Using Lex

The Structure of a Lex Program

(Definition section)

%%

(Rules section)

%%

(User subroutines section)

Example 1-1: Word recognizer ch1-02.

%{
/*
* this sample demonstrates (very) simple recognition:

* a verb/not a verb.
*/

%}
%%

[\t]+ /* ignore white space */;

is |
am |
are |
were |
was |
be |
being |
been |
do |
does |
did |

will |
woul
shou
can |

d|
Id |

could |

has |
have
had |

go

{ printf("%s: is a verb\n", yytext); }

[a-zA-Z]+ { printf("%s: is not a verb\n", yytext); }

J\n
%%

main

{
}

{ ECHO; /* normal default anyway */ }

0

yylex();

The definition section

* Lex copies the material between “%4{‘ and
“O%}” directly to the generated C file, so you
may write any valid C codes here

Rules section

 Each rule i1s made up of two parts
— A pattern
— An action

* E.Q.

[\t]+ /[* Ignore white space */ ;

 E.Q.

IS |
am |
are |
were |
was |
be |
being |
been |
do |
does |
did |
will |
would |
should |
can |
could |
has |
have |
had |

go

Rules section (Cont’d)

{ printf(*'%s: is a verb\n"", yytext); }

Rules section (Cont’d)
- E.Q.

[a-zA-Z]+ { printf("%s: Is not a verb\n", yytext); }
\n { ECHO,; /* normal default anyway */ }

« Lex had a set of simple disambiguating rules:
1. Lex patterns only match a given input character or
string once
2. Lex executes the action for the longest possible
match for the current input

User subroutines section

It can consists of any legal C code

« Lex copies it to the C file after the end of
the Lex generated code

%%

main()

1
¥

yylex();

Regular Expressions

» Regular expressions used by Lex

Examples of Regular Expressions

 [0-9]
« [0-9]+
» [0-9]*
o -?[0-9]+

« [0-9]*\.[0-9]+

* ([0-9])[([0-9]*\.[0-9]+)

* -?(([0-9]+)[([0-9]*\.[0-9]+))
 [eE][-+]?[0-9]+

* -?(([0-9])|([0-9]*\.[0-9]+))([eE][-+]?[0-9]+)?)

10

Example 2-1

%%
[\t] :

-?2(([0-9]+)|([0-971*\.[0-9]+)([eE][-+]1?[0-9]+)?) { printf("number\n"); }
. ECHO;

%%
main()

{
¥

yylex();

11

A Word Counting Program

e The definition section

%{
unsigned charCount = 0, wordCount = 0, lineCount = 0;
%0}

word [\t\n]+
eol \n

12

A Word Counting Program (Cont’d)

e The rules section

{word} { wordCount++; charCount += yyleng; }
{eOI} {CharCount++; lineCount++; }
charCount++;

13

A Word Counting Program (Cont’d)

e The user subroutines section

{

main(argc,argv)
int argc;
char **argv;

if (argc>1){
FILE *file;

file = fopen(argv[1], "'r");

if ('file) {
fprintf(stderr,"could not open %s\n"*,argv[1]);
exit(1);
}
yyin = file;
}
yylex();

printf(*'%d %d %d\n"",charCount, wordCount, lineCount);
return O;

14

