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Modeling Scanners as Finite 

Automata

1 2 3 4

a

a b c

ca b c              {recognized}

a b c c a b c   {recognized}

a c                  { not recognized}

Graphical representation of a finite automaton
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Finite automata for typical programming language tokens

1

(a)
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A-Z

A-Z
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A-Z

A-Z

0-9

3

—

A-Z

0-9

Finite automata for typical programming language tokens
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1

(c)

2

0-9

0-9

Finite automata for typical programming language tokens
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Finite automata for typical programming language tokens
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1-9
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 Token recognition : algorithmic code

get first Input_Character 

if Input_Character in[‘A’..’Z’] then

begin

while Input_Character in[‘A’..’Z’,‘0’..’9’] do 

begin

get next Input_Character

if Input_Character = ‘_’ then

begin

get next Input_Character 

Last_Char_Is_Underscore := true;

end  {if‘_’}

else

Last_Char_Is_Underscore := false;

end  {While}   { next page }
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 Token recognition : algorithmic code

if Last_Char_Is_Underscore then

return ( Token_Error )

else

return ( Valid_Token )

end  { if first in[‘A’..’Z’] }

else

return  (Token_Error) 
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 Token recognition : tabular representation 

of finite automaton.

State A-Z 0-9 —

1 2 {starting state}

2 2 2 3 {final state}

3 2 2
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 Notation as follows:
Nat = [0-9]+

signedNat = (+|-)? Nat

number =signedNat ( “.” Nat )? ( E signedNat)?

 We would like to write down DFAs for the 

strings matched by these definitions, but it 

is helpful to first rewrite them as follows:
digit = [0-9]

Nat = digit+

signedNat = (+|-)? Nat

number = signedNat( “.” Nat )? (E signedNat)?
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 It is easy to write down a DFA for Nat as 

follows (recall that a+ = aa* for any a):

digit

digit
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 A signedNat is a little more difficult 

because of the optional sign. However, we 

may note that a signedNat begins either 

with a digit or a sign and a digit and then 

write the following DFA:

digit

digit

+

-

digit
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 It is also easy to add the optional fractional 

part, as follows:

 Note that we have kept both accepting 

states, reflecting the fact that the fractional 

part is optional.

digit

digit

+

-

digit

digit

digit

.
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 Finally, we need to add the optional 

exponential part. To do this, we note that 

the exponential part must begin with the 

letter E and can occur only after we have 

reached either of the previous accepting 

states. The final diagram is given in Figure 

2.3.
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Figure 2.3  A finite automaton for floating-point numbers

digit

digit

+

-

digit

digit
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digit
digit

Fig. 6

.
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From REGULAR EXPRESSIONS 

To DFAs

 From a Regular Expression to an NFA

regular

expression NFA DFA program
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 Basic Regular Expressions

a

ε
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 Concatenation 

εr s﹍ ﹍
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 Choice Among Alternatives 

ε

r

s

﹍

﹍

ε

ε

ε
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 Repetition 

r﹍ε ε

ε

ε
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 We translate the regular expression on 

ab|a into an NFA according to Thompson’s 

construction. We first form the machines 

for the basic regular expressions a and b: 

a b
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 We then form the machine for the 

concatenation ab: 

a b
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 Now we form another copy of the machine 

for a and use the construction for choice to 

get the complete NFA for ab|a :

a b

a






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 We form the NFA of Thompson’s 

construction for the regular expression 

letter (letter|digit)*. As in the previous 

example, we form the machines for the 

regular expressions letter and digit: 

letter digit
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 We then form the machine for the choice 

letter|digit: 

letter

digit






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 Now we form the NFA for the repetition 

(letter|digit)* as follows: 

letter

digit













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 Finally, we construct the machine for the 

concatenation of letter with (letter|digit)* 

to get the complete NFA

letter

digit













letter
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From an NFA to a DFA

 Consider the following NFA corresponding 

to the regular expression a* under 

Thompson’s construction:

42 3a
1






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 In this NFA, we have{1}={1,2,4},{2}={2}, {3} 

= {2,3,4}, and {4} ={4}.

{2,3,4}{1,2,4}
a

a

__ _

_
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8

2 3

a

1






4 5

6 7

b





a
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 The DFA subset construction has as its 
start state { 1 } = { 1 , 2, 6 }. There is a 
transition on a from state 2 to state 3, and 
also from state 6 to state 7. Thus, { 1, 2, 
6 }a = { 3, 7 } = {3, 4, 7, 8}, and we have { 1, 
2, 6 }→a{ 3, 4, 7, 8 }. Since there are no 
other character transitions from 1, 2, or 6, 
we go on to { 3 ,4 ,7, 8 }. There is a 
transition on b from 4 to 5 and { 3, 4, 7, 
8 }b = { 5 } = { 5, 8 }, and we have the 
transition { 3, 4, 7, 8}→b{ 5, 8 }. There are 
no other transitions. 

_

____

_
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 Thus, the subset construction yields the 

following DFA equivalent to the previous NFA:

{3,4,7,8}{1,2,6}
a

{5,8}
b



Scanner1 - 33

 letter ( letter | digit )*: 

9
2 31

letter  
4

5 6

7


10

8



letter

digit










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 The subset construction proceeds as follows. 

The start state is { 1 } = { 1 }. There is a 

transition on letter to { 2 } = { 2, 3, 4, 5, 7, 10 }. 

From this state there is a transition on letter to 

{ 6 } = { 4, 5, 6, 7, 9. 10 } and a transition on 

digit to { 8 } = { 4, 5, 7, 8, 9, 10 }. Finally, each of 

these states also has transitions on letter and 

digit, either to itself or to the other. The 

complete DFA is given in the following picture: 

_
_

_
_
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{2,3,4,5,7,10}{1}
letter

{4,5,6,7,9,10}

{4,5,7,8,9,10}

letter

digit

digit letter

letter

digit
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 Minimizing the Number of States in a DFA 

 for the regular expression a* . whereas the 

DFA 

a

a

a
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 ( a | ε) b* : 
2

a

b

1

3

b

b

{2,3}{1}

a

b

b
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 Consider the following diagram of an NFA. 

2

a

a

1 3

b

ε

4

ε

ε
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 The string abb can be accepted by either 

of the following sequences of transitions: 

a b b
1 2 4 2 4



1 3 4
a

2 4 2 4
  b b
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 Indeed the transitions from state 1 to state 2 on 
a, and from state 2 to state 4 on b, allow the 
machine to accept the string ab, and then, using 
the ε-transition from state 4 to state 2, all 
strings matching the regular expression ab+. 
Similarly, the transitions from state 1 to state 3 
on a, and from state 3 to state 4 on ε, enable 
the acceptance of all strings matching ab*. 
Finally, following the ε-transition from state 1 to 
state 4 enables the acceptance of all strings 
matching b*. Thus, this NFA accepts the same 
language as the regular ab+|ab*|b*. A simpler 
regular expression that generates the same 
language is (a|ε)b*. 
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 The following DFA also accepts this 

language: 

a

bb

b
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7
1 2

3 4

5


10

6



a

c





 

8 9
b




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 It accepts the string acab by making the 

following transitions:

 In fact, it is not hard to see that this NFA accepts 

the same language as that generated by the 

regular expression (a|c)*b

1 2 3 4
  a

7 2 5 6
  c

7 2 3 4
  a

7 8 9 10
  b


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Implementation of Finite 

Automata in Code

letter

21 3

letter

[other]

digit
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 The first and easiest way to simulate this 

DFA is to write code in the following form:

{ starting in state 1 }

if the next character is a letter then

advance the input;

{ now in state 2 }

while the next character is a letter or a digit do 

advance the input; { say in state 2 }

end while;

{ go to state 3 without advancing the input }

accept;

else

{ error or other cases }

end if;
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 Minimized DFA

a 0b c d0 1start

1

e
0

f g h
1 1

0

0

1
1

1

0

0

1
0

Finite automaton
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 Minimized DFA
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 Minimized DFA

[a,e]

0

[b,h]

[c] [d,f]

0

1

start

1

0

[g]

1
0

1

0

1
Minimum state finite automaton
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 Algorithm for marking pairs of inequivalent states.

begin

for p in F and q in Q-F do mark (p, q);

for each pair of distinct states (p,q) in F×F or 

(Q-F)×(Q–F) do 

if for some input symbol a,(δ(p,a),δ(q,a)) is marked   

then 

begin

mark (p,q);

recursively mark all unmarked pairs on the list 

for (p,q) and on the lists of other pairs that 

are marked at this step.

end

else /* no pair (δ(p,a),(δ(q,a)) is marked */

for all input symbols a do

put (p,q) on the list for (δ(p,a),δ(q,a)) unless

δ(p,a)=δ(q,a)

end


