
signal(synch);,
P2
wait(synch);
S2;

Process Synchronization -21

e Implementation

— Spinlock~a type of semaphore involving busy waiting such as
wait(s):
while s<=0 do no-op; <«CPU cycles wasted!

e advantage: when locks are held for short time ,it is useful since
no context switching is involved
— Block-waiting~no busy waiting from the entry to the critical
section only! (* block itself > * - i# waiting queue, control %
% CPU)

Define a semaphore as a record

typedef struct {
int value;
struct process *L;
} semaphore;

wait(s):
S.value--;
if (S.value<0) {
add this process to S.L;
block; «system call

}
signal(s):
S.value ++;
if (S.value<=0){(* #-773 * waiting *)
remove a process P from s.L;
wakeup(p); <system call

Process Synchronization -22

o}
=

-
-

ws]
—

S

— Queueing strateqgy can be arbitrary, but there is a restriction for
the bounded-waiting requirement (no starvation)

— Mutual exclusion in wait() & signal()

~ uniprocessor

~interrupt

~test-and-set

~swap

~software methods in section 6.2
~and more

~multiprocessor

— Remarks: busy-waiting is limited to only the critical sections of
the wait() & signal()

Process Synchronization -23

>S

*6.4.3 Deadlock

A set of processes is in a deadlock state when every process
in the set is waiting for a event that can be caused only by
another process in the set

o}
=

-
g |

‘J

PO P1
wait(S); wait(Q);
wait(Q); wait(S);
signal(S); signal(Q);
signal(Q); signal(S);

starvation (Indefinite blocking)
processes wait indefinitely(within a semaphore)

~e.g., the queuing mechanism is by LIFO

Process Synchronization -24

NSYS
-

emaphore

(=}

H

A semaphore is an integer variable S and an associated group of
waiting processes (i.e., a waiting queue) upon which only two
operations may be performed:

1) P(S):ifS =1then S =S-1
else the execution process places itself in S’s waiting
group and relinquishes the CPU by invoking CPU
scheduler
endif;

2) V(S):if S's waiting queue is nonempty then remove one
waiting process and make it available for execution
(some implementations invoke a CPU scheduler)
else S =S+1
end if;

*Let S be a boolean semaphore. Initialization:: S =false.

Two operations P and V are defined on S:

P(S):: if S then block; S =true; (* wait *)
V(S):: S =false; unblock; (* signal *)
*Generalized(integer) semaphores
Let S be an integer semaphore.
P and V operations are defined as follows:

P(S):: S =S-1;

if (S<0) block;
V(S):: S =S+1;

if (S<=0) unblock;

Process Synchronization -25

*To mutual exclusion access to a shared resource:

1) allocate an integer semaphore with the resource.
Initialization ::S =1.

2) perform a P operation before using the resource.
(* lock *)

3) perform a V operation to release the resource.
(* unlock *)

*Example:
Sa = Sb = (mutual exclusion semaphore)=1
(* the first person can access; for mutual exclusion *)

(* enter the same procedure *)

S1 (resource semaphore)=0
(* to suspend; to block; to wait; between procedures *)

procedure 1; procedure 2;
P(Sa); P(Sb);

If.. then P(S1); if.. then V(S1);
(* to wait *) (* to signal *)
V(Sa); V(Sb);

*Consumer<-->Producer (many to many)
S1=n (space); (* for wait/signal *)
S2=0 (source); (* for wait/signal *)
Sa=Sb=1; (* for mutual exclusion *)

Producer aa consumer bb
P(Sa);.. P(Sb);..

if ...then P(S1); if ... then P(S2);
if ... then V(S2): if ... then V(S1)
... V(Sa); ... V(Sb);

Process Synchronization -26

*6.4.4 Binary Semaphore
Its value ranges from O to 1

bounded value range
=>easy to implement!
— Implement a counting semaphore by binary semaphore
Var
binary semaphore S1=1,52=0;
int c;
wait(S):
wait(S1); [* protect ¢ */
c--;
if (c<0) {
signal(S1);
wait(S2);
}
signal(S1);

signal(S);
wait(S1);
C++;

if (c<=0) signal(S2);/*wakeup processes queued in S2.L*/
else signal(S1);

Process Synchronization -27

P(S): while S =0 do skip;
S:=S-1;

V(S): S:=S+1;
Tl B % ak gt
%7 n i processes = * — i semaphore = mutex » £ 4~ &

51> B|= B process ¥ 7 fRh B E R ACT
do {

P(mutex);

critical section

V(mutex);

remainder section

Process Synchronization -28

86.5 Classical Synchronization Problems

The Bounded-Buffer Problem
Producer, consumer, and a pool of buffers

empty =n; full =0;

mutex =1; (* for ME *)
Producer

do {

produce an item in nextp;

wait(empty);<--control buffer availability
wait(mutex);<--mutual execution

add nextp to buffer
signal(mutex);
signal(full);
} while(1);
Consumer
do {
wait(full);
wait(mutex);

remove an item from buffer to nextc;

signal(mutex);
signal(empty);

consume the item in nextc;

}Whilé-kl);

Process Synchronization -29

*Common Synchronization Problems

1) mutual exclusion: a signal semaphore.

2) Producer/consumer: a set of producer processes supplies
messages to a set of consumer processes.

They all share a common pool of spaces into which

messages may be placed by producers or removed by

consumers.

-->a circular buffer and semaphores.

(nrfull/nrempty-->the no. of full/empty buffers; prevent a
producer from overwriting a message or a consumer from
obtaining an already used message.)

If only one producer or consumer exists, then the

semaphore Sa or Sb unnecessary.

3) reader/writer: any number of readers should be allowed to
proceed concurrently in the absence of a writer, but only
one writer may execute at a time while readers are
excluded.(one writer or many readers)

Several ways to handle priority:

-FCFS

-a strong reader preference.

-a weak reader preference.

-a strong writer preference.

Process Synchronization -30

NSYS
e

*The mutual exclusion problem using semaphores

(=}

H

(CL

Shared Variable
var S: semaphore:=1;

Process | Process |
loop loop
P(S); P(S);
Access shared data safely Access shared data safely
V(S); V(S);
en.olllloop

*The Producer/Consumer problem using semaphores

Shared Variables

var nrfull: semaphore:=0;
nrempty: semaphore:=N;
mutualP: semaphore:=1;
mutualC: semaphore:=1;
buffer: array[0..N-1] of message;
in, out:0..N-1 :=0,0;

Producer i Consumer |
loop loop
Create a new message m;
one producer at a time; __one consumer at a time;
P(mutualP); P(mutualC);
Await an empty cell; Await a message;
P(nrempty); P(nrfull);
Buffer[in]:=m; m:=buffer[out];
in: —(in+1)mod N; out:=(out+1)mod N;
__signal a full buffer __signal an empty buffer;
V(nrfull); V(nrempty);
__Allow other producers; __Allow other consumers;
V(mutuaIP) V(mutualC);

Consume message m,

éhdloop; .é'ndloop;

Process Synchronization -31

(] o}

=

._.\ Q
a0 2 I
—
=

L

4 &/i % (producer/consumer) R 4%

8

7 — I buffer> -3 nB>=% - 3 i# processes i¢ * * buffer -

H
P2 - A4 7 1' va W puffer» ¥ ¢t - B process R i&_buffer B~ 11 &
n'

\— O

¢ * o semaphore 4-

1. mutex : ¥ 3 3 B buffer 573 < semaphore » Hi=@ 5 1o
2.empty ¥ full : § %2+ 5 buffer &5 i+ % #2&2 % 5= % #i > empty
A E s ne @ fulleg=E 5 0o

#1*% producer ¥ consumer 428 ¥ $n 8 4o

s

Process Synchronization -32

-
-

ws]
—

9
=

type item =... ;
var buffer=... ;
full, empty, mutex: semaphore;
nextp, nextc: item;

{
full =0;
empty =n;
mute =1;
parbegin
producer :repeat

produce an item in nextp

p(empty);
p(mutex);

add nextp to buffer
V(mutex);
V(full);
until false;
consumer :repeat
P(full);
P(mutex);

remove an item from buffer to nextc

V(mutex);

V(empty);

consume the item in nextc
until false;

parend;

Process Synchronization -33

» The Readers and Writers Problem
Readers: Processes only read the shared object
Writers: else
Access Rules:
2. Multiple reads can occur simultaneously
3. Every write is exclusive in accessing the shared object

— The first reader-writers problem: (* strong reader *)

No readers will be kept waiting unless a writers has

already obtained permission to use the shared object

=>potential hazard to writers! (* [rIEA acting writer,
& HIl no waiting reader *)

— The second reader-writers problem: (* strong writer *)

Once a writer is ready, it performs its write as soon as

possible !(No new read will be allowed) => potential

hazard to readers ! (* H3Z7% waiting writer, new
reader waits *)

— many others!

Process Synchronization -34

Q
wn

-
-

ws]
—

SE

A

0]

olution to the R-W Problem: (* Weak reader *)

semaphore wrt, mutex; (initialize to 1)
integer readcount; (initialize to 0)

writer:
wait(wrt);

writing is performed
signal(wrt);

Reader
wait(mutex); (* (n-1) i# reader ¥ it block # gt *)
readcount++;
if (readcount==1) wait(wrt); <-- only one reader pending
here!
(* % - B reader 4 £ writer £ *)
signal(mutex);

reading is performed

wait(mutex);

readcount--;
if (readcount==0) signal(wrt); (* & {5 - ® reader 3 =
signal(mutex); writer *)

*Queuing mechanisms decide whether a waiting reader or a
writer resume execution once a appropriate semaphore is
signaled! R®) %

W W
® «®
W)

Process Synchronization -35

SE

o}

-
g |

% ® (reader/writer) A %8
B data object (¥ it &_file & record)4t % % processes F B
% * » 3 & processes W E_{¥read 1 ¥ ¥ b — & P E_IF write
FRJIL o FARIE 2 N & 5 — % process £ iF read - P|#r3 writer
processes ‘¥ % i & * data object - & LF H 5 erreader
processes ¥ i¢ * Jt data object - A @ ¥ E_ 7 — i writer process
4 ¢ * ¢ data object ¥ » H 8 e processes (& % %_reader s
writer) '# 7 i 8 * gt processes o
% g HcheT
1. readcount:i reader processes s g #c 0 k42 * data
object s reader processes #ic > 47 B % 0 °
2. mutex: » — 1 semaphore » %% read count A4k i * pFa B
73R
3. wrt: i & writer processes 13 & semaphore -

- 2%

Reader 22 Writer e4% 3% g H 40
writer :
p(wrt);

vv'r'i.ting is performed
V(wrt);

reader :
P(mutex);
readcount++;
if (readcount==1) P(wrt);
V(mutex);

reading is performed
P(mutex);
readcount--;

if (readcount==0) V(wrt);
V(mutex);

Process Synchronization -36

% The Reader/Writer Problem

1) Weak reader priority: an arriving writer waits until there are no
more active readers.

When waiting occurs (writer is inside, and readers and other
writers are waiting) 2>

FCFS (first reader compete with writers).

2) strong reader priority: conditions of weak reader priority
solution apply, but also a waiting reader has priority over a
waiting writer.

When waiting occurs, waiting reader has high priority. (all readers
have a higher priority than a writer, regardless of the order of their
arrival.)

3) writer priority: an arriving reader waits until there are no more
active or waiting writers.

When waiting occurs, waiting writer has higher priority. Moreover,
when waiting occurs, waiting readers wait until waiting writers
have finished.

R
[ek e e e
[ttt oy

(W2, r4),(r5, w3),(w4, r7) (FCFS) w3 A

AN

1 2 3 2121 0 12 10 12 10

0
nreaders

Fig. A weak reader preference solution

Process Synchronization -37

(@]
wn
=

-
-

ws]
—

(w2, rd),(r5, w3),(w4, r7) w3 A FEERRERIS

S

o,

o T
0 1 2 3 2121 0 12 10 12 10
nreaders
Fig. A strong reader preference solution
(W2, rd),(r5, w3),(w4, r7) XV3
6
A
r4 5
A A
w2 OOt
, t B AANNANRRN
0 ‘IL [B D 1 A
A
ri
T S rrrsy
wl |
o,
u > T
0 1 2 3 210 123 210 12 10
nreaders

Fig. A strong writer preference solution

Process Synchronization -38

*A weak reader preference solution using semaphores

Shared Variables
semaphore wmutex=1, rmutex=1,;

integer nreaders =0;

A Reader B Writer
loop loop
__Readers enter one at a time ___Each writer operates alone;
P(rmutex); P(wmutex);
___First reader waits for
reader’s turn, Perform write operations;
__then inhibits other writers; V(wmutex);
if nreaders=0 then endloop;
P(wmutex);
endif

nreaders:=nreaders+1;
__Allow other reader enter entries/exits;
V(rmutex);
Perform read operations;
___Readers exit one at a time;
P(rmutex);
nreaders:=nreaders-1;
Last reader allows writers;
If nreaders=0 then
V(wmutex)

endif;
__Allow reader entry/exit
V(rmtuex);

endloop;

Process Synchronization -39

(@]
wn
=

-
-

ws]
—

* T

>

e Dining-Philosopher Problem

@65@ OO

semaphore chopstick[5]; (initially all values are 1)
do{

wait(chopstick([i]);
wait(chopstick[(i+1)% 5]);
eat
signal(chopstick[i]);
signal(chopstick[(i+1)% 5]);
think

} while(1);

* Deadlock can occur!

— Solutions (deadlock free €< - starvation free)
1. At most 4 philosophers appear !
2. Pick up only two chopsticks at a time. (> £ 3| 1 {7)
3. Order their behavior:
odd one - pick up his left chopstick
even one - pick up his right chopstick

—>binary semaphore % implement counting semaphore

Process Synchronization -40

-
ﬂ
=]
(==}

sty
%T‘

* Dining philosopher problem

Q

’ﬁ BEE o 2 ;/f« G F F o fe o B G R de R
7-4 0 & E‘iﬁﬁ?\i“’b giﬁ"#ﬁﬁgm"%** otl;’DlﬁJ]'JDg 'z
TEF 5B deadock”mx&%t T A gRE - &S R
R ARRA R - EEF A o FH I PR VEY fRA-2 o
iz * o semaphores 40
chopstick: array[0..4] of semaphore - 5=+ i &+ 4p ¥F -
semaphore > =¥ % | B {5 7EOFEN. BT
do{
P(chopstick]i]);
P(chopstick[(i+1)% 5]);

eat
V(chopsticK]i]);
V(chopstick[(i+1)% 5]);
think

}While(-i-);
AN
S0

Bl 7-4 175 72 AL

Process Synchronization -41

NSYSU

* AND Synchronization
-->Deadlock problem.

Process A Process B
P(Dmutex) P(Emutex)
P(Emutex) P(Dmutex)

Solution 1: restrict the order in which request can be made.

Solution 2: request at once all the resources necessary and
acquires either all of them or none.

*Dining Philosopher Problem (AND) (Dijkstra)

Five philosophers sit around a table.
Each philosopher alternates between thinking and eating.
In front of each philosopher there is a rice bowel.

When a philosopher wishes to eat, he picks up two chopsticks
(forks) next to his plate.(only five chopsticks)

So, a philosopher can eat only when neither of his neighbors is
eating.

The problem is to write the algorithm for philosopher(0=1=<4).
Solution based on semaphores cannot prevent a philosopher
(process) from being permanently locked out by two conspiring
neighbor processes; otherwise, 1t will result in starvation
or infinite delay.

Process Synchronization -42

(@]
wn
=

-
-

ws]
—

% 6.6 Critical Regions

» Motivation: need high-level language construct to reduce the
possibility of errors (* Semaphore is too low level *)
e.g., programming errors in using semaphores
interchange the order of wait & signal
miss some waits or signals
replace waits with signals,...

e Def. Var V: shared T;
region v when B do S;
e.g., a piece of code for consumer & producer
struct buffer {
int pool[n];
int count, in, out;

}
producer:
region buffer when (count<n)
{
pool[in] =nextp;
in =(in+1)% n;
count++;
}
consumer:...

region buffer when (count>0)

{

nextc =poolfout];
out =(out+1) % n;
count --;

Process Synchronization -43

o}

-

‘cﬁ
wo [2

—

SE

lement by semaphores
region x when B do S;

var

semaphore mutex; /* mutual exclusion of critical section
-->initial 1*/
semaphore first-delay, second-delay; /* B evalution */
integer first-count, second-delay; /*# of processes */
wait(mutex);
while not B
do {

Overhead first-count++;
of reevaluation if (second-count>0)
or Pi - signal(second-delay);
fails B else signal(mutex);
falB | walit(first-delay);
first-delay first-count --;
second-count++;
if (first-count>0)
il signal(first-delay);
second-delay else signal(second-delay);
wait(second-delay);
second-count--;

e Im

{®)

}
evaluate S:
B if (first-count>0)

signal(first-delay);
else if (second-count>0)
signal(second-delay);
else signal(mutex);

- first-delay (k|i& waiting queue, priority # &)

- mutex (Btz A)

- second-delay (¢ # waiting queue, FF 1k, 2 - T)
-B: =3 A ¥ CS, L AT test - %

- B Ad TR 4 s pe o P

Process Synchronization -44

6.7 Monitor
--Def.
monitor monitor-name
{
shared variable declaration
procedure entry P1(...)

{...}
procedure entry P2(...)

(.}

procedure entry Pn(...)

(.}
{

initialization code

} 2

}

var
condition X,y;

try queues

shared data
X4 H

Y13 —

x.wait();
x.signal();

operations

Initialization
code

*only one process can be active within a monitor at a time

P rvuLLL gy v v neuav e

NSYS
losn
L)

e Semantics of signal & wait
 X.signal resume one suspend process or if there is

done ,no effect is imposed

(=}

H

L

» P x.signal a suspended process Q (* P,Q = % monitor » %
7 %)
1. P either waits until Q leaves the monitor or waits for

another condition

2. Q either waits until P leaves the monitor, or waits for
another condition (¢ H 4> F1 2 Q F e T :’zrj-f AR
7 &k 7 | ¥ & waiting condition * #:z i)

3. else...

Process Synchronization -46

-
-
=<1
o
(==}

’7

SE
[]

Example: Implement of the Dining Philosopher Problem
monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];

void pickup(int i) /I following slides
void putdown(int i) // following slides
void test(int i) /I following slides
void init() {

for (inti=0;i<5;i++)
state[i] = thinking; (* No deadlock; but starvation *)
}

}
void pickup(int i) {
state[i]=hungry;
test][i];
if (state[i]'=eating) self[i].wait();
}

void putdown(int i) {
state][i] =thinking;
test((i+4)% 5);
test((i+1)% 5);

}

void test(int i)

{
if (state[(i+4) % 5] !=eating && (state[i]l==hungry)
&& (state[(i+1) % 5] !=eating)) { (3 vz » ¥ 2 42 A %)
state[i] =eating; self[i].signal();
}

}

Process Synchronization -47

—Implementation a monitor by using semaphores
mutex [* protect the monitor */ (* for ME *)
next /* initialized to zero to handle signaling &

resumption of processes */
-Every external function F
=>wait(mutex);

body of F;
If (next-count>0)
signal(next); (*3 * & monitor p waiting*)
else
signal(mutex);(*=" ¢t & 4 & kK *)
-For every condition x, have a semaphore x-sem & an
integer variable x-count
e X.walit:
X-count++;
if (next-count>0)
signal(next); (*priority & *)(* fru & monitor
else signal(mutex); oz A %)
wait(x-sem); (* wait for condition *)
X-count--;
* X.Signal:
if (x-count>0)
{
next-count++;
signal(x-sem); (* # 3 rIfRaE] L *)
wait(next); (* Af 4 pf ¥
next-count--;

Process Synchronization -48

o}
=

-
-

ws]
—

S

» Process-resumption order (* & waiting queue * | € #7F 4%)
<~> Queuing mechanism in a monitor
A solution:
x.wait(c);
where the expression c is evaluated to determine its
process’s resumption order.

e Another difficulty:
Motivation: resource allocation
R. acquire(t);
access the resource;
R. release;

Concerns:
—processes may access resource without consulting the
monitor
—-processes may never release resources
—-processes may release resources never requested
—-processes may even request resources twice

Remark: whether the monitor 1s correctly used?

=>Requirements for correct computations
1. processes always make their calls on the monitor in
correct order.
2. No uncooperative process can access resource directly
without using the access protocols
Note: Scheduling behavior should consult the built-in
monitor scheduling algorithm i1f resource access PRC are
built inside the monitor.

Process Synchronization -49

o}

-
-

ws]
—

SE

*L

QO

nguage mechanisms for concurrency

*So far, the synchronization mechanisms-->too low level,
assembly language programming.
It is useful for implementing the primitives typically offered by
operating system; too primitive to build large, reliable systems.

Therefore, we need higher level concepts integrated into
modern programming so that correctness is supported and
underlying hardware implementations are of no importance to
the programmer.(the object model)

==>Monitor, Serializer, Path Expression.

*Basic concepts of concurrent programming

1) monitor. (serializer; path expression; concurrent pascal)
2) messages.(smalltalk)
3) input/output statements.
(CSP: communicating sequential processes)
4) procedures.(DP: distributed processes)
5) guarded commands.(Argus)
6) rendezvous: ADA.

The Producer/Consumer problem Using Direct
Interprocess Communication.

Producer Pi Consumer Pj
var m1l: message; var m2: message;
loop loop
Create a new message ml,; receive(Pi,m2)
send(Pj,m1); Use message m2;

endloon endloon

Process Synchronization -50

*Monitor

An abstract data type implementation of the object model with
additional capabilities for process synchronization with respect
to resource objects of the type.

(for centralized computer systems)

A monitor is a data type used manage an operating system
resource ,either hardware or software.

The monitor allows only one process to be active (executing a
procedure) within the monitor at a time automatically.

Six parts:
1) resource.
2) local data.
3) scheduler: control the order of resource allocation.
(implicit)(for those who want to enter the monitor)
(wait outside the monitor)

4) Queues (condition variables): if a process has to wait, it
will be placed in a queue and the next process is allowed to
enter into the monitor.(wait inside the monitor)

Condition variables are explicitly referenced by processes
executing procedures(local variables).

The associated queues hold processes that are blocked by
each condition variable.

The guard (implicit) performs this regulation.

Each condition variable has an implicit (FIFO or Priority)
gueue.

Wait causes the process to be added at the end of the queue.

Signal wakes up the process at the front of the queue.

Process Synchronization -51

o}
=

-
-

ws]
—

5) procedures: operations.
(only this part is visible outside the monitor)

6) Initialization code: is executed when an instance of the
monitor is defined.

Since the monitor definition includes provision for mutual
exclusive execution of any procedure automatically, the
procedures themselves need not be written to solve any

associated problem.(good)
*The reasons of condition variables:

1) for an executing process to be delayed until a specified
condition is satisfied.

2) avoid the case: only one process may execute in a monitor
at a time precludes a busy waiting form the resource to_
become free.(release CPU)

One(condition variable) is declared for each different condition
that may cause an executing process to wait.

*Three operations:

1) wait: join the queue.
(clear the way for another process to enter/resume).

2) signal: cause one process (waiting in the queue) to begin
immediate execution.

3) Queue: boolean variable. true when queue is not empty.

Process Synchronization -52

o}

-
-

ws]
—

SE

Bad: since mutual exclusive execution is the rule (in a monitor),
we cannot encapsulate the data shared by readers and writers
within the monitor itself (i.e., shared data must be put outside the
monitor); simultaneous access by readers would be impossible.

When resource is inside the monitor -->no concurrency.

But by excluding the shared data from the monitor, we must once
again rely on correct behavior by reader and writer process.

In this case, the monitor has not added to the reliability of the
solution.(allow concurrency)

Bad: Explicit signal.

Expressive power, easy of use and modifiability are good.
Modularity and correctness are poor.

Process Synchronization -53

(@]
wn
=

-
-

ws]
—

Monitor

Resource

Local data

Scheduler

Queues (condition
variables

A

Procedure 1

If a process has to
wait, it will be placed
in a queue and the
next process is

allowed to enter into
the monitor
Entrance L] Procedure 2 1
—_— cond.wait
n I
rocess . .
P L] . I::I\’ Exit
Guard
(This guard allows one

process at a time
within the monitor;
waiting processes are
placed in queue.)

Procedure n

A

Initialization code

Fig. Components of a Monitor

Process Synchronization -54

This signal causes one
of the processes waiting
in the “cond” queue to
become the executing
process.

-
-

ws]
—

9
=

Monitor _name: monitor

Declarations of data local to the monitor

CV1, CV2, ...: condition;
Declaration of procedures to implement operations

Procedure Name (... formal parameters ...);
begin

procedure body may include

“Cvi.wait” and

“Cvi.signal” statements

end;

... (more procedures)
begin

Initialization statements for local DATABASE
end

Process Synchronization -55

-
-

ws]
—

9
=

% A strong reader preference solution based on monitors

readers_and_writers: monitor
var readercount: integer;
busy: Boolean;
Oktoread, Oktowrite: condition;

void starread()

{
if (busy) Oktoread.walit ;
readercount++;
if (Oktoread.queue) Oktoread.signal;
}
void endread()
{
readercount --;
if (readercount == 0) Oktowrite.signal;
}
void starwrite()
{
if (readercount != 0 || busy) Oktowrite.wait;
busy = true;
}
void endwrite()
{
busy = false;
if (Oktoread.queue) Oktoread.signal (***);
else Oktowrite.signal ;
}
void main()
{
readercount = 0O;
busy = false;
by

Process Synchronization -56

(@]
wn
=

-
-

ws]
—

% A bounded buffer based on monitor

bound_buffer: monitor;

var buffer: array 0 .. N-1 of portion;
lastpointer: 0 .. N-1;
count: 0 .. N;
nonempty, nonfull: condition;

void append (x: portion) (* producer *)

{
if (count == N) nonfull.wait;
buffer[lastpointer] = x;
lastpointer++;
count++;
nonempty.signal;

}

void remove (result x: portion) (* consumer *)
{
if (count == 0) nonempty.wait;
X = buffer[lastpointer — count];
(* X:= buffer[(lastpointer — count + N) mod N] *)

count--;
nonfull.signal,
}
void main()
{
count = 0;
lastpointer = O;
}

Process Synchronization -57

[
wn
=

-
-

ws]
—

|

1 5 6 3
(a) FCFS
® ® ® ®
2 | 3| 4| 5|6 | 7|6 |5 | 4| 3|2
A A A A
1 |5 Te 3

(b) Elevator

Fig. A disk-head scheduler

» -~ Pending requests
Initial position

[(XITTTTTTIX [[DI T T T T T T T T T T TITTIT T DX
5 10 15 20 25 30 35 Cylinder

Time °
l ° /.A’. Sequence of seeks

Shortest first (SSF) disk scheduling algorithm.

Initial position
AR cEED G
0 5 10 15 20 25 30 35 Cylinder

Time

Sequence of seeks

—

The elevator algorithm for scheduling disk requests.

Process Synchronization -58

v

* A disk-head scheduler

Resource schedulers often use information about requests to
dynamically determine the order in which requests will be
satisfied.

To reduce seek time, the algorithm gives preference to requests
nearest the current cylinder.

Look algorithm: the algorithm sweeps in one direction until no
outstanding requests “lie ahead” and then reverses to sweep
cylinders in the other direction until requests in that direction are
exhausted.

* The Elevator Algorithm

We have a fixed-head disk where data is stored on several
cylinders.

To serve a user request for data on a particular cylinder, the
disk-head has to be first moved to that cylinder.

Latency times in disk-head movement can be quite high and can
affect the total performance of a file system.

We need a scheduling algorithm that minimizes the head
movement.

The well known Elevator Algorithm serves our purpose.

1) if the head is already in one direction, it looks only for
requests still pending in that direction.

2) When no more requests are pending in the direction of
head movement, the direction is reversed and serving of
requests that are pending in the new direction starts.

At any time, the heads are kept moving in the given direction, and
they serve the program requesting the nearest cylinder in that
direction.

If there is no such request, the direction changes, and the heads
make another sweep across the surface of the disk.

Process Synchronization -59

st

CSE
* A disk-head scheduler based on
monitors
diskhead: monitor
Var headpos, maxcylinderindex: cylinderindex;
direction: (up, down);
busy: Boolean,;
upsweep, downsweep: condition;

void request (dest: cylinderindex)

{

if (busy){

if ((headpos < dest) ||

(headpos == dest && direction == up))
upsweep.wait(dest);

else downsweep.wait(maxcylinderindex — dest);
}
busy = true;

headpos = dest;
move disk head to cylinder dest

}
void release()
{
busy = false;

if (direction == up) {
if (upsweep.queue) upsweep.signal;
else {
direction = down; downsweep.signal; }
}
else {
if (downsweep.queue) downsweep.signal;
else {
direction = up ; upsweep.signal;

Process Synchronization -60

CSE
}
}
}
void main()
{
headpos = 0;
direction = up;
busy = false;
}

Process Synchronization -61

type dining-philosophers = monitor
var state : array[0..4] of (thinking, hungry, eating);
var self : array[0..4] of condition;

void pickup (int i)

{

state [i] = hungry;

test (i);

if (state[i] != eating) self[i].wait();
}

void putdown (int i)
{
state][i] = thinking;
test ((i+4)% 5);
test ((i+1)% 5);
}

void test (int i)
{
if ((state[(i+4)% 5] != eating) && (state[i] == hungry) &&
(state[(i+1)% 5] !=eating))
{
state[i] = eating;
self[i].signa()l;
}
}
void main()
{
for (i = 0 ;i<5; i++)
state[i] = thinking;
}

Figure 5.21 A monitor solution to the dinning-philosopher problem.

Process Synchronization -62

D
eI

% Nested monitor calls
Deadlock can occuir.

Example. (process A call M first; wait)

M monitor; N monitor
{ {
call N; if .. the P.wait; (* A satisifies *)
} if .. then P.signal (* B satisifies *)
}

% Bad about monitor:

(1) nested monitor calls (solution ?)
(2)restricted concurrency.
All procedures defined by a monitor are mutually

exclusive.
We would like several users to read a database

simultaneously.

(3)poor resource abstraction.
Monitor - resource manager.
But, where do we put resource?
Outside the monitor: danger of unlocked ccess.
Inside the monitor: monitor is locked while resource is in

use.

Serializer - hind the resource but still allow independent
access.

Process Synchronization -63

-
-

ws]
—

9
=

(4)unstructed synchronization constructs.
The conditions on which a process Waits are not easily
visible.
Signals have to be explicitly specified (not automatic).
If put signals at the end of a procedure - good?

Protected Resource Abstraction

Resource Monitor
(synchronization

(with abstract ==>

access state information +

operations) | | synch. operations)

Process Synchronization -64

* Implementations P and V (acquire and release) by
using monitors

SingleResource : monitor;
var busy : boolean;
nonbusy : condition;

void acquire (* P *)

{
if (busy) nonbusy.wait();

busy = true;

}

void release (* V *)

{

busy = false;
nonbusy.signal();

}

void main()

{

busy = false;

}

Process Synchronization -65

% Using P & V to implement Monitors

How to implement monitors by using P and V ?
Monitors and semaphores are equivalent.

* Implementation of monitors

For mutual exclusion use an integer semaphore mutex.
Initialization :: mutex = 1;

For each procedure of the monitor:

P(mutex) is executed on entry;

V(mutex) is executed on exit;

For each condition variable cond that is used in the monitor, the
implementation uses an integer semaphore condem.
Initialization :: condem = 0O;

We need to implement cond.wait and cond.signal.

When a process signals a condition on which another process
waiting, the signaling process must wait (somewhere) until the
resumed process permits it to proceed.

We use another integer semaphore urgent for this purpose.
Initialization :: urgent = O;
We maintain a count of urgent processes in urgentcount.

*Each exit from a monitor procedure should be coded as :
if (urgentcount > 0) V(urgent) ;
else V(mutex);

Process Synchronization -66

*Cond.wait ::
condcount ++;
if (urgentcount > 0) V(urgent) ;
else V(mutex);
P(condsem);
Condcount --;

*Cond.signal ::
urgentcount ++;
if (condcount > 0) {
V(condsem);
P(urgent) ;
}

urgentcount --;

Process Synchronization -67

(=}

=

*SingleResource after compilation

’7

SingleResource : class;

var busy : Boolean,;
condcount, urgentcount : integer;
mutex, urgent, condsem : semaphore;

void acquire()
{
P(mutex);
if (busy)
{
condcount ++;
if (urgentcount > 0) V(urgent);
else V(mutex);
P(condsem);
condcount --;
}
busy = true;
if (urgentcount > 0) V(urgent);
else V(mutex);

}

void release()
{
P(mutex);
busy = false;
urgentcount ++;
if (condcount > 0)
{
V(condsem);
P(urgent);
}

Process Synchronization -68

Q
wn
=

-
-

ws]
—

urgentcount --;
if (urgentcount > 0) V(urgent) ;
else V(mutex);

}
void main()
{
busy = false;

condcount=0; urgentcount = O;
mutex=1 ; urgent=0; condsem = 0O;

}

Process Synchronization -69

