Scanner

<<Scannerl.ppt>>

Modeling Scanners as Finite
Automata

abc {recognized} C
abccabc {recognized}
ac { not recognized}

Graphical representation of a finite automaton

(we

A-Z
0-9

A-Z

:© | 2

(@)

Finite automata for typical programming language tokens

Scannerl - 3

(we

A-Z

A-Z
(b) 0-9

Finite automata for typical programming language tokens

Scannerl - 4

0-9

Finite automata for typical programming language tokens

Scannerl -5

/_\ 1_9
N
0
space
3 4
(d)

Finite automata for typical programming language tokens

Scannerl - 6

) - ..))
-9 m Token recognition : algorithmic code

get first Input Character
if Input Character in[‘A’..’Z’] then
begin
while Input Character in[‘A’..’Z','0’..’9'] do
begin
get next Input Character
if Input Character = ' ’ then
begin
get next Input Character
Last Char Is Underscore := true;
end {if' '}
else
Last Char Is Underscore := false;

end {While} { next page }

Scannerl -7

“Ba Token recognition : algorithmic code

if Last Char Is Underscore then
return (Token Error)
else
return (Valid Token)
end { if first in['A’..’Z2Z'] }
else
return (Token Error)

Scannerl - 8

s Iy - -
= Token recognition : tabular representation

of finite automaton.

State A-Z 0-9 —

1 2 {starting state}
2 2 2 3 {final state}

Scannerl-9

|CSE\ _
= Notation as follows:

Nat = [0-9]+
signedNat = (+|-)? Nat
number =signedNat (“.” Nat)? (E signedNat)?

= We would like to write down DFAs for the
strings matched by these definitions, but it

IS helpful to first rewrite them as follows:
digit = [0-9]

Nat = digit+

signedNat = (+|-)? Nat

number = signedNat(“.” Nat)? (E sighedNat)?

Scannerl - 10

"% Itis easy to write down a DFA for Nat as
follows (recall that a+ = aa* for any a):

digit

W,

Scannerl - 11

"% AsignedNat is a little more difficult
because of the optional sign. However, we
may note that a signedNat begins either
with a digit or a signh and a digit and then
write the following DFA:
digit

dlg It Scannerl - 12

E: . .
= It Is also easy to add the optional fractional

part, as follows:

digit digit
+ . .
digit digit
o S0=E

= Note that we have kept both accepting
states, reflecting the fact that the fractional
part is optional.

Scannerl - 13

|csu‘

= Finally, we need to add the optional
exponential part. To do this, we note that
the exponential part must begin with the
letter E and can occur only after we have
reached either of the previous accepting
states. The final diagram Is given in Figure
2.3.

Scannerl - 14

digit digit digit
+ digit . digi + digit
GO 0.0 00000
digit Fig_% digit

Figure 2.3 A finite automaton for floating-point numbers

Scannerl - 15

"s From REGULAR EXPRESSIONS
To DFASs

= From a Regular Expression to an NFA

regular
expression program

|CSE\E . .
= Basic Regular Expressions

OC

Scannerl - 17

/I _
s Concatenation

Scannerl - 18

ICSE\E . .
= Choice Among Alternatives

4 r)

oEe
&

- /

Scannerl - 19

U
|\
I

Repetition

S c—

N

p—

.

Scannerl - 20

"% We translate the regular expression on
abla into an NFA according to Thompson’s
construction. We first form the machines
for the basic regular expressions a and b:

— 0O — O

Scannerl - 21

|CSE\ .
x \We then form the machine for the

concatenation ab:

_.Ua;Ue :Ub=©

Scannerl - 22

"% Now we form another copy of the machine
for a and use the construction for choice to
get the complete NFA for abla:

a

g Ugtubt©8

OO

Scannerl - 23

"% We form the NFA of Thompson’s
construction for the regular expression
letter (letter|digit)*. As in the previous
example, we form the machines for the
regular expressions letter and digit:

Ol a®

Scannerl - 24

)

"% We then form the machine for the choice
letter|digit:

letter X
: E
& digit Q ’

Scannerl - 25

|CSI:'.

Now we form the NFA for the repetition
(letter|digit)* as follows:

Scannerl - 26

"% Finally, we construct the machine for the
concatenation of letter with (letter|digit)*
to get the complete NFA

Scannerl - 27

® From an NFA to a DFA

= Consider the following NFA corresponding
to the reqular expression a* under
Thompson'’s construction:

' In this NFA, we have{1}={1 2,4} {2}={2}. {3}
= {2.3.4}, and {7} ={4}.

® : (2,3,4)
_/

|CSE\

Scannerl - 30

|cs5\] .
s | he DFA subset construction has as Its

startstate {1}={1,2,6}. Thereis a
transition on a from state 2 to state 3, and
also from state 6 to state 7. Thus, { 1, 2,
6} ={3,7}=13,4,7,8}, and we have { 1,
2,61}—>83,4,7,8}. Since there are no
other character transitions from 1, 2, or 6,
wegoonto{3,4,7,8}. Thereis a
transition on b from 4 to 5 and{ 3, 4, 7,
8}, ={5}=1{5, 8}, and we have the
transition { 3, 4, 7, 8}—={ 5, 8 }. There are
no other transitions.

= . .
= Thus, the subset construction yields the

following DFA equivalent to the previous NFA:

a b
Q v

Scannerl - 32

|Lm:.‘ B

letter (letter | digit)*:

g Scannerl - 33

|CSE\
)

= The subset construction proceeds as follows.

The start stateis{1}={1}. Thereis a
transition on letterto {2} ={2,3,4,5, 7,10 }.
From this state there Is a transition on letter to

{

C
t
C

6}={4,5,6,7,9.10} and a transition on
igitto{8}={4,5,7,8,9, 10 }. Finally, each of
nese states also has transitions on letter and
Igit, either to itself or to the other. The

complete DFA is given in the following picture:

Scannerl - 34

{2,3,4,5,7,10}

letter

digit < >Ietter

digit

Scannerl - 35

=5 .
= Minimizing the Number of States in a DFA

= for the regular expression a* . whereas the

DFA

a

|CSI:'.

-(a| 8)b*:

Scannerl - 37

- . .
= Consider the following diagram of an NFA.

Scannerl - 38

- . .
= The string abb can be accepted by either

of the following sequences of transitions:

Scannerl - 39

. .

"% Indeed the transitions from state 1 to state 2 on

a, and from state 2 to state 4 on b, allow the
machine to accept the string ab, and then, using
the ¢ -transition from state 4 to state 2, all
strings matching the regular expression ab+.
Similarly, the transitions from state 1 to state 3
on a, and from state 3 to state 4 on ¢, enable
the acceptance of all strings matching ab*.
Finally, following the ¢ -transition from state 1 to
state 4 enables the acceptance of all strings
matching b*. Thus, this NFA accepts the same
language as the regular ab+|ab*|b*. A simpler
regular expression that generates the same
language is (a| €)b*.

Scannerl - 40

_ _
= The following DFA also accepts this

language:

Scannerl - 41

|CSE\

Scannerl - 42

=g . .
= It accepts the string acab by making the

following transitions:

= In fact, it is not hard to see that this NFA accepts
the same language as that generated by the
regular expression (alc)*b

Scannerl - 43

Implementation of Finite
Automata in Code

letter

/\ letter /Q [other]

O

km@
= The first and easiest way to simulate this

DFA is to write code In the following form:

{ starting in state 1 }
if the next character is a letter then

advance the input;,

{ now in state 2 }
while the next character is a letter or a digit do

advance the input,; { say in state 2 }

end while;
{ go to state 3 without advancing the input }
accept;,

else
{ error or other cases }

end if;
Scannerl - 45

|CSE\

» Minimized DFA

1 ’
U
AN
1 f 1 g 0) A

Scannerl - 46

Finite automaton

|CSE\

» Minimized DFA

b

X
X X
X X X

X X X
X X X X
X X X X X X
X X X X X
a b c d e f

Calculation of equivalent states

Scannerl - 47

|CSE\

= Minimized DFA 41

[c] . [0,1]
Minimum state finite automaton

Scannerl - 48

~g = Algorithm for marking pairs of inequivalent states.

begin
for p in F and q in Q-F do mark (p, q):
for each pair of distinct states (p,q) in FXF or
(Q-F)X(Q-F) do
if for some input symbol a, (d(p,a),d(g,a)) is marked
then
begin
mark (p,q);
recursively mark all unmarked pairs on the list
for (p,q) and on the lists of other pairs that
are marked at this step.
end
else /* no pair (&(p,a), (d(gq,a)) is marked */
for all input symbols a do
put (p,gq) on the list for (d(p,a),%(g,a)) unless

5(p,a)=d(q,a)
end Scannerl - 49

