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Elimination of Left Recursion

 A grammar is left recursive if it has a nonterminal A such 
that there is a derivation A  Aα for some string α.

 Top-down parsing methods cannot handle left-recursive 
grammars, so a transformation that eliminates left 
recursion is needed. 

 In Section 2.4, we discussed simple left recursion, where 
there was one production of the form, AAα. Here we 
study the general case. 

 In Section 2.4, we showed how the left-recursive pair of 
production AAα | β could be replaced by the non-left-
recursive productions

A  βA’

A’ αA’ | ε
without changing the set of strings derivable from A. This 
rule by itself suffices in many grammars. 

+
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 Example 4.8. Consider the following grammar for 
arithmetic expressions.

E  E + T | T
T  T * F | F
F  (E) | id

 Eliminating the immediate left recursion ( production of 
the form AAα ) to the production for E and then for T, 
we obtain

E  TE’
E’ +TE’ | ε
T  FT’
T’ *FT’ | ε
F  (E) | id
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 No matter how many A-production there are, we can 
eliminate immediate left recursion from them by the 
following technique. First, we group the A-productions as

A  Aα1 | Aα2 | … | Aαm | β1 | β2 | … | βn

where no βi begins with an A.

Then, we replace the A-productions by

A  β1A’ | β2A’ | … | βnA’
A’ α1A’ | α2A’ | … | αmA’ | ε
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 The nonterminal A generates the same strings as before 

but is no longer left recursive. This procedure eliminates 

all immediate left recursion from the A and A’ productions 

(provided no αi is ε), but it does not eliminate left 

recursion involving derivations of two or more steps. For 

example, consider the grammar

S  Aa | b

A  Ac | Sd | ε

The nonterminal S is left-recursive because SAa 

Sda, but it is not immediately left recursive.
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 Algorithm 4.1, below, will systematically eliminate left 

recursion from a grammar.

 It is guaranteed to work if the grammar has no cycles 

(derivations of the form A  A) or ε-productions 

(productions of the form Aε). 

 Cycles can be systematically eliminated from a grammar 

as can ε-productions.
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 Algorithm 4.1. Eliminating left recursion.

 Input. Grammar G with no cycles or ε-productions.

 Output. An equivalent grammar with no left recursion.

 Method. Apply the algorithm in Fig. 4.7 to G. Note that 
the resulting non-left-recursive grammar may have ε-
productions.

1. Arrange the nonterminal in some order A1, A2, …, An.

2. for i:= 1 to n do begin
for j:= 1 to i-1 do begin

replace each production of the form Ai  Aj
by the productions Ai  1 | 2 | … | k,
where Aj  1 | 2 | … | k are all the current
Aj–productions;

end
eliminate the immediate left recursion among the
Ai–productions

end
Fig.4.7. Algorithm to eliminate left recursion from a grammar
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 The reason the procedure in Fig.4.7 works is that after 
the i-1st iteration of the outer for loop in step (2), any 
production of the form Ak  Am, where k < i, must have 
l > k. 

 As a result, on the next iteration, the inner loop (on j) 
progressively raises the lower limit on m in any 
production Ai  Am, until we must have m  i.

 Then, eliminating immediate left recursion for the Ai-
productions forces m to be greater than i.
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 Example 4.9. Let us apply this procedure to grammar 
(4.12). Technically, Algorithm 4.1 is not guaranteed to 
work, because of the -production, but in this case the 
production A   turns out to be harmless.

 We order the nonterminals S, A. There is no immediate 
left recursion among the S-productions, so nothing 
happens during step (2) for the case i= 1. For i= 2, we 
substitute the S-productions in A  Sd to obtain the 
following A-productions.

A  Ac | Aad | bd | .
Eliminating the immediate left recursion among the A-
productions yields the following grammar.

S  Aa | b
A  bdA’ | A’
A’  cA’ | adA’ | 
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Left Factoring

 Left factoring is a grammar transformation that is useful 

for producing a grammar suitable for predictive parsing. 

 The basic idea is that when it is not clear which of two 

alternative productions to use to expand a nonterminal A, 

we may be able to rewrite the A-productions to defer the 

decision until we have seen enough of the input to make 

the right choice.
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 For example, if we have the two productions

stmt  if expr then stmt else stme | if expr then stmt

on seeing the input token if, we cannot immediately tell 

which production to choose to expand stmt. In general, if 

A1|2 are two A-productions and the input begins 

with A to 1 or 2.

 However, we may defer the decision by expanding A to 

A’. 

 Then, after seeing the input derived from , we expand A’ 

to 1 or 2. That is, left-factored, the original production 

become

A  A’

A’ 1 | 2
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 Algorithm 4.2. Left factoring a grammar

 Input. Grammar G.

 Output. An equivalent left-factored grammar.

 Method. For each nonterminal A find the longest prefix 
common to two or more of its alternatives. If   , i.e., 
there is a nontrivial common prefix, replace all the A 
productions A 1 | 2 | … | n | , where 
represents all alternatives that do not begin with  by

A  A’ | 
A’ 1 | 2 | … |n

 Here A’ is a new nonterminal. Repeatedly apply this 
transformation until no two alternatives for a nonterminal 
have a common prefix.
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 Example 4.10. The following grammar abstracts the 

dangling-else problem:

S  iEtS | iEtSeS | a

E  b

 Here i, t, and e stand for if, then and else, E and S for 

“expression” and “statement.” Left-factored, this 

grammar becomes:

S  iEtSS’ | a

S’ eS | 

E  b
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 Thus, we may expand S to iEtSS’ on input i, and wait 

iEtS has been seen to decide whether to expand S’ to eS 

or to . 

 Of course, grammars (4.13) and (4.14) are both 

ambiguous, and on input e, it will not be clear which 

alternative for S’ should be chosen. 

 Example 4.19 discusses a way out of this dilemma.
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 exp  exp + term | exp – term | term

A  Bb | …
B  Aa | …

 CASE 1: Simple immediate left recursion: A  A | 

A  A’
A’ A’ | 

 Example 4.1 exp  exp addop term | term

exp  term exp’
exp’addop term exp’ | 
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 CASE 2: General immediate left recursion:

A  A1 | A2 | … | A n | 1 | 2 | … | m

 Example 4.2 exp  exp + term | exp – term | term

exp  term exp’

exp’ + term exp’ | - term exp’ | 
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 CASE 3: General left recursion:
for i:= 1 to n do

for j:= 1 to i-1 do
replace each grammar rule choice of the
form Ai  Aj by the rule
Ai  1 | 2 | … | k where 
Aj  1 | 2 | … | k is the current rule
for Aj

remove, if necessary, immediate left
recursion involving Ai

 Example 4.3

 A  Ba | Aa | c
B  Bb | Ab | d
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GRAMMARS

 A grammar for a programming language is a formal 
description of the syntax, or form, of programs and 
individual statements written in the language. The 
grammar does not describe the semantics, or meaning. 

 FIGURE 5.2 Simplified Pascal grammar:

1.<prog> ::= PROGRAM <prog-name>;
VAR <dec-list> BEGIN <stmt-list> END.

2.<prog-name> ::= id

3.<dec-list> ::= <dec> | <dec-list> ; <dec>

4.<dec> ::= <id-list> : <type>

5.<type> ::= INTEGER

6. <id-list> ::= id | <id-list>, id



Left - 19

7.<stmt-list> ::= <stmt> | <stmt-list> ; <stmt>

8.<stmt> ::= <assign> | <read> | <write> | <for>

9.<assign> ::= id := <exp>

10.<exp> ::= <term> | <exp> + <term> |
<exp> - <term>

11.<term> ::= <factor> | <term> * <factor> |
<term> DIV <factor>

12.<factor> ::= id | int | ( <exp> )

13.<read> ::= READ ( <id-list> )

14.<write> ::= WRITE ( <id-list> )

15.<for> ::= FOR <index-exp> DO <body>

16.<index-exp> ::= id := <exp> TO <exp>

17.<body> ::= <stmt> | BEGIN <stmt-list> END
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 FIGURE 5.9 Simplified Pascal grammar modified for 
recursive-descent parse.

1. <prog>::= PROGRAM <prog-name>; 
VAR <dec-list> BEGIN <stmt-list> END.

2.<prog-name> ::= id

3a.<dec-list> ::= <dec> { ; <dec> }

4. <dec> ::= <id-list> : <type>

5. <type> ::= INTEGER

6a.< id-list> ::= id { , id }

7a.<stmt-list> ::= <stmt> { ; <stmt> }

8. <stmt> ::= <assign> | <read> | <write> | <for>

9. <assign> ::= id := <exp>

10a. <exp> ::= <term> { + <term> | - <term> }
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11a. <term> ::= <factor> { * <factor> | DIV <factor> }

12. <factor> ::= id | int | ( <exp> )

13. <read> ::= READ ( <id-list> )

14. <write> ::= WRITE ( <id-list> )

15. <for> ::= FOR <index-exp> DO <body>

16.<index-exp> ::= id := <exp> TO <exp>

17.<body> ::= <stmt> | BEGIN <stmt-list> END


