Q
A <

Introduction

<<Introduction2.ppt>>

|XSYSU‘

Source - . . target
orogram compiler program
error
messages

A compiler

Introduction2 - 2

|XSYSU‘

= The Analysis-Synthesis Model of Compilation

= There are two parts to compilation: analysis and
synthesis. The analysis part breaks up the source
program into constituent pieces and creates an
Intermediate representation of the source program.
The synthesis part constructs the desired target
program from the intermediate representation. Of the
two parts, synthesis requires the most specialized
techniques.

Introduction2 - 3

ﬁ |XSYSU‘
[

Q

wn

=
a

e

N
initial / \

rate

Syntax tree for position:=initial + rate* 60

Introduction2 - 4

- Skeletal source program
; }
preprocessor

|
source program

!
compliler

|
target assembly program

L

©s |

assembler

|
relocatable machine code

!
loader/link-editor library,
! relocatable object files

absolute machine code

A Ianguage'prOCeSS|ng System Introduction2 - 5

_
? Analysis of the source program

= In compliling, analysis consists of three

phases:

1. Linear analysis, in which the stream of
characters making up the source program is
read from left-to-right and grouped into
tokens that are sequences of characters

having a collective meaning.

Introduction2 - 6

|XSYSU‘

.
’ Analysis of the source program

2.

Hierarchical analysis, in which characters or
tokens are grouped hierarchically into
nested collections with collective meaning.

Semantic analysis, in which certain checks
are performed to ensure that the
components of a program fit together
meaningfully.

Introduction2 - 7

(@]
Al -

UUZS

Lexical analysis

= In a compller, linear analysis Is called
lexical analysis or scanning. For example,
In lexical analysis the characters in the

assignment Statement

Position := Initial + rate * 60

would be grouped into the following tokens:

Introduction2 - 8

Q

wn
=
=

. The identifier position.

ne assignment symbol :=.
ne identifier initial.

ne plus sign.

ne identifier rate.

ne multiplication sign.

ne number 60.

N o g A~ D oE

= The blanks separating the characters of
these tokens would normally be
eliminated during lexical analysis.

Introduction2 - 9

Syntax analysis

= Hierarchical analysis is called parsing or
syntax analysis. It involves grouping the
tokens of the source program into
grammatical phrases that are used by the
compiler to synthesize output. Usually, the
grammatical phrases of the source
program are represented by a parse tree
such as the one shown in Fig.1.4.

Introduction2 - 10

(@]
wn
Al -
L 2
=1

assignment
statement
identifier assignment Fression
| symbol / \
.. + .
position | expression expression

T BN

identifier expression expression

b _ - number
Initial identifier

60
rate

Fig.1.4. Parse tree for position:= initial + rate * 60

Introduction2 - 11

(@]
Al -

UUZS

Syntax analysis

= The hierarchical structure of a program Is
usually expressed by recursive rules. For
example, we might have the following
rules as parts of the definition of
expressions:

Introduction2 - 12

|XSYSU‘

1.
2.
3.

Syntax analysis

Any identifier is an expression.
Any number Is an expression.

If expressionl and expression2 are
expressions, then so are

expression, + expression,
expression, * expression,
(expression,)

Introduction2 - 13

(@]
Al -

UUZS

Syntax analysis

= Lexical constructs do not require recursion,
while syntactic constructs often do.
Context-free grammars are a formalization
of recursive that can be used to guide
syntactic analysis.

Introduction2 - 14

(@]
Al -

UUZS

Semantic Analysis

= The semantic analysis phase checks the
source program for semantic errors and
gathers type information for the
subsequent code-generation phase. It
uses the hierarchical structure determined
by the syntax-analysis phase to identify
the operators and operands of
expressions and statements.

Introduction2 - 15

Q
Al -

UUZS

Semantic Analysis

= An important component of semantic analysis Is
type checking. Here the compiler checks that
each operator has operands that are permitted
by the source language specification. For
example, many programming language
definitions require a compiler to report an error
every time a real number is used to index an
array. However, the language specification may
permit some operand coercions, for example,
when a binary arithmetic operator is applied to
an integer and real. In this case, the compiler
may need to convert the integer to a real.

Introduction2 - 16

\'SYSU ::
— \
| position
initial / \ (a)
rate
/ \
position
b
initial / \ (b)
rate Inttoreal

60

Semantic analysis inserts a conversion form integer to real

Introduction2 - 17

Al -

|XS\'SU‘

' Symbol-Table Management

= An essential function of a compiler is to record
the identifiers used in the source program and
collect information about various attributes of
each identifier. These attributes may provide
Information about the storage allocated for an
identifier, its type, its scope (where in the
program it is valid), and, in the case of
procedure names, such things as the number
and types of its arguments, the method of
passing each argument (e.g., by reference), and
the type returned, Iif any.

Introduction2 - 18

|XSYSU‘

symbol-table
manager

source program

L
[exical
analyzer
)
syntax
analyzer

Vo
semantic
analyzer

Fig.1.9. phases of a compiler.

. Vo
Intermediate
code
generator

error

handler

code
optimizer

code
generator

target program

Introduction2 - 19

_ |
* Error Detection and Reporting

= Each phase can encounter errors.
However, after detecting an error, a phase
must somehow deal with that error, so that
compilation can proceed, allowing further
errors in the source program to be
detected. A compiler that stops when it
finds the first error is not as helpful as it

could be.

Introduction2 - 20

_ |
? Intermediate Code Generation

= After syntax and semantic analysis, some
compilers generate an explicit
Intermediate representation of the source
program. We can think of this intermediate
representation as a program for an
abstract machine. This intermediate
representation should have two important
properties; it should be easy to produce,
and easy to translate into the target
program.

Introduction2 - 21

"” position = initial + initial * 60
| !
lexical analyzer

|
Id, :=id, JI Id; * 60
syntax analyzer

|d/

id, /\60

Semantlc analyzer
!

/::_'_
Id, N
id, / \

Id, 610

Inttoreal

AW N R

SYMBOL TABLE

position

Initial

rate

Introduction2 - 22

L

S

",YSU‘

(wo |

. '
Intermediate code
generator

|

temp, := inttoreal(60)
temp, = id; * temp,
temp, :=id, + temp,
Id, = temp%v

code optimizer

'
temp, :=id; * 60.0
Id, :=id, + temp,

|

code generator

’
MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

B W NP

SYMBOL TABLE

position

Initial

rate

Translation of a statement

Introduction2 - 23

id, 0
[I
= temp, := inttoreal(60)
d /; T I temp, = id; * temp,
id | T temp, := id, + temp,
| N [| |d1 = temp
|d ? L J 1L (’
| ,lf/ TN |
(b)

Introduction2 - 24

The data structure in (b) is for the tree in (a)

I!ﬁ

This intermediate form has several properties.
First, each three-address instruction has at most

one operator in ac
when generating t
has to decide on t

dition to the assignment. Thus,
nese instructions, the compiler

ne order in which operations

are to be done; the multiplication precedes the
addition in the source program of (1.1). Second,

the compiler must

generate a temporary name

to hold the value computed by each instruction.
Third, some “three-address” instructions have
fewer than three operands, e.g., the first and last
Instructions in (1.3).

Introduction2 - 25

Q
A <

Code optimization

= The code optimization phase attempts to

Improve the intermediate code, so that faster-
running machine code will result. Some
optimizations are trivial. For example, a natural
algorithm generates the intermediate code (1.3),
using an instruction for each operator in the tree
representation after semantic analysis, even
though there Is a better way to perform the same
calculation, using the two instructions

templ :=1d3 * 60.0

Id1 :=1d2 + templ (1.4)

Introduction2 - 26

Code Generation

= the final phase of the compiler is the
generation of target code, consisting
normally of relocatable machine code or
assembly code. Memory locations are
selected for each of the variables used by
the program. Then, intermediate
Instructions are each translated into a
seguence of machine instructions that
perform the same task. A crucial aspect Is
the assignment of variables to registers.

Introduction2 - 27

(@]
Al -

Code Generation

= For example, using register 1 and register
2, the translation of the code of (1.4) might

become
MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1 (1.5)
MOVF R1, id1l

Introduction2 - 28

