
<<Scanner1.ppt>>

Scanner

Scanner1 - 2

Modeling Scanners as Finite

Automata

1 2 3 4

a

a b c

ca b c {recognized}

a b c c a b c {recognized}

a c { not recognized}

Graphical representation of a finite automaton

Scanner1 - 3

Finite automata for typical programming language tokens

1

(a)

2

A-Z

A-Z

0-9

Scanner1 - 4

1

(b)

2

A-Z

A-Z

0-9

3

—

A-Z

0-9

Finite automata for typical programming language tokens

Scanner1 - 5

1

(c)

2

0-9

0-9

Finite automata for typical programming language tokens

Scanner1 - 6

Finite automata for typical programming language tokens

1

(d)

2
1-9

0-9

3 4

space
0

Scanner1 - 7

 Token recognition : algorithmic code

get first Input_Character

if Input_Character in[‘A’..’Z’] then

begin

while Input_Character in[‘A’..’Z’,‘0’..’9’] do

begin

get next Input_Character

if Input_Character = ‘_’ then

begin

get next Input_Character

Last_Char_Is_Underscore := true;

end {if‘_’}

else

Last_Char_Is_Underscore := false;

end {While} { next page }

Scanner1 - 8

 Token recognition : algorithmic code

if Last_Char_Is_Underscore then

return (Token_Error)

else

return (Valid_Token)

end { if first in[‘A’..’Z’] }

else

return (Token_Error)

Scanner1 - 9

 Token recognition : tabular representation

of finite automaton.

State A-Z 0-9 —

1 2 {starting state}

2 2 2 3 {final state}

3 2 2

Scanner1 - 10

 Notation as follows:
Nat = [0-9]+

signedNat = (+|-)? Nat

number =signedNat (“.” Nat)? (E signedNat)?

 We would like to write down DFAs for the

strings matched by these definitions, but it

is helpful to first rewrite them as follows:
digit = [0-9]

Nat = digit+

signedNat = (+|-)? Nat

number = signedNat(“.” Nat)? (E signedNat)?

Scanner1 - 11

 It is easy to write down a DFA for Nat as

follows (recall that a+ = aa* for any a):

digit

digit

Scanner1 - 12

 A signedNat is a little more difficult

because of the optional sign. However, we

may note that a signedNat begins either

with a digit or a sign and a digit and then

write the following DFA:

digit

digit

+

-

digit

Scanner1 - 13

 It is also easy to add the optional fractional

part, as follows:

 Note that we have kept both accepting

states, reflecting the fact that the fractional

part is optional.

digit

digit

+

-

digit

digit

digit

.

Scanner1 - 14

 Finally, we need to add the optional

exponential part. To do this, we note that

the exponential part must begin with the

letter E and can occur only after we have

reached either of the previous accepting

states. The final diagram is given in Figure

2.3.

Scanner1 - 15

Figure 2.3 A finite automaton for floating-point numbers

digit

digit

+

-

digit

digit

E

digit

E
+

-

digit

digit
digit

Fig. 6

.

Scanner1 - 16

From REGULAR EXPRESSIONS

To DFAs

 From a Regular Expression to an NFA

regular

expression NFA DFA program

Scanner1 - 17

 Basic Regular Expressions

a

ε

Scanner1 - 18

 Concatenation

εr s﹍ ﹍

Scanner1 - 19

 Choice Among Alternatives

ε

r

s

﹍

﹍

ε

ε

ε

Scanner1 - 20

 Repetition

r﹍ε ε

ε

ε

Scanner1 - 21

 We translate the regular expression on

ab|a into an NFA according to Thompson’s

construction. We first form the machines

for the basic regular expressions a and b:

a b

Scanner1 - 22

 We then form the machine for the

concatenation ab:

a b

Scanner1 - 23

 Now we form another copy of the machine

for a and use the construction for choice to

get the complete NFA for ab|a :

a b

a







Scanner1 - 24

 We form the NFA of Thompson’s

construction for the regular expression

letter (letter|digit)*. As in the previous

example, we form the machines for the

regular expressions letter and digit:

letter digit

Scanner1 - 25

 We then form the machine for the choice

letter|digit:

letter

digit







Scanner1 - 26

 Now we form the NFA for the repetition

(letter|digit)* as follows:

letter

digit














Scanner1 - 27

 Finally, we construct the machine for the

concatenation of letter with (letter|digit)*

to get the complete NFA

letter

digit













letter

Scanner1 - 28

From an NFA to a DFA

 Consider the following NFA corresponding

to the regular expression a* under

Thompson’s construction:

42 3a
1







Scanner1 - 29

 In this NFA, we have{1}={1,2,4},{2}={2}, {3}

= {2,3,4}, and {4} ={4}.

{2,3,4}{1,2,4}
a

a

__ _

_

Scanner1 - 30

8

2 3

a

1






4 5

6 7

b





a

Scanner1 - 31

 The DFA subset construction has as its
start state { 1 } = { 1 , 2, 6 }. There is a
transition on a from state 2 to state 3, and
also from state 6 to state 7. Thus, { 1, 2,
6 }a = { 3, 7 } = {3, 4, 7, 8}, and we have { 1,
2, 6 }→a{ 3, 4, 7, 8 }. Since there are no
other character transitions from 1, 2, or 6,
we go on to { 3 ,4 ,7, 8 }. There is a
transition on b from 4 to 5 and { 3, 4, 7,
8 }b = { 5 } = { 5, 8 }, and we have the
transition { 3, 4, 7, 8}→b{ 5, 8 }. There are
no other transitions.

_

_

Scanner1 - 32

 Thus, the subset construction yields the

following DFA equivalent to the previous NFA:

{3,4,7,8}{1,2,6}
a

{5,8}
b

Scanner1 - 33

 letter (letter | digit)*:

9
2 31

letter  
4

5 6

7


10

8



letter

digit











Scanner1 - 34

 The subset construction proceeds as follows.

The start state is { 1 } = { 1 }. There is a

transition on letter to { 2 } = { 2, 3, 4, 5, 7, 10 }.

From this state there is a transition on letter to

{ 6 } = { 4, 5, 6, 7, 9. 10 } and a transition on

digit to { 8 } = { 4, 5, 7, 8, 9, 10 }. Finally, each of

these states also has transitions on letter and

digit, either to itself or to the other. The

complete DFA is given in the following picture:

_
_

_
_

Scanner1 - 35

{2,3,4,5,7,10}{1}
letter

{4,5,6,7,9,10}

{4,5,7,8,9,10}

letter

digit

digit letter

letter

digit

Scanner1 - 36

 Minimizing the Number of States in a DFA

 for the regular expression a* . whereas the

DFA

a

a

a

Scanner1 - 37

 (a | ε) b* :
2

a

b

1

3

b

b

{2,3}{1}

a

b

b

Scanner1 - 38

 Consider the following diagram of an NFA.

2

a

a

1 3

b

ε

4

ε

ε

Scanner1 - 39

 The string abb can be accepted by either

of the following sequences of transitions:

a b b
1 2 4 2 4



1 3 4
a

2 4 2 4
  b b

Scanner1 - 40

 Indeed the transitions from state 1 to state 2 on
a, and from state 2 to state 4 on b, allow the
machine to accept the string ab, and then, using
the ε-transition from state 4 to state 2, all
strings matching the regular expression ab+.
Similarly, the transitions from state 1 to state 3
on a, and from state 3 to state 4 on ε, enable
the acceptance of all strings matching ab*.
Finally, following the ε-transition from state 1 to
state 4 enables the acceptance of all strings
matching b*. Thus, this NFA accepts the same
language as the regular ab+|ab*|b*. A simpler
regular expression that generates the same
language is (a|ε)b*.

Scanner1 - 41

 The following DFA also accepts this

language:

a

bb

b

Scanner1 - 42

7
1 2

3 4

5


10

6



a

c





 

8 9
b





Scanner1 - 43

 It accepts the string acab by making the

following transitions:

 In fact, it is not hard to see that this NFA accepts

the same language as that generated by the

regular expression (a|c)*b

1 2 3 4
  a

7 2 5 6
  c

7 2 3 4
  a

7 8 9 10
  b



Scanner1 - 44

Implementation of Finite

Automata in Code

letter

21 3

letter

[other]

digit

Scanner1 - 45

 The first and easiest way to simulate this

DFA is to write code in the following form:

{ starting in state 1 }

if the next character is a letter then

advance the input;

{ now in state 2 }

while the next character is a letter or a digit do

advance the input; { say in state 2 }

end while;

{ go to state 3 without advancing the input }

accept;

else

{ error or other cases }

end if;

Scanner1 - 46

 Minimized DFA

a 0b c d0 1start

1

e
0

f g h
1 1

0

0

1
1

1

0

0

1
0

Finite automaton

Scanner1 - 47

 Minimized DFA

Scanner1 - 48

 Minimized DFA

[a,e]

0

[b,h]

[c] [d,f]

0

1

start

1

0

[g]

1
0

1

0

1
Minimum state finite automaton

Scanner1 - 49

 Algorithm for marking pairs of inequivalent states.

begin

for p in F and q in Q-F do mark (p, q);

for each pair of distinct states (p,q) in F×F or

(Q-F)×(Q–F) do

if for some input symbol a,(δ(p,a),δ(q,a)) is marked

then

begin

mark (p,q);

recursively mark all unmarked pairs on the list

for (p,q) and on the lists of other pairs that

are marked at this step.

end

else /* no pair (δ(p,a),(δ(q,a)) is marked */

for all input symbols a do

put (p,q) on the list for (δ(p,a),δ(q,a)) unless

δ(p,a)=δ(q,a)

end

