Semantic Analysis



Semantic analysis

e Goals
— Connects variable definitions to their uses,

— checks that each expression has a correct type,
and

— translate the abstract syntax into a simple
representation suitable for generating machine
code.



SYMBOL TABLES

« Symbol Tables
— Mapping identifiers t their types and locations.

 Each local variables in a program has a
scope in which 1t is visible.

« An environment is a set of bindings,
denoted — arrow.

EX. The bindings {g—int,a — int}



Program Environment

Oo
1.Function f(a:int,b:int,c:int} c,= 6y,+{a — int,b — int,c— int}
2.(
3. print_int(a+c); o
4. let var j:=atb; c,=c;+{] —> Int}
B. var a:="hello” c;=0,+{a — string}
6. In print(a);print_int(j); o
7. end, G,
8. print_int(b); o
9. o

We say that X+Y for table is not the same as Y+X;
bindings in the right-hand table override those in the left.



How to implement ?

 Two choices

— functional style

« We make sure to keep o, In pristine condition while
we create s, and s, .Then when we need again, it’s
rested and ready.

— Imperative style

« We modify o, until it becomes s,. The destructive
update “destroys” s, ; While s, exists, we cannot look
thing up in s,.

« But where we are done with s,, we can undo the
modification to get s, back again.



MULTIPLE SYMBOL TABLES

 In some languages there can be several
environments at once, each module or class
or record, in the program has a symbol table
o of Its own.



An example In Java

package M;

class E { In JAVA, forward reference iIs
static int a=5 allowed , so N and D are both

1 | compiled in the environment o,

class N { The result is still {M — o }
static int b=1-;
static int a=E.a+b;

¥

class D {

static int d=E.a+N.a;



An example In ML

Structure M = struct
structure E=struct
val a=5;
end
structure N = struct
val b=10
val a=E.a+b
end
structure D= struct
val d=E.a+N.a
end
end

o,. Base environment
0:

c,={a — Int}

c,={E -> 5, }

c;={b — Int, a —int}
o,={N— o3}

o ={d — int}

os={D > o}
c,;=0,1t0,1Gg

The N is compiled using environment c,+
SF.

The D is compiled using environment ¢, + G,
+ Gy

The result of the analysis is {M — o }



EFFICIENT IMPERATIVE SYMBOL TABLES

« Usually implemented using hash tables.

« The operation «’= s + {a - t} be implemented by
Inserting t In the hash table with key a.

« A simple hash table with external chaining work
well and supports deletion easily to recover s at
the end of the scope of a.



Hash Tables

U




EFFICIENT FUNCTIONAL SYMBOL TABLES

* In the functional style, we wish to compute
=s+{a— 1} IN such a way that we still have
c available to look up identifiers.



Binary search trees

M1={bat->1 camel->2 dog->3}
M2= {bat->1 camel->2 dog->3 mouse->4} without destroy M1



