[image: image2.png]=
=l M@
=

Modeling Scanners as Finite Automata

[image: image2.png][image: image3.emf] 

0
get first Input_Character

if Input_Character in [‘A’ ..’Z’] then
 begin

 while Input_Character in [‘A’ ..’Z’ , ‘0’..’9’] do

 begin

 get next Input_Character

 if Input_Character = ‘_’ then
 begin

 get next Input_Character

 Last_Char_Is_Underscore := true;
 end { if ‘_’}

 else

 Last_Char_Is_Underscore := false;
 end { While }

 if Last_Char_Is_Underscore then
 return (Token_Error)

 else

 return (Valid_Token)

 end { if first in [‘A’..’Z’] }

else

 return (Token_Error)

 (a)

	State
	A-Z
	0-9
	—
	

	1
	2
	
	
	{starting state}

	2
	2
	2
	3
	{final state}

	3
	2
	2
	
	

 (b)

Token recognition using (a) algorithmic code and (b) tabular representation of finite automaton.

 Notation as follows:
Nat = [0-9]+

signedNat = (+|-)? Nat

number =signedNat (“.” Nat)? (E signedNat)?

We would like to write down DFAs for the strings matched by these definitions, but it is helpful to first rewrite them as follows:

digit = [0-9]

Nat = digit+

signedNat = (+|-)? Nat

number = signedNat(“.” Nat)? (E signedNat)?

It is easy to write down a DFA for Nat as follows

(recall that a+ = aa* for any a):

A signedNat is a little more difficult because of the optional sign. However, we may note that a signedNat begins either with a digit or a sign and a digit and then write the following DFA:

It is also easy to add the optional fractional part, as follows:

Note that we have kept both accepting states, reflecting the fact that the fractional part is optional.

Finally, we need to add the optional exponential part. To do this, we note that the exponential part must begin with the letter E and can occur only after we have reached either of the previous accepting states. The final diagram is given in Figure 2.3.

From REGULAR EXPRESSIONS TO DFAs

From a Regular Expression

to an NFA

 Fig. 9

Basic Regular Expressions

 Fig. 10

Concatenation

 Fig. 11

Choice Among Alternatives

We translate the regular expression on ab|a into an NFA according to Thompson’s construction. We first form the machines for the basic regular expressions a and b:

We then form the machine for the concatenation ab:

Now we form another copy of the machine for a and use the construction for choice to get the complete NFA for ab|a, which is shown in Figure2.8.

We form the NFA of Thompson’s construction for the regular expression letter (letter|digit)*. As in the previous example, we form the machines for the regular expressions letter and digit:

We then form the machine for the choice letter|digit:

Now we form the NFA for the repetition (letter|digit)* as follows:

Finally, we construct the machine for the concatenation of letter with (letter|digit)* to get the complete NFA, as shown in Figure2.9.

From an NFA to a DFA

Consider the following NFA corresponding to the regular expression a* under Thompson’s construction:

In this NFA, we have{1}={1,2,4},{2}={2}, {3} = {2,3,4}, and {4} ={4}.

The DFA subset construction has as its start state { 1 } = { 1 , 2, 6 }. There
[image: image1]is a transition on a from state 2 to state 3, and also from state 6 to state 7. Thus, { 1, 2, 6 }a = { 3, 7 } = {3, 4, 7, 8}, and we have { 1, 2, 6 }→a{ 3, 4, 7, 8 }. Since there are no other character transitions from 1, 2, or 6, we go on to { 3 ,4 ,7, 8 }. There is a transition on b from 4 to 5 and { 3, 4, 7, 8 }b = { 5 } = { 5, 8 }, and we have the transition { 3, 4, 7, 8}→b{ 5, 8 }. There are no other transitions. Thus, the subset construction yields the following DFA equivalent to the previous NFA:

letter (letter | digit)*:

The subset construction proceeds as follows. The start state is { 1 } = { 1 }. There is a transition on letter to { 2 } = { 2, 3, 4, 5, 7, 10 }. From this state there is a transition on letter to { 6 } = { 4, 5, 6, 7, 9. 10 } and a transition on digit to { 8 } = { 4, 5, 7, 8, 9, 10 }. Finally, each of these states also has transitions on letter and digit, either to itself or to the other. The complete DFA is given in the following picture:

Minimizing the Number of States in a DFA

for the regular expression a* . whereas the DFA

(a | ε) b* :

Consider the following diagram of an NFA.

The string abb can be accepted by either of the following sequences of transitions:

Indeed the transitions from state 1 to state 2 on a, and from state 2 to state 4 on b, allow the machine to accept the string ab, and then, using the ε-transition from state 4 to state 2, all strings matching the regular expression ab+. Similarly, the transitions from state 1 to state 3 on a, and from state 3 to state 4 on ε, enable the acceptance of all strings matching ab*. Finally, following the ε-transition from state 1 to state 4 enables the acceptance of all strings matching b*. Thus, this NFA accepts the same language as the regular ab+|ab*|b*. A simpler regular expression that generates the same language is (a|ε)b*. The following DFA also accepts this language:

It accepts the string acab by making the following transitions:

In fact, it is not hard to see that this NFA accepts the same language as that generated by the regular expression (a|c)*b

Implementation of Finite Automata in Code

The first and easiest way to simulate this DFA is to write code in the following form:

{ starting in state 1 }

if the next character is a letter then
 advance the input;

 { now in state 2 }

 while the next character is a letter or a digit do

 advance the input; { say in state 2 }

end while;

{ go to state 3 without advancing the input }

accept;

else

{ error or other cases }

end if;

 Fig. 22
Minimized DFA

begin

1) for p in F and q in Q-F do mark (p, q);

2) for each pair of distinct states (p,q) in F×F or (Q-F)×(Q–F) do
3) if for some input symbol a, (δ(p,a),δ(q,a)) is marked then
 begin

4) mark (p,q);

5) recursively mark all unmarked pairs on the list for (p,q) and on the lists of other pairs that are marked at this step.

 end

 else /* no pair (δ(p,a),(δ(q,a)) is marked */

6) for all input symbols a do

7) put (p,q) on the list for (δ(p,a),δ(q,a)) unless

 δ(p,a)=δ(q,a)

 end

 Fig 3.8 Algorithm for marking pairs of inequivalent states.

 Fig. 8

Fig. 1

(a)

a b c {recognized}

a b c c a b c {recognized}

a c { not recognized}

2

1

(b)

3

4

Graphical representation of a finite automaton

a

a

b

c

c

0-9

0-9

2

A-Z

2

(c)

1

(a)

1

A-Z

0-9

A-Z

0-9

A-Z

2

(b)

1

3

—

A-Z

0-9

4

3

0-9

1-9

2

(d)

1

space

Finite automata for typical programming language tokens

Fig. 2

.

digit

digit

Fig. 5

digit

digit

+

-

digit

digit

-

+

digit

digit

digit

digit

digit

-

digit

-

+

digit

digit

E

+

E

digit

digit

digit

digit

Fig. 6

[a,e]

start

[c]

[d,f]

[g]

[b,h]

0

1

1

0

0

1

0

1

0

1

Minimum state finite automaton

(c)

Fig. 7

b�
x�
�
�
�
�
�
�
�
c�
x�
x�
�
�
�
�
�
�
d�
x�
x�
x�
�
�
�
�
�
e�
�
x�
x�
x�
�
�
�
�
f�
x�
x�
x�
�
x�
�
�
�
g�
x�
x�
x�
x�
x�
x�
�
�
h�
x�
�
x�
x�
x�
x�
x�
�
�
a�
b�
c�
d�
e�
f�
g�
�

Calculation of equivalent states

(b)

Finite automaton

(a)

1

0

start

0

e

0

f

g

h

1

1

1

0

1

0

1

a

b

c

d

0

0

1

1

0

regular

expression

NFA

DFA

program

a

ε

ε

r

s

﹍

﹍

﹍

﹍

s

r

ε

ε

ε

ε

Fig. 12

Repetition

﹍

r

ε

ε

ε

ε

Fig. 13

a

b

b

a

(

(

b

a

a

(

(

(

(

Fig. 14

letter

digit

(

(

(

(

digit

letter

(

(

(

(

digit

letter

(

(

(

(

(

(

(

(

(

(

digit

letter

(

(

(

letter

Fig. 15

(

(

(

(

1

a

3

2

4

a

{1,2,4}

{2,3,4}

a

.

Fig. 19

Fig. 3

Figure 2.3 A finite automaton for floating-point numbers

Fig. 16

(

4

(

(

1

a

3

2

8

5

6

7

b

(

(

b

a

{1,2,6}

{3,4,7,8}

{5,8}

ε

Fig. 17

10

(

(

7

6

5

4

(

(

letter

1

(

3

2

9

8

(

letter

digit

(

(

(

Fig. 18

{4,5,7,8,9,10}

{4,5,6,7,9,10}

letter

{1}

{2,3,4,5,7,10}

letter

digit

digit

letter

letter

digit

a

a

a

1

b

a

2

3

b

b

b

a

{1}

{2,3}

b

ε

b

3

1

a

a

2

4

ε

(

4

2

4

(

2

a

b

(

b

b

b

b

a

Fig. 20

(

(

(

(

c

a

(

6

10

(

5

4

3

2

9

(

1

�

b

8

7

1

2

4

3

(

(

a

c

(

(

6

5

2

7

(

(

b

(

(

10

9

8

7

a

(

(

4

3

2

7

(

Fig. 21

digit

[other]

letter

3

1

letter

2

a

4

3

1

(

(

4

b

b

a

2

4

2

1

Scanner1-8

