
Register Allocation

Reasons

• The Translate Canon and Code-gen phases

of the compiler assume that

– there are an infinite number of registers to hold

temporary values and

– that MOVE instructions cost nothing.

The Job of Register Allocation

• To assign the many temporaries to a small

number of machine languages .

• Where possible, to assign the source and

destination of a MOVE to the same registers

so that the MOVE can be deleted.

• From the examination of the control and data-flow

graph, we drive an interference graph.

– Each node represents a temporary value;

– each edge(t1,t2) indicates a pair of temporaries

that cannot assign to the same register.

– t1,t2 are live at the same time.

– Edge express other constrains;

• Next, We color the interference graph.

– Use as few colors as possible, but no pair of

nodes connected by an edge may be assigned

the same color.

• If our target machine has K registers, and we can K-

color the graph, then the coloring is a valid register

assignment for the interference graph.

• If there is no K-coloring, we will have to keep some

of our variables and temporaries in memory instead

of registers: this is called spilling.

COLORING BY SIMPLIFICATION

• The principal phases

– Build

– Simplify

– Spill

– Select

• Build

– Construct the interference graph. We use data-

flow analysis to compute the set of registers

that are simultaneously live at each program

point, and we add an edge to the graph for each

pair of registers in the set.

• Simplify

–We color the graph using a simple heuristic.

Suppose:
Graph G contains a node m with fewer than K neighbors,

where K is the number of registers on the machine.

Let G’=G-{m}

If G’ can be colored, then so can G.

• Each such simplification will decrease the degrees of other
nodes, leading to more opportunity for simplification.

• Spill

– Suppose at some point during simplification the

graph G has nodes only of significant degree,

that is, nodes of degree >=k. then the simplify

heuristic fails and we mark some node for

spilling.

– An optimistic approximation to the effect of

spilling is that the spilled node does not interfere

with other nodes remaining in the graph.

• Select

– We assign colors to nodes in the graph.

– Starting with the empty graph, we re-build the
original graph by repeatedly adding a node
from the top of the stack.

– When we add a node to the graph, there must
be a color for it.

– Potential spill
• actual spill

• optimistic coloring.

• Start over

– if the select phase is unable to find a color for

some node(s), then the program must be

rewritten to fetch them from memory just

before each use, and store them back after each

definition.

– Thus , a spilled temporary will turn into several

new temporaries with tiny live ranges.

j

f

e

b m

c

k

h
d

g

Line-in: k j

g:=mem[j+12]

h:=k-1

f:=g*h

e:=mem[j+8]

m:=mem[j+16]

b:=mem[f]

c:=e+8

d:=c

k:=m+4

j:=b

Live-out: d k j

j

f

e

b m

c
d

After removal of h, g and k

j

f

e

b m

c

k

h
d

g

m 1

c 3

b 2

f 2

e 4

j 3

d 4

k 1

h 2

g 4

(a)stack (b)assignment

Simplification stack, and a possible coloring

COALESCING

• If there is no edge in the interference graph

between the source and destination of a

move instruction, then the move can be

eliminated.

• The source and destination nodes are

coalesced into a new node whose edges are

union of those of the nodes being replaced.

• If some nodes are precolored , they cannot

be spilled.

• If a temporary interferes with K precolored

nodes, then the temporary must be spilled.

• But there is no register into which it can be

fetched back for computation ! We say such

a graph is un-colorable.

Conservative coalescing

• If the node being coalesced has fewer than

K neighbors of significant degree, then

coalescing is guaranteed not to turn a K-

colorable graph into non-K-colorable graph.

The phase of a register allocator with coalescing

• Build

– Construct the interference graph and categorize
each node as either move-related or non-move-
related.

– Move-related node is one that is the either the
source or destination of move instruction.

• Simplify

– One at a time, remove non-move-related nodes
of low (<K) degree from the graph.

simplify

coalesce

freeze

Potential spill

select

Actual spill

build

Graph coloring with coalescing

• Coalesce

– Perform conservative coalescing on the reduced graph.

– After two nodes have been coalesced and the move

instruction deleted, if the resulting node is no longer

move-related it will be available for the next round of

simplification.

– Simplify and coalesce are repeated until only

significant-degree or move-related nodes remain.

• Freeze

– If neither simplify nor coalesce applies, we look

for a move-related node of low degree.

– We freeze the moves in which this node is

involved: that is ,we give up hope of coalescing

those moves.

– Now, simplify and coalesce are resumed.

• Spill

– If there are no low-degree nodes, we select a

high-degree node for potential spilling and push

it on the stack.

• Select

– Pop the entire stack, assigning colors.

j

f

e

b m

c&d

•Nodes b,c,d and j are only move-related

nodes.

•In Simplify phase,

working list :nodes g,h,f

•After removal of nodes g h and k.

•After coalescing c & d

After coalescing b and j

j&b

f

e

m

c&d

•Nodes b and j are adjacent to two neighbors of

significant degree, namely m and e.

•Coalescing b and j

•No more move-related nodes, and therefore no

more coalescing is possible.

j

f

e

b m

c&d

j

f

e

b m

c

k

h
d

g

e 1

m 2

f 3

j&b 4

c&d 1

k 2

h 2

g 1

(a)stack (b)coloring

A coloring with coalescing

CALLER-SAVE AND CALLEE-SAVE

REGISTERS

• Caller-save register
– A local variable or compiler temporary that is

not live across any procedure call should be
allocated to a caller-save register.

– No saving and restoring of the register.

• Callee-save register
– Any variable that is live across several

procedure calls should be kept in a callee-save
register.

– Only one save/restore

