| eft



|csu‘

Elimination of Left Recursion

= Agrammar is left recursive if it has a nonterminal A such
that there is a derivation A = Aa for some string a.

= Top-down parsing methods cannot handle left-recursive
grammars, so a transformation that eliminates left
recursion is needed.

= In Section 2.4, we discussed simple left recursion, where
there was one production of the form, A—>Aa. Here we
study the general case.

= In Section 2.4, we showed how the left-recursive pair of
production A—>Aa | B could be replaced by the non-left-
recursive productions

A— BA

A— aA | €
without changing the set of strings derivable from A. This
rule by itself suffices in many grammars.

Left-2



|CSE\
= Example 4.8. Consider the following grammar for

arithmetic expressions.

ES>E+T|T
TH>T*F|F
F— (E) | id

= Eliminating the immediate left recursion ( production of
the form A—Aa ) to the production for E and then for T,

we obtain
E > TE
E'—> +TE' | €
T—>FT
T—*FT | €

F—>(E)]|Id

Left-3



|CSE\

= No matter how many A-production there are, we can
eliminate immediate left recursion from them by the
following technique. First, we group the A-productions as

A—>Aa, |Aa,|...|Aa | B, | B, ... | B,

where no B, begins with an A.
Then, we replace the A-productions by

A— BA | BA| ... | BA
A->aA|aA|...|a A e

Left- 4



NSTSU

(wo

= The nonterminal A generates the same strings as before
but is no longer left recursive. This procedure eliminates
all immediate left recursion from the A and A’ productions
(provided no q; is €), but it does not eliminate left
recursion involving derivations of two or more steps. For
example, consider the grammar

S—>Aa|b
A—>Ac|Sd|e

The nonterminal S is left-recursive because S=Aa
—=Sda, but it is not immediately left recursive.

Left-5



|CSE\

= Algorithm 4.1, below, will systematically eliminate left
recursion from a grammar.

= Itis guaranteed to work if the grammar has no cycles
(derivations of the form A = A) or e-productions
(productions of the form A—¢).

= Cycles can be systematically eliminated from a grammar
as can g-productions.

Left-6



. Arrange the nonterminal in some order A, A,, ..., A
.fori:z=1to ndo begin

Algorithm 4.1. Eliminating left recursion.
Input. Grammar G with no cycles or ge-productions.
Output. An equivalent grammar with no left recursion.

Method. Apply the algorithm in Fig. 4.7 to G. Note that
the resulting non-left-recursive grammar may have e¢-
productions.

n-

for ;=1to I-1 do begin
replace each production of the form A; — Ay
by the productions A; —» 6,y | 3,y | ... | Sky,
where A, — 6, [ 6, | ... | 6, are all the current
A productlons
end
eliminate the immediate left recursion among the
A—productions
end
Fig.4.7. Algorithm to eliminate left recursion from a grammar

Left-7



.
= The reason the procedure in Fig.4.7 works is that after
the I-15t iteration of the outer for loop in step (2), any

production of the form A, —» Ao, where k < I, must have
| > k.

= As aresult, on the next iteration, the inner loop (on ))
progressively raises the lower limit on m in any
production A; —» A a, until we must have m > 1.

= Then, eliminating immediate left recursion for the A-
productions forces m to be greater than I.

Left-8



|CSE\
= Example 4.9. Let us apply this procedure to grammar

(4.12). Technically, Algorithm 4.1 is not guaranteed to
work, because of the g-production, but in this case the
production A — ¢ turns out to be harmless.

= We order the nonterminals S, A. There is no immediate

left recursion among the S-productions, so nothing
happens during step (2) for the case i= 1. For i= 2, we
substitute the S-productions in A — Sd to obtain the
following A-productions.

A — Ac|Aad | bd | «.
Eliminating the immediate left recursion among the A-
productions yields the following grammar.

S—>Aal|b

A— bdA' | A

A —>cA|adA | e

Left-9



Left Factoring

= Left factoring is a grammar transformation that is useful
for producing a grammar suitable for predictive parsing.

= The basic idea is that when it is not clear which of two
alternative productions to use to expand a nonterminal A,
we may be able to rewrite the A-productions to defer the
decision until we have seen enough of the input to make
the right choice.

Left- 10



|CSE\

= For example, if we have the two productions
stmt — if expr then stmt else stme | if expr then stmt

on seeing the input token if, we cannot immediately tell
which production to choose to expand stmt. In general, if
A—af,|ap, are two A-productions and the input begins
with Ato af; or af3,.

= However, we may defer the decision by expanding A to
oA

= Then, after seeing the input derived from o, we expand A
to B, or B,. That is, left-factored, the original production

become
A — oA

A— By | B,

Left - 11



m n n s

Algorithm 4.2. Left factoring a grammar
Input. Grammar G.
Output. An equivalent left-factored grammar.

Method. For each nonterminal A find the longest prefix o

common to two or more of its alternatives. If o # ¢, I.e.,

there is a nontrivial common prefix, replace all the A

productions A— a3, | af, | ... | aB, |y, where y

represents all alternatives that do not begin with a by
A— oA |y

A— Py | Bz |- 1By

Here A’ is a new nonterminal. Repeatedly apply this
transformation until no two alternatives for a nonterminal
have a common prefix.

Left-12



= Example 4.10. The following grammar abstracts the
dangling-else problem:
S > IEtS | IEtSeS | a
E—>Db

= Here |, t, and e stand for if, then and else, E and S for
“expression” and “statement.” Left-factored, this
grammar becomes:
S - IEtSS’ | a
S'—>eS|e¢
E—>Db

Left- 13



(wo

Thus, we may expand S to iIEtSS’ on input i, and wait

IEtS has been seen to decide whether to expand S’ to eS
or to e.

Of course, grammars (4.13) and (4.14) are both
ambiguous, and on input e, it will not be clear which
alternative for S’ should be chosen.

Example 4.19 discusses a way out of this dilemma.

Left - 14



less

(wo

= exp — exp +term | exp —term | term

A—Bb]|...
B—>Aaj...

= CASE 1: Simple immediate left recursion: A — Ao | B

A — BA
A— oA | e

= Example 4.1 exp — exp addop term | term

exp — term exp’
exp’'—addop term exp’ | €

Left - 15



s CASE 2: General immediate left recursion:
A—Aa |Aay | ... [Ao, | B Ba] .- | Bm

= Example 4.2 exp — exp + term | exp — term | term

exp — term exp’
exp'— +termexp’ | -termexp’ | €

Left- 16



less

(wo

s CASE 3: General left recursion:
fori:=1tondo
for;=1toi-1do
replace each grammar rule choice of the
form A; — AB by the rule

A — oclﬁ | OLZB | ... | oy where
A —> 0oy | o, | ... | o Is the current rule
forA

remove, nl necessary, immediate left
recursion involving A,

= Example 4.3

m A—)Ba|A |
B> Bb|Ab |d

Left- 17



GRAMMARS

A grammar for a programming language is a formal
description of the syntax, or form, of programs and
iIndividual statements written in the language. The
grammar does not describe the semantics, or meaning.

FIGURE 5.2 Simplified Pascal grammatr:
1.<prog> ::= PROGRAM <prog-name>;
VAR <dec-list> BEGIN <stmt-list> END.
2.<prog-name> ::=id
3.<dec-list> .= <dec> | <dec-list> ; <dec>
4.<dec> = <id-list> : <type>
S5.<type> ::= INTEGER
6. <id-list> =1d | <id-list>, id Left- 18



|CSE\

7.<stmt-list> ::= <stmt> | <stmt-list> ; <stmt>

8.<stmt> .= <assign> | <read> | <write> | <for>

O.<assign> ::=id .= <exp>

10.<exp> = <term> | <exp> + <term> |
<exp> - <term>

11.<term> .= <factor> | <term> * <factor> |
<term> DIV <factor>

12.<factor> :=id|int| ( <exp>)

13.<read> ::= READ ( <id-list>)

14.<write> == WRITE ( <id-list>)

15.<for> .:= FOR <index-exp> DO <body>

16.<index-exp> = 1d = <exp> TO <exp>

17.<body> ::=<stmt>| BEGIN <stmt-list> END

Left- 19



(wo

FIGURE 5.9 Simplified Pascal grammar modified for
recursive-descent parse.

1.<prog>::= PROGRAM <prog-name>;
VAR <dec-list> BEGIN <stmt-list> END.

2.<prog-name> ::=id

3a.<dec-list> ::=<dec>{; <dec>}

4.<dec> .= <id-list> : <type>

5. <type> .= INTEGER

6a.< id-list> =id {,1d }

7a.<stmt-list> ;= <stmt>{; <stmt>}

8. <stmt> .= <assign> | <read> | <write> | <for>
9. <assign> = 1d = <exp>

10a. <exp> = <term> { + <term> | - <term> }

Left - 20



11a. <term>
12. <factor>
13. <read>
14. <write>
15. <for>
16.<index-exp>
17.<body>

.= <factor> { * <factor> | DIV <factor> }
z=1d | int | ( <exp>)

.= READ ( <id-list>)

= WRITE ( <id-list>)

.:= FOR <index-exp> DO <body>

= 1d ;= <exp> TO <exp>

.= <stmt> | BEGIN <stmt-list> END

Left - 21



