[image: image2.png]=
=l M@
=

AMBIGUITY

3.4.1 Ambiguous Grammars

Parse trees and syntax trees uniquely express the structure of syntax, as do leftmost and rightmost derivations, but not derivations in general. Unfortunately, it is possible for a grammar to permit a string to have more than one parse tree. Consider, for example, the simple integer arithmetic grammar we have been using as a standard example

exp (exp op exp | (exp) | number
op (+ | - | *

[image: image2.png]and consider the string 34-3*42. This string has two different parse trees

and

corresponding to the two leftmost derivations

	exp
	(
	exp op exp
	[exp (exp op exp]

	
	(
	exp op exp op exp
	[exp (exp op exp]

	
	(
	number op exp op exp
	[exp (number]

	
	(
	number – exp op exp
	[op (-]

	
	(
	number – number op exp
	[exp (number]

	
	(
	number – number * exp
	[op (*]

	
	(
	number – number * number
	[exp (number]

and

	exp
	(
	exp op exp
	[exp (exp op exp]

	
	(
	number op exp
	[exp (number]

	
	(
	number - exp
	[exp (-]

	
	(
	number – exp op exp
	[op (exp op exp]

	
	(
	number – number op exp
	[exp (number]

	
	(
	number – number * exp
	[op (*]

	
	(
	number – number * number
	[exp (number]

Example 4.5.

Let us again consider the arithmetic expression grammar (4.7), with which we have been dealing. The sentence id + id * id has the two distinct leftmost derivations :

	E
	(
	E + E
	E
	(
	E * E

	
	(
	id + E
	
	(
	E + E * E

	
	(
	id + E * E
	
	(
	id + E * E

	
	(
	id + id * E
	
	(
	id + id * E

	
	(
	id + id * id
	
	(
	id + id * id

with the two corresponding parse trees shown in fig. 4.3.

This example shows the two things we must do in order to prove that a grammar generates a language L. We must show that every sentence generated by the grammar is in L, and we must show that every string in L can be generated by the grammar.

We have already seen a grammar for arithmetic expression. the following grammar fragment (4.11) generates conditional statements.

	stat
	(
	if cond then stat

	
	
	| if cond then stat else stat

	
	
	| other-stat

Thus the string

 if C1 then S1
 else if C2 then S2 else S3

would have the parse tree shown in Fig. 4.4.

Grammar (4.11) is ambiguous, however, since the string

 if C1 then if C2 then S1 else S2 (4.12)

has the two parse trees shown in Fig. 4.5.

In all programming languages with conditional statement of this form, the first parsing is preferred. The general rule is “ Each else is to be matched with the closest previous unmatched then ”.

We could incorporate this disambiguating rule directly into the grammar if we wish. for example, we could rewrite grammar (4.11) as the following

unambiguous grammar

	stat
	(
	matched-stat

	
	
	| unmatched-stat

	matched-stat
	(
	if cond then matched-stat else matched-stat

	
	
	| other-stat

	unmatched-stat
	(
	if cond then stat

	
	
	| if cond then matched-stat else unmatched-stat

This grammar generates the same set of strings as (4.11), but it allows only one parsing for string (4.12), namely the one stat associates each else with the previous unmatched then.

The Dangling Else Problem

Consider the grammar from Example 3.4 (page 103) :

	statement
	(
	if-stmt | other

	if-stmt
	(
	if (exp) statement

	
	
	| if (exp) statement else statement

	exp
	(
	0 | 1

The grammar is ambiguous as a result of the optional else. To see this, consider the string

if (0) if (1) other else other

This string has the two parse trees :

and
Which one is correct depends on whether we want to associate the single else-part with the first or the second if-statement : the first parse tree associates the else-part with the first if-statement ; the second parse tree associates it with the second if-statement. This ambiguity is called the dangling else problem. To see which parse tree is correct, we must consider the implications for the meaning of the if-statement. To get a clearer idea of this, consider the following piece of C code

 if (x != 0)

 if (y == 1/x) ok = TRUE ;

 else z = 1/x ;

In this code, whenever x is 0, a division by zero error will occur if the else-part is associated with the first if-statement. Thus, the implication of this code (and indeed the implication of the indentation of the else-part) is that an else-part should always be associated with the nearest if-statement that does not yet have an associated else-part. This disambiguating rule is called the most closely nested rule for the dangling else problem, and it implies that the second parse tree above is the correct one. Note that, if we wanted we could associate the else-part with the first if-statement by using brackets {…} in C, as in

 if (x != 0)

 { if (y== 1/x) ok = TRUE ; }

 else z = 1/x ;

A solution to the dangling else ambiguity in the BNF itself is more difficult than the previous ambiguities we have seen. A solution is as follows :

	statement
	(
	matched-stmt

	
	
	| unmatched-stmt

	matched-stmt
	(
	if (exp) matched-stmt else matched-stmt

	
	
	| other

	unmatched-stmt
	(
	if (exp) statement

	
	
	| if (exp) matched-stmt else unmatched-stmt

	exp
	(
	0 | 1

This works by permitting only a matched-stmt to come before an else in an if-statement, thus forcing all else-parts to be matched as soon as possible. For instance, the associated parse tree for our sample string now becomes

which indeed associates the else-part with the second if-statement.

if x /= 0 then

 if y = 1/x then ok := true;

 else z := 1/x;

 end if;

end if;

if x /= 0 then

 if y = 1/x then ok := true;

end if;

else z := 1/x;

end if;

	if-stmt
	(
	if condition then statement-sequence end if

	
	
	| if condition then statement-sequence

	
	
	 else statement-sequence end if

Precedence and Associativity

To handle the precedence of operations in the grammar, we must group the operators into groups of equal precedence, and for each precedence we must write a different rule. For example, the precedence of multiplication over addition and subtraction can be added to our simple expression grammar as follows :

	exp
	(
	exp addop exp | term

	addop
	(
	+ | -

	term
	(
	term mulop term | factor

	mulop
	(
	*

	factor
	(
	(exp) | number

In this grammar, multiplication is grouped under the term rule, while addition and subtraction are grouped under the exp rule. Since the base case for an exp is a term, this means that addition and subtraction will appear“higher”(that is, closer to the root) in that parse and syntax trees, and thus receive lower precedence. Such a grouping of operator into different precedence levels is a standard method in syntactic specification using BNF. We call such a grouping a precedence cascade.

This last grammar for simple arithmetic expressions still does not specify the associativity of the operators and is still ambiguous. The reason is that the recursion on both sides of the operator allows either side to match repetitions of the operator in a derivation (and, hence, in the parse and syntax trees). The solution is to replace one of the recursions with the base case, forcing the repetitive matches on the side with the remaining recursion. Thus, replacing the rule

exp (exp addop exp | term

by

exp (exp addop term | term

makes addition and subtraction left associative, while writing

 exp (term addop exp | term

makes them right associative. In other words, a left recursive rule makes its operators associate on the left, while a right recursive rule makes them associate on the right.

To complete the removal of ambiguity in the BNF rules for our simple arithmetic expressions, we write the rules to make all the operations left associative :

	exp
	(
	exp addop term | term

	addop
	(
	+ | -

	term
	(
	term mulop factor | factor

	mulop
	(
	*

	factor
	(
	(exp) | number

Now the parse tree for the expression 34-3*42 is

and the parse tree for the expression 34-3-42 is

[image: image1.png]exp

exp addop term

exp addop term ‘ faLtor
om L mr umbe
o rumber

number

Note that the precedence cascades cause the parse trees to become much more complex. The syntax trees, however, are not affected.

Example 4.6.

Consider the following grammar for arithmetic expressions involving +, -, *, /, and ((exponentiation)

	E
	(
	E + E | E – E

	
	
	| E * E | E / E

	
	
	| E (E | (E)

	
	
	| -E | id

This grammar, like (4.7), is ambiguous. However, we can disambiguate both these grammars by specifying the associativity and precedence of the arithmetic operators. Suppose we wish to give the operators the following precedences in decreasing order :

· (unary minus)

(
* /

+ -

Suppose further we wish (to be right-associative [e.g., a (b (c is to mean a ((b (c)] and the other binary operators to be left-associative [e.g., a – b – c is to mean (a – b) – c]. These precedences and associativities are the ones customarily used in mathematics and in many, but not all, programming languages [e.g., a + - b (c + d * e is interpreted as precedence of operators are sufficient to disambiguate both grammars (4.7) parse tree that groups operands of operators according to these associativity and precedence rules. For example, Fig. 4.3 (b) would not be a valid parse tree for id + id * id according to these rules because there + appears to have higher precedence than *.

We can also rewrite a grammar to incorporate the associativity and precedence rules into the grammar itself. To illustrate what is involved, let us transform (4.9) into an equivalent unambiguous grammar that obeys the associativity and precedence rules given above. We begin by introducing one nonterminal for each precedence level. A subexpression that is essentially indivisible we shall call an element. An element is either a single identifier or a parenthesized expression. We therefore have the productions

 element ((expression) | id

Next, we introduce the category of primaries, which are elements with zero or more of the operator of highest precedence, the unary minus. The rule for primary is :

 primary (- primary | element

Then we construct factors as sequences of one or more primaries connected by exponentiation signs. That is :

 factor (primary (factor | primary

Note that the choice of the right side primary (factor rather than factor (primary forces expressions like a (b (c to group from the right as a ((b (c).

Then we introduce terms, which are sequences of one or more factors connected by the multiplicative operators, namely * and /, and finally expressions, which are sequences of one or more terms connected by the additive operators, + and binary -. The productions for term are

	term
	(
	term * factor

	
	
	| term / factor

	
	
	| factor

These productions cause terms to be grouped from the left [e.g., a * b * c means (a * b) * c]. The final, unambiguous grammar is :

	expression
	(
	expression + term

	
	
	| expression – term

	
	
	| term

	term
	(
	term * factor

	
	
	| term / factor

	
	
	| factor

	factor
	(
	primary (factor

	
	
	| primary

	primary
	(
	- primary

	
	
	| element

	element
	(
	(expression)

	
	
	| id

EXTENDED NOTATIONS : EBNF AND SYNTAX DIAGRAMS

3.5.1 EBNF Notation

Repetitive and optional constructs are already common in programming languages, and thus in BNF grammar rules as well. Therefore, it should not be surprising that the BNF notation is sometimes extended to include special notations for these two situations. These extensions comprise a notation that is called extended BNF, or EBNF.

Consider, first, the case of repetition, such as that of statement sequences. We have seen that repetition is expressed by recursion in grammar rules and that either left or right recursion might be used, indicated by the generic rules

 A (A (| ((left recursive)

and

 A ((A | ((right recursive)

where (and (are arbitrary strings of terminals and nonterminals and where in the first rule (does not begin with A and in the second (does not end with A.

It would be possible to use the same notation for repetition that regular expressions use, namely, the asterisk * (also called Kleene closure in regular expressions). Then these two rules would be written as the nonrecursive rules

 A (((*

and

 A ((* (
Instead, EBNF opts to use curly brackets {…} to express repetition (thus making clear the extent of the string to be repeated), and we write

 A (({ (}

and

 A ({ (} (
for the rules.

The problem with any repetition notation is that it obscures how the parse tree is to be constructed, but, as we have seen, we often do not care. Take for example, the case of statement sequences (Example 3.9). We wrote the grammar as follows, in right recursive form :

 stmt-sequence (stmt; stmt-sequence | stmt
 stmt (s

This rule has the form A ((A | (, with A = stmt-sequence, (= stmt. In EBNF this would appear as

 stmt-sequence ({ stmt ; } stmt (right recursive form)

We could equally as well have used a left recursive rule and obtained the EBNF

stmt-sequence (stmt { ; stmt } (left recursive form)

In fact, the second form is the one generally used (for reasons we shall discuss in the next chapter)

A more significant problem occurs when the associativity matters, as it does for binary operations such as subtraction and division. For example, consider the first grammar rule in the simple expression grammar of the previous subsection :

 exp (exp addop term | term
This has the form A (A (| (, with A = exp, (= addop term, and (= term. Thus, we write this rule in EBNF as

 exp (term { addop term }

We must now also assume that this implies left associativity; although the rule itself does not explicitly state it. We might assume that a right associative rule would be implied by writing

 exp ({ term addop } term
but this is not the case. Instead, a right recursive rule such as

 stmt-sequence (stmt; stmt-sequence | stmt
is viewed as being a stmt followed by an optional semicolon and stmt-sequence.

Optional constructs in EBNF are indicated by surrounding them with square brackets […]. This is similar in spirit to the regular expression convention of putting a question mark after an optional part, but has the advantage of surrounding the optional part without requiring parentheses. For example, the grammar rules for if-statement with optional else-parts (Examples 3.4 and 3.6) would be written as follows in EBNF :

	statement
	(
	if-stmt | other

	if-stmt
	(
	if (exp) statement [else statement]

	exp
	(
	0 | 1

Also, a right recursive rule such as

 stmt-sequence (stmt ; stmt-sequence | stmt
is written as

stmt-sequence (stmt [; stmt-sequence]

(contrast this to the use of curly brackets previously to write this rule in recursive form).

If we wished to write an arithmetic operation such as addition in right associative form, we would write

 exp (term [addop exp]

instead of using curly brackets.

for (each production P = A (([X1 … Xn] () {

 Create a new nonterminal, N.

 Replace production P with P’ = A ((N (
 Add the productions : N (X1 … Xn and N ((
}

for (each production Q = B (({Y1 … Ym } () {

 Create a new nonterminal, M.

 Replace production Q with Q’ = B ((M (
 Add the productions : M (Y1 … Ym M and M ((
}

Figure 4.4 Algorithm to Transform Extended BNF Grammars into Standard Form

exp

exp

op

exp

number

＊

exp

op

exp

-

number

number

exp

op

exp

-

number

＊

number

number

exp

op

exp

exp

E

E

＊

E

id

Fig.4.3. Two parse trees for id + id * id

(a)

(b)

+

id

id

E

E

E

E

+

E

E

＊

E

id

id

id

(4.11)

stat

cond

if

stat

then

else

C1

stat

C2

S1

S2

S3

cond

if

stat

then

else

stat

Fig. 4.4. Parse tree

stat

cond

if

then

C1

stat

C2

S1

S2

cond

if

stat

then

else

stat

Fig.4.5. Two parse trees for ambiguous sentence.

stat

cond

if

stat

then

else

C1

stat

C2

S1

S2

cond

if

stat

then

if-stmt

exp

if

statement

statement

else

(

if

)

exp

statement

other

(

)

statement

if-stmt

0

1

other

if-stmt

exp

if

statement

statement

else

(

if

)

exp

statement

other

(

)

statement

if-stmt

1

0

other

matched-stmt

exp

if

matched-stmt

statement

else

(

if

)

exp

statement

other

(

)

matched-stmt

unmatched-stmt

1

0

other

exp

term

exp

addop

-

mulop

factor

term

term

*

number

factor

factor

number

number

(4.9)

Ambiguity-14

