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· Elimination of Left Recursion

[image: image1.png]A grammar is left recursive if it has a nonterminal A such that there is a derivation A ( Aα for some string α. Top-down parsing methods cannot handle left-recursive grammars, so a transformation that eliminates left recursion is needed. In Section 2.4, we discussed simple left recursion, where there was one production of the form, A(Aα. Here we study the general case. In Section 2.4, we showed how the left-recursive pair of production A(Aα | β could be replaced by the non-left-recursive productions


A ( βA’

A’( αA’ | ε
without changing the set of strings derivable from A. This rule by itself suffices in many grammars.

Example 4.8. Consider the following grammar for arithmetic expressions.

E ( E + T | T

T ( T * F | F

F ( (E) | id

Eliminating the immediate left recursion ( production of the form A(Aα ) to the production for E and then for T, we obtain

E ( TE’

E’( +TE’ | ε

T ( FT’

T’( *FT’ | ε

F ( (E) | id

No matter how many A-production there are, we can eliminate immediate left recursion from them by the following technique. First, we group the A-productions as

A ( Aα1 | Aα2 | … | Aαm | β1 | β2 | … | βn
where no βi begins with an A. Then, we replace the A-productions by

A ( β1A’ | β2A’ | … | βnA’

A’( α1A’ | α2A’ | … | αmA’ | ε

The nonterminal A generates the same strings as before but is no longer left recursive. This procedure eliminates all immediate left recursion from the A and A’ productions (provided no αi is ε), but it does not eliminate left recursion involving derivations of two or more steps. For example, consider the grammar

S ( Aa | b

A ( Ac | Sd | ε
The nonterminal S is left-recursive because S(Aa (Sda, but it is not immediately left recursive.

Algorithm 4.1, below, will systematically eliminate left recursion from a grammar. It is guaranteed to work if the grammar has no cycles (derivations of the form A ( A) or ε-productions (productions of the form A(ε). Cycles can be systematically eliminated from a grammar as can ε-productions.

Algorithm 4.1. Eliminating left recursion.

Input. Grammar G with no cycles or ε-productions.

Output. An equivalent grammar with no left recursion.

Method. Apply the algorithm in Fig. 4.7 to G. Note that the resulting non-left-recursive grammar may have ε-productions.

1. Arrange the nonterminal in some order A1, A2, …, An.

2. for i:= 1 to n do begin
   for j:= 1 to i-1 do begin
      replace each production of the form Ai ( Aj(
      by the productions Ai ( (1( | (2( | … | (k(,
      where Aj ( (1 | (2 | … | (k are all the current
      Aj–productions;
   end
   eliminate the immediate left recursion among the
   Ai–productions
end
Fig.4.7. Algorithm to eliminate left recursion from a grammar

The reason the procedure in Fig.4.7 works is that after the i-1st iteration of the outer for loop in step (2), any production of the form Ak ( Am(, where k < i, must have 
l > k. As a result, on the next iteration, the inner loop (on j) progressively raises the lower limit on m in any production Ai ( Am(, until we must have m ( i. Then, eliminating immediate left recursion for the Ai-productions forces m to be greater than i.

Example 4.9. Let us apply this procedure to grammar (4.12). Technically, Algorithm 4.1 is not guaranteed to work, because of the (-production, but in this case the production A ( ( turns out to be harmless.

We order the nonterminals S, A. There is no immediate left recursion among the S-productions, so nothing happens during step (2) for the case i= 1. For i= 2, we substitute the S-productions in A ( Sd to obtain the following A-productions.

A ( Ac | Aad | bd | (.
Eliminating the immediate left recursion among the A-productions yields the following grammar.

S ( Aa | b

A ( bdA’ | A’

A’ ( cA’ | adA’ | (
Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive parsing. The basic idea is that when it is not clear which of two alternative productions to use to expand a nonterminal A, we may be able to rewrite the A-productions to defer the decision until we have seen enough of the input to make the right choice.

For example, if we have the two productions

stmt ( if expr then stmt else stme | if expr then stmt
on seeing the input token if, we cannot immediately tell which production to choose to expand stmt. In general, if A(((1|((2 are two A-productions and the input begins with A to ((1 or ((2. However, we may defer the decision by expanding A to (A’. Then, after seeing the input derived from (, we expand A’ to (1 or (2. That is, left-factored, the original production become

A ( (A’

A’( (1 | (2

Algorithm 4.2. Left factoring a grammar

Input. Grammar G.

Output. An equivalent left-factored grammar.

Method. For each nonterminal A find the longest prefix ( common to two or more of its alternatives. If ( ( (, i.e., there is a nontrivial common prefix, replace all the A productions A( ((1 | ((2 | … | ((n | (, where ( represents all alternatives that do not begin with ( by

A ( (A’ | (

A’( (1 | (2 | … |(n 

Here A’ is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix.

Example 4.10. The following grammar abstracts the dangling-else problem:

S ( iEtS | iEtSeS | a

E ( b

Here i, t, and e stand for if, then and else, E and S for “expression” and “statement.” Left-factored, this grammar becomes:

S ( iEtSS’ | a

S’( eS | (

E ( b

Thus, we may expand S to iEtSS’ on input i, and wait iEtS has been seen to decide whether to expand S’ to eS or to (. Of course, grammars (4.13) and (4.14) are both ambiguous, and on input e, it will not be clear which alternative for S’ should be chosen. Example 4.19 discusses a way out of this dilemma.

exp ( exp + term | exp – term | term


A ( Bb | …

B ( Aa | …

CASE 1: Simple immediate left recursion: A ( A( | (



A ( (A’

A’( (A’ | (
Example 4.1 exp ( exp addop term | term


exp ( term exp’

exp’(addop term exp’ | (
CASE 2: General immediate left recursion:



A ( A(1 | A(2 | … | A(n | (1 | (2 | … | (m

Example 4.2 exp ( exp + term | exp – term | term


exp ( term exp’

exp’( + term exp’ | - term exp’ | (
CASE 3: General left recursion:



for i:= 1 to n do




for j:= 1 to i-1 do





replace each grammar rule choice of the





form Ai ( Aj( by the rule





Ai ( (1( | (2( | … | (k( where 





Aj ( (1 | (2 | … | (k  is the current rule





for Aj




remove, if necessary, immediate left




recursion involving Ai
Example 4.3


A ( Ba | Aa | c

B ( Bb | Ab | d

GRAMMARS

A grammar for a programming language is a formal description of the syntax, or form, of programs and individual statements written in the language. The grammar does not describe the semantics, or meaning.

FIGURE 5.2 Simplified Pascal grammar:

1. <prog>
::= PROGRAM <prog-name>;
 
VAR <dec-list> BEGIN <stmt-list> END.

2. <prog-name>
::= id

3. <dec-list>
::= <dec> | <dec-list> ; <dec>

4. <dec>
::= <id-list> : <type>

5. <type>
::= INTEGER

6. <id-list>
::= id | <id-list>, id

7. <stmt-list>
::= <stmt> | <stmt-list> ; <stmt>

8. <stmt>
::= <assign> | <read> | <write> | <for>

9. <assign>
::= id := <exp>

10. <exp>
::= <term> | <exp> + <term> |
 

<exp> - <term>

11. <term>
::= <factor> | <term> * <factor> |
 

<term> DIV <factor>

12. <factor>
::= id | int | ( <exp> )

13. <read>
::= READ ( <id-list> )

14. <write>
::= WRITE ( <id-list> )

15. <for>
::= FOR <index-exp> DO <body>

16. <index-exp>
::= id := <exp> TO <exp>

17. <body>
::= <stmt> | BEGIN <stmt-list> END

1. <prog>
::= PROGRAM <prog-name>; 
 
VAR <dec-list> BEGIN <stmt-list> END.

2. <prog-name>
::= id

3a.<dec-list>
::= <dec> { ; <dec> }

4. <dec>
::= <id-list> : <type>

5. <type>
::= INTEGER

6a.< id-list>
::= id { , id }

7a.<stmt-list>
::= <stmt> { ; <stmt> }

8. <stmt>
::= <assign> | <read> | <write> | <for>

9. <assign>
::= id := <exp>

10a. <exp>
::= <term> { + <term> | - <term> }

11a. <term>
::= <factor> { * <factor> | DIV <factor> }

12. <factor>
::= id | int | ( <exp> )

13. <read>
::= READ ( <id-list> )

14. <write>
::= WRITE ( <id-list> )

15. <for>
::= FOR <index-exp> DO <body>

16. <index-exp>
::= id := <exp> TO <exp>

17. <body>
::= <stmt> | BEGIN <stmt-list> END

FIGURE 5.9 Simplified Pascal grammar modified for recursive-descent parse.
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