
<<Lex_and_Yacc.ext>>

Lex and Yacc

Lex and Yacc - 2

Lex and Yacc

 Lexical analyzer: a program that perform lexical
analysis.

 Parser: a program that performing parsing.

 Yacc: Yet Another Compiler Compiler.

 The input to the lexical analysis phase is a
stream of characters.

 When the lexical program recognizes an object, it
outputs an indication of the type of object that it
has just encountered. The indication is usually
called a token.

Lex and Yacc - 3

 A lexical analyzer follows rules to
recognize certain sequences or groups of
characters, whereas a parser follows rules
that may be self-referential to recognize
more complicated constructs.

 The Lex program is used to generate a
lexical analysis routine. Lex reads as input
a specification of the lexical analyzer, and
it produces either a C or a RATDOR
subroutine as its output.

Lex and Yacc - 4

Lex

specification

file

Transformed

file by lex
“lex.yy.c”

containing

“yylex()”

source code
(1)

File “lex.yy.c”

containing

“yylex()”

subroutine

source code

Transformed file

by C compiler

“yylex()”

function

object

code

in “lex.yy.o”(2)

Lex

Lex and Yacc - 5

Input

character

stream

Transformed by

“yylex()” function
Stream

of

tokens(3)

Lex and Yacc - 6

* The lexical analyzer takes a stream of characters

as input, and produces a stream of tokens as

output.
rules: regular expression. EX. [0-9]+

The action code will be performed every time the

rule leads to a pattern match.

[0-9]+ {printf("a number");}

[0-9]+ {return(NUMBER);}

[0-9]+ {

yylval = atoi(yytext);

return(NUMBER);

}

Lex and Yacc - 7

EX. Numbers (digit strings).

The keywords set, bit, on, and off.

Either a new line or a semicolon representing a

command terminator.

$ cat y.tab.h

define SET 257

define BIT 258

define ONCMD 259

define OFFCMD 260

define NUMBER 261

define ENDCMD 262

define UNKNOWN 263

Lex and Yacc - 8

The Format of a LEX File

%{

C program declaration

%}

%%

lex rules

%%

user subroutines

Lex and Yacc - 9

$ cat lexdemo.l

%{

/*

* a lex specification to recognize

* numbers, 4 words, and delimiters

*/

include “y.tab.h”

extern int yylval;

%}

%%

[0-9]+ { /* rule 1 */

yylval = atoi(yytext);

return(NUMBER);

}

; return(ENDCMD); /* rule 2 */

\n return(ENDCMD); /* rule 3 */

set return(SET); /* rule 4 */

bit return(BIT); /* rule 5 */

on return(ONCMD); /* rule 6 */

off return(OFFCMD); /* rule 7 */

[\t]+ ; /* rule 8 */

. return(UNKNOWN); /* rule 9 */

%%

Lex and Yacc - 10

 Lex works through the rules from the
top down, so rule 9 will apply only
when all of the other rules fail.

 The rule that specifies the longest
match is applied useless several
rules specify a match of the same
length, in which case the topmost
rule is applied.

Lex and Yacc - 11

$ cat lextst.c

#include “y.tab.h”

int yylval;

extern char yytext[];

/*

* DEMONSTRATION

* call yylex() to acquire tokens

*/

main()

{

int token;

while(token = yylex()) {

switch(token)

{

Lex and Yacc - 12

case NUMBER:

printf(“Number: %d\n”,yylval);

break;

case SET:

printf(“set\n”);

break;

case BIT:

printf(“Bit\n”);

break;

case ONCMD:

printf(“On\n”);

break;

case OFFCMD:

printf(“Off\n”);

break;

Lex and Yacc - 13

case UNKNOWN:

printf(“Unknown: %s\n”,yytext);

break;

case ENDCMD:

printf(“End marker\n”);

break;

default:

printf(“Unknown token: %d\n”,token);

break;

}

}

}

Lex and Yacc - 14

$ cc lextst.c lex.yy.c –o lextst
$ echo “set bit 5 on;set20” | lextst
Set
Bit
Number: 5
On
End marker
Set
Number: 20
End marker
$ echo “set bit 3 On” | lextst
Set
Bit
Number: 3
Unknown: O
Unknown: n
End marker
$ _

Lex and Yacc - 15

Yacc

 The Yacc utility program is used to
create a parser subroutine.

 Yacc accepts a syntax specification
and then produces wither C or
RATFOR source code for the parser
routine.

Lex and Yacc - 16

* Format for the rules (lower/upper cases)

1)
cmd: SET BIT numb ONCMD ENDCMD

|

SET BIT numb OFFCMD ENDCMD

;

2)
cmd: SET BIT numb onoff ENDCMD

;

onoff: ONCMD

|

OFFCMD

;

numb: NUMBER

;

Lex and Yacc - 17

Yacc

specification

file

Transformed file by

yacc

(1)

File “y.tab.c”

containing

“yyparse()”

subroutine

File “y.tab.c”

containing

“yyparse()”

subroutine

Transformed file

by C compiler

(2)

Compiled parser

subroutine

“yyparse()

in “y.tab.o”

Lex and Yacc - 18

Stream of

Tokens

delivered by

“yylex()”

function

Transformed by

“yyparse()” subroutine

(3)

Sequence of

appropriate

actions

Lex and Yacc - 19

 A low-level rule (e.g., numb) can return a
value to a high-level rule (e.g., cmd) by
passing a value to the pseudo-variable $$.

num: NUMBER

{$$ = yylval;}

;

 A high-level rule can pick up a value by
examining the pseudo-variable $1 for the
first member of the definition, $2 for the
second, and so on.

Lex and Yacc - 20

The Format of a YACC File

%{

C program declaration

%}

%TOKEN A,B

%%

yacc rules

%%

main()

{

}

Lex and Yacc - 21

$ cat yaccdemo.y

%{

/*

* Yacc Specification File

* - The First Part -

* Declarations

*/

int testvar = 0

int yylval;

#define off 0

#define on 1

%}

%TOKEN SET,BIT,ONCMD,OFFCMD

%TOKEN NUMBER,ENDCMD,UNKNOWN

%%

Lex and Yacc - 22

/*

* - The Second Part -

* Rules

*/

section: /* Rule 1 */

|

cmds

;

cmds: cmd /* Rule 2 */

|

cmds cmd

;

Lex and Yacc - 23

cmd: ENDCMD /* Rule 3 – Alternative 1*/

{ /* the null cmd */ }

|

SET BIT numb onoff ENDCMD /* Alternative 2 */

{

if (($3 <= 15) && ($3 >=0)) {

if ($4 == off)

testvar = testvar & ~(1 << $3);

else

testvar = testvar | (1 << $3);

}

else

printf(“Illegal bit number: %d\n”,$3);

printf(“testvar - %o\n”,testvar);

}

Lex and Yacc - 24

|

SET numb ENDCMD /* Rule 3 Alternative 3 */

{

testvar = $2;

printf(“Testvar - %0\n”,testvar);

}

;

numb: NUMBER /* Rule 4 */

{ $$ = yylval;}

;

onoff: ONCMD /* Rule5 – Alternative 1 */

{$$ = on;}

|

OFFCMD /* Rule 5– Alternative 2 */

{$$ = off;}

;

%%

Lex and Yacc - 25

/*

*

* - The Third Part -

* Support Subroutines

*/

main()

{

yyparse();

}

Lex and Yacc - 26

* Processing

$ yacc -d yaccdemo.y

$ cc -o yaccdemo y.tab.c lex.yy.c -lfl

EX. command:
set trial 3 amplitude 10 (X)
set bit 5 on trial 3 csr (X)
set bit 3 on
set 10
set bit 4 off; set bit 0 on

