
1

Using Lex

2

The Structure of a Lex Program

(Definition section)

%%

(Rules section)

%%

(User subroutines section)

3

%{

/*

* this sample demonstrates (very) simple recognition:

* a verb/not a verb.

*/

%}

%%

[\t]+ /* ignore white space */ ;

is |

am |

are |

were |

was |

be |

being |

been |

do |

does |

did |

will |

would |

should |

can |

could |

has |

have |

had |

go { printf("%s: is a verb\n", yytext); }

[a-zA-Z]+ { printf("%s: is not a verb\n", yytext); }

.|\n { ECHO; /* normal default anyway */ }

%%

main()

{

yylex();

}

Example 1-1: Word recognizer ch1-02.l

4

The definition section

• Lex copies the material between “%{“ and

“%}” directly to the generated C file, so you

may write any valid C codes here

5

Rules section

• Each rule is made up of two parts

– A pattern

– An action

• E.g.

[\t]+ /* ignore white space */ ;

6

Rules section (Cont’d)
• E.g.
is |
am |
are |
were |
was |
be |
being |
been |
do |
does |
did |
will |
would |
should |
can |
could |
has |
have |
had |
go { printf("%s: is a verb\n", yytext); }

7

Rules section (Cont’d)

• E.g.

[a-zA-Z]+ { printf("%s: is not a verb\n", yytext); }

.|\n { ECHO; /* normal default anyway */ }

• Lex had a set of simple disambiguating rules:
1. Lex patterns only match a given input character or

string once

2. Lex executes the action for the longest possible

match for the current input

8

User subroutines section

• It can consists of any legal C code

• Lex copies it to the C file after the end of

the Lex generated code

%%

main()

{

yylex();

}

9

Regular Expressions
• Regular expressions used by Lex

.

*

[]

^

$

{}

\

+

?

|

“…”

/

()

10

Examples of Regular Expressions
• [0-9]

• [0-9]+

• [0-9]*

• -?[0-9]+

• [0-9]*\.[0-9]+

• ([0-9]+)|([0-9]*\.[0-9]+)

• -?(([0-9]+)|([0-9]*\.[0-9]+))

• [eE][-+]?[0-9]+

• -?(([0-9]+)|([0-9]*\.[0-9]+))([eE][-+]?[0-9]+)?)

11

Example 2-1

%%

[\n\t] ;

-?(([0-9]+)|([0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?) { printf("number\n"); }

. ECHO;

%%

main()

{

yylex();

}

12

A Word Counting Program

• The definition section

%{

unsigned charCount = 0, wordCount = 0, lineCount = 0;

%}

word [^ \t\n]+

eol \n

13

A Word Counting Program (Cont’d)

• The rules section

{word} { wordCount++; charCount += yyleng; }

{eol} { charCount++; lineCount++; }

. charCount++;

14

A Word Counting Program (Cont’d)
• The user subroutines section

main(argc,argv)

int argc;

char **argv;

{

if (argc > 1) {

FILE *file;

file = fopen(argv[1], "r");

if (!file) {

fprintf(stderr,"could not open %s\n",argv[1]);

exit(1);

}

yyin = file;

}

yylex();

printf("%d %d %d\n",charCount, wordCount, lineCount);

return 0;

}

