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Modeling Scanners as Finite
Automata

abc {recognized} C
abccabc {recognized}
ac { not recognized}

Graphical representation of a finite automaton
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Finite automata for typical programming language tokens
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Finite automata for typical programming language tokens
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Finite automata for typical programming language tokens
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Scannerl - 6



) - .. ) )
-9 m Token recognition : algorithmic code

get first Input Character
if Input Character in[‘A’..’Z’] then
begin
while Input Character in[‘A’..’Z','0’..’9'] do
begin
get next Input Character
if Input Character = ' ’ then
begin
get next Input Character
Last Char Is Underscore := true;
end {if' '}
else
Last Char Is Underscore := false;

end {While} { next page }
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“Ba Token recognition : algorithmic code

if Last Char Is Underscore then
return ( Token Error )
else
return ( Valid Token )
end { if first in['A’..’Z2Z'] }
else
return (Token Error)
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= Token recognition : tabular representation

of finite automaton.

State A-Z 0-9 —

1 2 {starting state}
2 2 2 3 {final state}
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= Notation as follows:

Nat = [0-9]+
signedNat = (+|-)? Nat
number =signedNat ( “.” Nat )? ( E signedNat)?

= We would like to write down DFAs for the
strings matched by these definitions, but it

IS helpful to first rewrite them as follows:
digit = [0-9]

Nat = digit+

signedNat = (+|-)? Nat

number = signedNat( “.” Nat )? (E sighedNat)?
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"% Itis easy to write down a DFA for Nat as
follows (recall that a+ = aa* for any a):

digit

W,
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"% AsignedNat is a little more difficult
because of the optional sign. However, we
may note that a signedNat begins either
with a digit or a signh and a digit and then
write the following DFA:
digit
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= It Is also easy to add the optional fractional

part, as follows:

digit digit
+ . .
digit digit
o S0=E

= Note that we have kept both accepting
states, reflecting the fact that the fractional
part is optional.
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= Finally, we need to add the optional
exponential part. To do this, we note that
the exponential part must begin with the
letter E and can occur only after we have
reached either of the previous accepting
states. The final diagram Is given in Figure
2.3.
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digit digit digit
+ digit . digi + digit
GO 0.0 00000
digit Fig_% digit

Figure 2.3 A finite automaton for floating-point numbers
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"s From REGULAR EXPRESSIONS
To DFASs

= From a Regular Expression to an NFA

regular
expression program
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= Basic Regular Expressions

OC
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s Concatenation
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= Choice Among Alternatives
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"% We translate the regular expression on
abla into an NFA according to Thompson’s
construction. We first form the machines
for the basic regular expressions a and b:

— 0O — O
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x \We then form the machine for the

concatenation ab:

_.Ua;Ue :Ub=©
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"% Now we form another copy of the machine
for a and use the construction for choice to
get the complete NFA for abla:

a

g Ugtubt©8

OO
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"% We form the NFA of Thompson’s
construction for the regular expression
letter (letter|digit)*. As in the previous
example, we form the machines for the
regular expressions letter and digit:

Ol a®
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"% We then form the machine for the choice
letter|digit:

letter X
: E
& digit Q ’
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Now we form the NFA for the repetition
(letter|digit)* as follows:
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"% Finally, we construct the machine for the
concatenation of letter with (letter|digit)*
to get the complete NFA
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®  From an NFA to a DFA

= Consider the following NFA corresponding
to the reqular expression a* under
Thompson'’s construction:




' In this NFA, we have{1}={1 2,4} {2}={2}. {3}
= {2.3.4}, and {7} ={4}.

® : (2,3,4)
\_/
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s | he DFA subset construction has as Its

startstate {1}={1,2,6}. Thereis a
transition on a from state 2 to state 3, and
also from state 6 to state 7. Thus, { 1, 2,
6} ={3,7}=13,4,7,8}, and we have { 1,
2,61}—>83,4,7,8}. Since there are no
other character transitions from 1, 2, or 6,
wegoonto{3,4,7,8}. Thereis a
transition on b from 4 to 5 and{ 3, 4, 7,
8}, ={5}=1{5, 8}, and we have the
transition { 3, 4, 7, 8}—={ 5, 8 }. There are
no other transitions.




= . .
= Thus, the subset construction yields the

following DFA equivalent to the previous NFA:

a b
Q v
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letter ( letter | digit )*:
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= The subset construction proceeds as follows.

The start stateis{1}={1}. Thereis a
transition on letterto {2} ={2,3,4,5, 7,10 }.
From this state there Is a transition on letter to

{

C
t
C

6}={4,5,6,7,9.10} and a transition on
igitto{8}={4,5,7,8,9, 10 }. Finally, each of
nese states also has transitions on letter and
Igit, either to itself or to the other. The

complete DFA is given in the following picture:
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{2,3,4,5,7,10}

letter

digit < >Ietter

digit
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= Minimizing the Number of States in a DFA

= for the regular expression a* . whereas the

DFA

a
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-(a| 8)b*:
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= Consider the following diagram of an NFA.
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= The string abb can be accepted by either

of the following sequences of transitions:
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"% Indeed the transitions from state 1 to state 2 on

a, and from state 2 to state 4 on b, allow the
machine to accept the string ab, and then, using
the ¢ -transition from state 4 to state 2, all
strings matching the regular expression ab+.
Similarly, the transitions from state 1 to state 3
on a, and from state 3 to state 4 on ¢, enable
the acceptance of all strings matching ab*.
Finally, following the ¢ -transition from state 1 to
state 4 enables the acceptance of all strings
matching b*. Thus, this NFA accepts the same
language as the regular ab+|ab*|b*. A simpler
regular expression that generates the same
language is (a| € )b*.
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= The following DFA also accepts this

language:
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= It accepts the string acab by making the

following transitions:

= In fact, it is not hard to see that this NFA accepts
the same language as that generated by the
regular expression (alc)*b
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Implementation of Finite
Automata in Code

letter

/\ letter /Q [other]

O




km@
= The first and easiest way to simulate this

DFA is to write code In the following form:

{ starting in state 1 }
if the next character is a letter then

advance the input;,

{ now in state 2 }
while the next character is a letter or a digit do

advance the input,; { say in state 2 }

end while;
{ go to state 3 without advancing the input }
accept;,

else
{ error or other cases }

end if;
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» Minimized DFA

1 ’
U
AN
1 f 1 g 0) A
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» Minimized DFA

b

X
X X
X X X

X X X
X X X X
X X X X X X
X X X X X
a b c d e f

Calculation of equivalent states
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= Minimized DFA 41

[c] . [0,1]
Minimum state finite automaton
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~g = Algorithm for marking pairs of inequivalent states.

begin
for p in F and q in Q-F do mark (p, q):
for each pair of distinct states (p,q) in FXF or
(Q-F)X(Q-F) do
if for some input symbol a, (d(p,a),d(g,a)) is marked
then
begin
mark (p,q);
recursively mark all unmarked pairs on the list
for (p,q) and on the lists of other pairs that
are marked at this step.
end
else /* no pair (&(p,a), (d(gq,a)) is marked */
for all input symbols a do
put (p,gq) on the list for (d(p,a),%(g,a)) unless

5(p,a)=d(q,a)
end Scannerl - 49



