(wo

Lex and Yacc

<<lLex and_Yacc.ext>>

Lex and Yacc

Lexical analyzer: a program that perform lexical
analysis.

Parser: a program that performing parsing.
Yacc: Yet Another Compiler Compiler.

The input to the lexical analysis phase is a
stream of characters.

When the lexical program recognizes an object, it
outputs an indication of the type of object that it
has just encountered. The indication is usually
called a token.

Lex and Yacc - 2

NSTSU

(wo

= A lexical analyzer follows rules to
recognize certain sequences or groups of
characters, whereas a parser follows rules
that may be self-referential to recognize
more complicated constructs.

= The Lex program is used to generate a
lexical analysis routine. Lex reads as input
a specification of the lexical analyzer, and
it produces either a C or a RATDOR
subroutine as its output.

Lex and Yacc - 3

Lex
specification
file

File “lex.yy.c”
containing
“yylex()
subroutine
source code

Lex

Transformed
file by lex

(1)

Transformed file
by C compiler

(2)

“lex.yy.c”
containing

“yylex()”
source code

“yylex()”
function

object
code
in “lex.yy.o”

Lex and Yacc - 4

NSTSU

(wo

Input
character
stream

Transformed by
‘yylex()” function

(3)

Stream
of
tokens

Lex and Yacc -5

NSTSU

(we

* The lexical analyzer takes a stream of characters
as input, and produces a stream of tokens as
output.

rules: regular expression. EX. [0-9]+

The action code will be performed every time the
rule leads to a pattern match.

[0-9]+ {printf("a number") ;}
[0-9]+ {return (NUMBER) ;}

[0-9]+ {

yylval = atoi(yytext) ;
return (NUMBER) ;

Lex and Yacc- 6

EX. Numbers (digit strings).

The keywords set, bit, on, and off.

Either a new line or a semicolon representing a
command terminator.

$

FH= H H I H I

cat y.tab.h

define
define
define
define
define
define
define

SET 257

BIT 258
ONCMD 259
OFFCMD 260
NUMBER 261
ENDCMD 262
UNKNOWN 263

Lex and Yacc -7

* The Format of a LEX File

s {

C program declaration

o® oP

3

lex rules

o O
5%

user subroutines

Lex and Yacc - 8

Ui
Lﬂg

S cat lexdemo.l

%1
/%

* a lex specification to recognize
* numbers, 4 words, and delimiters

*/

include “y.tab.h”
extern int yylval;
5}
[0

9]+ { /* rule 1 */

yylval = atoi (yytext);

return (NUMBER) ;

}
; return (ENDCMD) ;
\n return (ENDCMD) ;
set return (SET) ;
bit return (BIT) ;
on return (ONCMD) ;
off return (OFFCMD) ;
[\t]l+

return (UNKNOWN) ;

o°
o°

/* rule 2 */
/* rule 3 */
/* rule 4 */
/* rule 5 */
/* rule 6 */
/* rule 7 */
/* rule 8 */
/* rule 9 */

Lex and Yacc -9

|CSE\

= Lex works through the rules from the
top down, so rule 9 will apply only
when all of the other rules fail.

= The rule that specifies the longest
match is applied useless several
rules specify a match of the same

length, in which case the topmost
rule is applied.

Lex and Yacc- 10

NSTSU

(we

$ cat lextst.c
#include “y.tab.h”
int yylval;
extern char yytext[];
/%
* DEMONSTRATION
* call yylex() to acquire tokens
*/
main ()
{
int token;
while (token = yylex()) {

switch (token)

{

Lex and Yacc-11

case

case

case

case

case

NUMBER:

printf (“Number: %d\n”,yylval);

break;

SET:

printf (“set\n”) ;
break;

BIT:

printf (“Bit\n”) ;
break;

ONCMD :

printf (“On\n") ;
break;

OFFCMD :

printf (“Of£f\n”) ;
break;

Lex and Yacc-12

case UNKNOWN:
printf (“Unknown: %s\n”,yytext);
break;

case ENDCMD:
printf (“End marker\n”) ;

break;

default:
printf (“Unknown token: %d\n”, token) ;
break;

Lex and Yacc-13

NSTSU

(wo

$ cc lextst.c lex.yy.c —-o lextst
S echo “set bit 5 on;set20” | lextst
Set

Bit
Number: 5
On

End marker
Set
Number: 20

End marker

S echo “set bit 3 On” | lextst
Set

Bit

Number: 3

Unknown: O

Unknown: n

End marker

$

Lex and Yacc - 14

|CSE\

Yacc

= The Yacc utility program is used to
create a parser subroutine.

= Yacc accepts a syntax specification
and then produces wither C or
RATFOR source code for the parser
routine.

Lex and Yacc - 15

|CSE\

* Format for the rules (lower/upper cases)

1
) cmd: SET BIT numb ONCMD ENDCMD
SETlBIT numb OFFCMD ENDCMD
2) |
cmd: SET BIT numb onoff ENDCMD
onoff: ;ONCMD
OFFCMIl)

numb: NUMBER

.
4

Lex and Yacc- 16

(wo

Transformed file by

Yacc yacc File "Y.t?b.C”

specification . ‘c‘:ontalnmg”

file (1) yyparse()
subroutine

.) Transformed file
File "y.tab.c® by C compiler =~ Compiled parser

containing . Subroutine
“vyparse()” (2) “vyparse()
subroutine in “y.tab.o”

Lex and Yacc-17

Stream of
Tokens
delivered by

“yylex()”
function

Transformed by
“yyparse()” subroutine

(3)

Sequence of
appropriate
actions

Lex and Yacc- 18

L
|csa\
= A low-level rule (e.g., numb) can return a
value to a high-level rule (e.g., cmd) by
passing a value to the pseudo-variable $$.
num: NUMBER

{$$ = yylval;}

= A high-level rule can pick up a value by
examining the pseudo-variable $1 for the
first member of the definition, $2 for the
second, and so on.

Lex and Yacc- 19

¥ The Format of a YACC File

{

C program declaration

o®

o

}
$TOKEN A,B

3

o°

yacc rules
oo
oo

main ()

{
}

Lex and Yacc - 20

NSTSU

(wo

$ cat
% {
/ *

* Yac

* - T

*

*/
int te
int yy
#defin
#defin
5}
$TOKEN
S TOKEN

3

o° o

yaccdemo.y

c Specification File
he First Part -
Declarations

stvar = 0
lval;

e off O
e on 1

SET ,BIT,ONCMD, OFFCMD
NUMBER , ENDCMD , UNKNOWN

Lex and Yacc - 21

NSTSU

(wo

* - The Second Part -

/ *
* Rules
*/
section:
I
cmds

’
cmds: cmd

cmds cmd

°
4

/* Rule 1 */

/* Rule 2 */

Lex and Yacc - 22

)
|CSE\

cmd: ENDCMD /* Rule 3 - Alternative 1*/
{ /* the null cmd */ }

|
SET BIT numb onoff ENDCMD /* Alternative 2 */

{
if (($3 <= 15) && ($3 >=0)) {
if ($4 == off)
testvar = testvar & ~(1 << $3);
else
testvar = testvar | (1 << $3);

}

else
printf (“*Illegal bit number: %d\n”,$3);
printf (“testvar - %o\n”, testvar);

Lex and Yacc - 23

|CSE\

|
SET numb ENDCMD /* Rule 3 Alternative 3 */

{

testvar = $2;
printf (“Testvar - %0\n”, testvar);

}

numb: NUMBER /* Rule 4 */
{ $$ = yylval;}

4

onoff: ONCMD /* Ruleb - Alternative 1 */

{$$ = on;}
|
OFFCMD /* Rule 5- Alternative 2 */

{$$ = off;}

4

o®
o®

Lex and Yacc - 24

ess Y

/%
*
* - The Third Part -
* Support Subroutines
*/

main ()

{

yyparse() ;
}

Lex and Yacc - 25

NSTSU

* Processing

$ cc -o yaccdemo

EX. command:

$ yacc -d yaccdemo.y

y.tab.c lex.yy.c -1f1

set trial 3 amplitude 10 (X)
set bit 5 on trial 3 csr (X)

set bit 3 on
set 10
set bit 4 off;

set bit 0 on

Lex and Yacc - 26

