Register Allocation



Reasons

The Translate Canon and Code-gen phases
of the compiler assume that

— there are an infinite number of registers to hold
temporary values and

— that MOVE instructions cost nothing.



The Job of Register Allocation

 To assign the many temporaries to a small
number of machine languages .

» Where possible, to assign the source and
destination of a MOVE to the same registers
so that the MOVE can be deleted.



* From the examination of the control and data-flow
graph, we drive an interference graph.

— Each node represents a temporary value;

— each edge(t1,t2) indicates a pair of temporaries
that cannot assign to the same register.

— 11,t2 are live at the same time.
— Edge express other constrains;



Next, We color the interference graph.

— Use as few colors as possible, but no pair of
nodes connected by an edge may be assigned
the same color.

« If our target machine has K registers, and we can K-
color the graph, then the coloring is a valid register
assignment for the interference graph.

» |f there is no K-coloring, we will have to keep some
of our variables and temporaries in memory instead
of registers: this is called spilling.



COLORING BY SIMPLIFICATION

» The principal phases
— Build
— Simplify
— Spill
— Select



e Build

— Construct the interference graph. We use data-
flow analysis to compute the set of registers
that are simultaneously live at each program
point, and we add an edge to the graph for each
pair of registers in the set.



o Simplify

—We color the graph using a simple heuristic.

Suppose.

Graph G contains a node m with fewer than K neighbors,
where K is the number of registers on the machine.

Let G’=G-{m}
If G’ can be colored, then so can G.

 Each such simplification will decrease the degrees of other
nodes, leading to more opportunity for simplification.



« Spill
— Suppose at some point during simplification the
graph G has nodes only of significant degree,
that is, nodes of degree >=k. then the simplify
heuristic fails and we mark some node for
spilling.
— An optimistic approximation to the effect of

spilling is that the spilled node does not interfere
with other nodes remaining in the graph.



Select
— We assign colors to nodes in the graph.

— Starting with the empty graph, we re-build the
original graph by repeatedly adding a node
from the top of the stack.

— When we add a node to the graph, there must
be a color for it.

— Potential spill
» actual spill
e optimistic coloring.



e Start over

— 1f the select phase Is unable to find a color for
some node(s), then the program must be
rewritten to fetch them from memory just
before each use, and store them back after each
definition.

— Thus , a spilled temporary will turn into several
new temporaries with tiny live ranges.



Line-in: K |
g:=mem[j+12]
h:=k-1
f:=g*h
e:=mem|[j+8]
m:=mem[j+16]
b:=mem([f]
c.=e+8

ji=
Live-out: d K |



After removal of h, g and k



(a)stack

A NP DO

(b)assignment

Simplification stack, and a possible coloring



COALESCING

* |f there Is no edge In the interference graph
between the source and destination of a
move Instruction, then the move can be

eliminated.
e The source and destination nodes are

coalesced into a new node whose edges are
union of those of the nodes being replaced.



* If some nodes are precolored , they cannot
be spilled.

o If atemporary interferes with K precolored
nodes, then the temporary must be spilled.

 But there Is no register into which it can be
fetched back for computation ! We say such
a graph is un-colorable.



Conservative coalescing

» |If the node being coalesced has fewer than
K neighbors of significant degree, then
coalescing is guaranteed not to turn a K-
colorable graph into non-K-colorable graph.



The phase of a register allocator with coalescing

e Build

— Construct the interference graph and categorize
each node as either move-related or non-move-
related.

— Move-related node is one that is the either the
source or destination of move Instruction.

o SImplify

— One at a time, remove non-move-related nodes
of low (<K) degree from the graph.



build

simplify
1'J

freeze

l

Potential spill

(_sillect

Actual spill

Graph coloring with coalescing



e Coalesce
— Perform conservative coalescing on the reduced graph.
— After two nodes have been coalesced and the move

Instruction deleted, if the resulting node is no longer
move-related it will be available for the next round of

simplification.
— Simplify and coalesce are repeated until only
significant-degree or move-related nodes remain.



e Freeze

— If neither simplify nor coalesce applies, we look
for a move-related node of low degree.

— We freeze the moves in which this node Is
Involved: that is ,we give up hope of coalescing
those moves.

— Now, simplify and coalesce are resumed.



- Spill
— If there are no low-degree nodes, we select a

high-degree node for potential spilling and push
It on the stack.

» Select
— Pop the entire stack, assigning colors.



*Nodes b,c,d and j are only move-related
nodes.
In Simplify phase,

working list :nodes g,h,f
«After removal of nodes g h and k.
«After coalescingc & d



*Nodes b and j are adjacent to two neighbors of
significant degree, namely m and e.
«Coalescing b and |

*No more move-related nodes, and therefore no
more coalescing is possible.

After coalescing b and j



e
m

f
J&b
c&d
k

h

g
(a)stack

P NN EFE B OODNBR

/N

b)coloring

A coloring with coalescing




CALLER-SAVE AND CALLEE-SAVE
REGISTERS

 Caller-save register

— Alocal variable or compiler temporary that is
not live across any procedure call should be
allocated to a caller-save register.

— No saving and restoring of the register.

 Callee-save register

— Any variable that is live across several
procedure calls should be kept in a callee-save
register.

— Only one save/restore



