
Left

Left - 2

Elimination of Left Recursion

 A grammar is left recursive if it has a nonterminal A such
that there is a derivation A  Aα for some string α.

 Top-down parsing methods cannot handle left-recursive
grammars, so a transformation that eliminates left
recursion is needed.

 In Section 2.4, we discussed simple left recursion, where
there was one production of the form, AAα. Here we
study the general case.

 In Section 2.4, we showed how the left-recursive pair of
production AAα | β could be replaced by the non-left-
recursive productions

A  βA’

A’ αA’ | ε
without changing the set of strings derivable from A. This
rule by itself suffices in many grammars.

+

Left - 3

 Example 4.8. Consider the following grammar for
arithmetic expressions.

E  E + T | T
T  T * F | F
F  (E) | id

 Eliminating the immediate left recursion (production of
the form AAα) to the production for E and then for T,
we obtain

E  TE’
E’ +TE’ | ε
T  FT’
T’ *FT’ | ε
F  (E) | id

Left - 4

 No matter how many A-production there are, we can
eliminate immediate left recursion from them by the
following technique. First, we group the A-productions as

A  Aα1 | Aα2 | … | Aαm | β1 | β2 | … | βn

where no βi begins with an A.

Then, we replace the A-productions by

A  β1A’ | β2A’ | … | βnA’
A’ α1A’ | α2A’ | … | αmA’ | ε

Left - 5

 The nonterminal A generates the same strings as before

but is no longer left recursive. This procedure eliminates

all immediate left recursion from the A and A’ productions

(provided no αi is ε), but it does not eliminate left

recursion involving derivations of two or more steps. For

example, consider the grammar

S  Aa | b

A  Ac | Sd | ε

The nonterminal S is left-recursive because SAa

Sda, but it is not immediately left recursive.

Left - 6

 Algorithm 4.1, below, will systematically eliminate left

recursion from a grammar.

 It is guaranteed to work if the grammar has no cycles

(derivations of the form A  A) or ε-productions

(productions of the form Aε).

 Cycles can be systematically eliminated from a grammar

as can ε-productions.

Left - 7

 Algorithm 4.1. Eliminating left recursion.

 Input. Grammar G with no cycles or ε-productions.

 Output. An equivalent grammar with no left recursion.

 Method. Apply the algorithm in Fig. 4.7 to G. Note that
the resulting non-left-recursive grammar may have ε-
productions.

1. Arrange the nonterminal in some order A1, A2, …, An.

2. for i:= 1 to n do begin
for j:= 1 to i-1 do begin

replace each production of the form Ai  Aj
by the productions Ai  1 | 2 | … | k,
where Aj  1 | 2 | … | k are all the current
Aj–productions;

end
eliminate the immediate left recursion among the
Ai–productions

end
Fig.4.7. Algorithm to eliminate left recursion from a grammar

Left - 8

 The reason the procedure in Fig.4.7 works is that after
the i-1st iteration of the outer for loop in step (2), any
production of the form Ak  Am, where k < i, must have
l > k.

 As a result, on the next iteration, the inner loop (on j)
progressively raises the lower limit on m in any
production Ai  Am, until we must have m  i.

 Then, eliminating immediate left recursion for the Ai-
productions forces m to be greater than i.

Left - 9

 Example 4.9. Let us apply this procedure to grammar
(4.12). Technically, Algorithm 4.1 is not guaranteed to
work, because of the -production, but in this case the
production A   turns out to be harmless.

 We order the nonterminals S, A. There is no immediate
left recursion among the S-productions, so nothing
happens during step (2) for the case i= 1. For i= 2, we
substitute the S-productions in A  Sd to obtain the
following A-productions.

A  Ac | Aad | bd | .
Eliminating the immediate left recursion among the A-
productions yields the following grammar.

S  Aa | b
A  bdA’ | A’
A’  cA’ | adA’ | 

Left - 10

Left Factoring

 Left factoring is a grammar transformation that is useful

for producing a grammar suitable for predictive parsing.

 The basic idea is that when it is not clear which of two

alternative productions to use to expand a nonterminal A,

we may be able to rewrite the A-productions to defer the

decision until we have seen enough of the input to make

the right choice.

Left - 11

 For example, if we have the two productions

stmt  if expr then stmt else stme | if expr then stmt

on seeing the input token if, we cannot immediately tell

which production to choose to expand stmt. In general, if

A1|2 are two A-productions and the input begins

with A to 1 or 2.

 However, we may defer the decision by expanding A to

A’.

 Then, after seeing the input derived from , we expand A’

to 1 or 2. That is, left-factored, the original production

become

A  A’

A’ 1 | 2

Left - 12

 Algorithm 4.2. Left factoring a grammar

 Input. Grammar G.

 Output. An equivalent left-factored grammar.

 Method. For each nonterminal A find the longest prefix 
common to two or more of its alternatives. If   , i.e.,
there is a nontrivial common prefix, replace all the A
productions A 1 | 2 | … | n | , where 
represents all alternatives that do not begin with  by

A  A’ | 
A’ 1 | 2 | … |n

 Here A’ is a new nonterminal. Repeatedly apply this
transformation until no two alternatives for a nonterminal
have a common prefix.

Left - 13

 Example 4.10. The following grammar abstracts the

dangling-else problem:

S  iEtS | iEtSeS | a

E  b

 Here i, t, and e stand for if, then and else, E and S for

“expression” and “statement.” Left-factored, this

grammar becomes:

S  iEtSS’ | a

S’ eS | 

E  b

Left - 14

 Thus, we may expand S to iEtSS’ on input i, and wait

iEtS has been seen to decide whether to expand S’ to eS

or to .

 Of course, grammars (4.13) and (4.14) are both

ambiguous, and on input e, it will not be clear which

alternative for S’ should be chosen.

 Example 4.19 discusses a way out of this dilemma.

Left - 15

 exp  exp + term | exp – term | term

A  Bb | …
B  Aa | …

 CASE 1: Simple immediate left recursion: A  A | 

A  A’
A’ A’ | 

 Example 4.1 exp  exp addop term | term

exp  term exp’
exp’addop term exp’ | 

Left - 16

 CASE 2: General immediate left recursion:

A  A1 | A2 | … | A n | 1 | 2 | … | m

 Example 4.2 exp  exp + term | exp – term | term

exp  term exp’

exp’ + term exp’ | - term exp’ | 

Left - 17

 CASE 3: General left recursion:
for i:= 1 to n do

for j:= 1 to i-1 do
replace each grammar rule choice of the
form Ai  Aj by the rule
Ai  1 | 2 | … | k where
Aj  1 | 2 | … | k is the current rule
for Aj

remove, if necessary, immediate left
recursion involving Ai

 Example 4.3

 A  Ba | Aa | c
B  Bb | Ab | d

Left - 18

GRAMMARS

 A grammar for a programming language is a formal
description of the syntax, or form, of programs and
individual statements written in the language. The
grammar does not describe the semantics, or meaning.

 FIGURE 5.2 Simplified Pascal grammar:

1.<prog> ::= PROGRAM <prog-name>;
VAR <dec-list> BEGIN <stmt-list> END.

2.<prog-name> ::= id

3.<dec-list> ::= <dec> | <dec-list> ; <dec>

4.<dec> ::= <id-list> : <type>

5.<type> ::= INTEGER

6. <id-list> ::= id | <id-list>, id

Left - 19

7.<stmt-list> ::= <stmt> | <stmt-list> ; <stmt>

8.<stmt> ::= <assign> | <read> | <write> | <for>

9.<assign> ::= id := <exp>

10.<exp> ::= <term> | <exp> + <term> |
<exp> - <term>

11.<term> ::= <factor> | <term> * <factor> |
<term> DIV <factor>

12.<factor> ::= id | int | (<exp>)

13.<read> ::= READ (<id-list>)

14.<write> ::= WRITE (<id-list>)

15.<for> ::= FOR <index-exp> DO <body>

16.<index-exp> ::= id := <exp> TO <exp>

17.<body> ::= <stmt> | BEGIN <stmt-list> END

Left - 20

 FIGURE 5.9 Simplified Pascal grammar modified for
recursive-descent parse.

1. <prog>::= PROGRAM <prog-name>;
VAR <dec-list> BEGIN <stmt-list> END.

2.<prog-name> ::= id

3a.<dec-list> ::= <dec> { ; <dec> }

4. <dec> ::= <id-list> : <type>

5. <type> ::= INTEGER

6a.< id-list> ::= id { , id }

7a.<stmt-list> ::= <stmt> { ; <stmt> }

8. <stmt> ::= <assign> | <read> | <write> | <for>

9. <assign> ::= id := <exp>

10a. <exp> ::= <term> { + <term> | - <term> }

Left - 21

11a. <term> ::= <factor> { * <factor> | DIV <factor> }

12. <factor> ::= id | int | (<exp>)

13. <read> ::= READ (<id-list>)

14. <write> ::= WRITE (<id-list>)

15. <for> ::= FOR <index-exp> DO <body>

16.<index-exp> ::= id := <exp> TO <exp>

17.<body> ::= <stmt> | BEGIN <stmt-list> END

