
Semantic Analysis

Semantic analysis

• Goals

– Connects variable definitions to their uses,

– checks that each expression has a correct type,

and

– translate the abstract syntax into a simple

representation suitable for generating machine

code.

SYMBOL TABLES

• Symbol Tables

– Mapping identifiers t their types and locations.

• Each local variables in a program has a

scope in which it is visible.

• An environment is a set of bindings,

denoted  arrow.

Ex. The bindings {gint,a  int}

Program Environment

0

1.Function f(a:int,b:int,c:int} 1= 0+{a  int,b  int,c int}

2.(

3. print_int(a+c); 1

4. let var j:=a+b; 2 =1 +{j  int}

5. var a:=“hello” 3 =2 +{a  string}

6. in print(a);print_int(j); 3

7. end; 1

8. print_int(b); 1

9.) 0

We say that X+Y for table is not the same as Y+X;

bindings in the right-hand table override those in the left.

How to implement ?
• Two choices

– functional style

• We make sure to keep 0 in pristine condition while
we create 1 and 2 .Then when we need again, it’s
rested and ready.

– Imperative style

• We modify 1 until it becomes 2 . The destructive
update “destroys” 1 ; while 2 exists, we cannot look
thing up in 1 .

• But where we are done with 2 , we can undo the
modification to get 1 back again.

MULTIPLE SYMBOL TABLES

• In some languages there can be several

environments at once, each module or class

or record, in the program has a symbol table

 of its own.

package M;

class E {

static int a=5;

}

class N {

static int b=1-;

static int a=E.a+b;

}

class D {

static int d=E.a+N.a;

}

In JAVA, forward reference is

allowed , so N and D are both

compiled in the environment 7

The result is still {M  7 }

An example In Java

Structure M = struct

structure E= struct

val a=5;

end

structure N = struct

val b=10

val a=E.a+b

end

structure D= struct

val d=E.a+N.a

end

end

An example In ML
0 : Base environment

1={a  int}

2 ={E  1 }

3 ={b  int, a int}

4 ={N 3 }

5 ={d  int}

6 ={D  5 }

7 = 2 +4 +6

The N is compiled using environment 0 +

2

The D is compiled using environment 0 +2

+4

The result of the analysis is {M  7 }

EFFICIENT IMPERATIVE SYMBOL TABLES

• Usually implemented using hash tables.

• The operation ’=  + {a  } be implemented by

inserting  in the hash table with key a.

• A simple hash table with external chaining work

well and supports deletion easily to recover  at

the end of the scope of a.

Hash Tables

bat 1 camel 2

dog 3

mouse 4

EFFICIENT FUNCTIONAL SYMBOL TABLES

• In the functional style, we wish to compute

’=  + {a  } in such a way that we still have

 available to look up identifiers.

Binary search trees

dog 3

bat 1

camel 2

dog 3

mouse 4

M1={bat->1 camel->2 dog->3}

M2= {bat->1 camel->2 dog->3 mouse->4} without destroy M1

