
<<Introduction2.ppt>>

Introduction

Introduction2 - 2

A compiler

compiler
Source

program

target
program

error
messages

Introduction2 - 3

 The Analysis-Synthesis Model of Compilation
 There are two parts to compilation: analysis and

synthesis. The analysis part breaks up the source
program into constituent pieces and creates an
intermediate representation of the source program.
The synthesis part constructs the desired target
program from the intermediate representation. Of the
two parts, synthesis requires the most specialized
techniques.

Introduction2 - 4

:=

position +

*

rate 60

initial

Syntax tree for position:=initial + rate* 60

Introduction2 - 5

preprocessor

compiler

assembler

loader/link-editor

source program

target assembly program

relocatable machine code

absolute machine code

library,

relocatable object files

A language-processing system

Skeletal source program

Introduction2 - 6

Analysis of the source program

 In compiling, analysis consists of three

phases:

1. Linear analysis, in which the stream of

characters making up the source program is

read from left-to-right and grouped into

tokens that are sequences of characters

having a collective meaning.

Introduction2 - 7

Analysis of the source program

2. Hierarchical analysis, in which characters or

tokens are grouped hierarchically into

nested collections with collective meaning.

3. Semantic analysis, in which certain checks

are performed to ensure that the

components of a program fit together

meaningfully.

Introduction2 - 8

Lexical analysis

 In a compiler, linear analysis is called

lexical analysis or scanning. For example,

in lexical analysis the characters in the

assignment statement

would be grouped into the following tokens:

Position := initial + rate * 60

Introduction2 - 9

1. The identifier position.

2. The assignment symbol :=.

3. The identifier initial.

4. The plus sign.

5. The identifier rate.

6. The multiplication sign.

7. The number 60.

 The blanks separating the characters of

these tokens would normally be

eliminated during lexical analysis.

Introduction2 - 10

Syntax analysis

 Hierarchical analysis is called parsing or

syntax analysis. It involves grouping the

tokens of the source program into

grammatical phrases that are used by the

compiler to synthesize output. Usually, the

grammatical phrases of the source

program are represented by a parse tree

such as the one shown in Fig.1.4.

Introduction2 - 11

assignment

statement

position
+

*

rate
60

initial

identifier expression

expression

expression

number

expression

identifier

expression

identifier

Fig.1.4. Parse tree for position:= initial + rate * 60

assignment

symbol

:=

Introduction2 - 12

Syntax analysis

 The hierarchical structure of a program is

usually expressed by recursive rules. For

example, we might have the following

rules as parts of the definition of

expressions:

Introduction2 - 13

Syntax analysis

1. Any identifier is an expression.

2. Any number is an expression.

3. If expression1 and expression2 are

expressions, then so are

expression1 + expression2

expression1 * expression2

(expression1)

Introduction2 - 14

Syntax analysis

 Lexical constructs do not require recursion,

while syntactic constructs often do.

Context-free grammars are a formalization

of recursive that can be used to guide

syntactic analysis.

Introduction2 - 15

Semantic Analysis

 The semantic analysis phase checks the

source program for semantic errors and

gathers type information for the

subsequent code-generation phase. It

uses the hierarchical structure determined

by the syntax-analysis phase to identify

the operators and operands of

expressions and statements.

Introduction2 - 16

Semantic Analysis

 An important component of semantic analysis is
type checking. Here the compiler checks that
each operator has operands that are permitted
by the source language specification. For
example, many programming language
definitions require a compiler to report an error
every time a real number is used to index an
array. However, the language specification may
permit some operand coercions, for example,
when a binary arithmetic operator is applied to
an integer and real. In this case, the compiler
may need to convert the integer to a real.

Introduction2 - 17

:=

position
+

*

rate 60

initial (a)

:=

position +

*

rate

60

initial

inttoreal

(b)

Semantic analysis inserts a conversion form integer to real

Introduction2 - 18

Symbol-Table Management

 An essential function of a compiler is to record
the identifiers used in the source program and
collect information about various attributes of
each identifier. These attributes may provide
information about the storage allocated for an
identifier, its type, its scope (where in the
program it is valid), and, in the case of
procedure names, such things as the number
and types of its arguments, the method of
passing each argument (e.g., by reference), and
the type returned, if any.

Introduction2 - 19

lexical
analyzer

source program

syntax
analyzer

semantic
analyzer

intermediate
code

generator

code
optimizer

code
generator

target program

symbol-table
manager

error
handler

Fig.1.9. phases of a compiler.

Introduction2 - 20

Error Detection and Reporting

 Each phase can encounter errors.

However, after detecting an error, a phase

must somehow deal with that error, so that

compilation can proceed, allowing further

errors in the source program to be

detected. A compiler that stops when it

finds the first error is not as helpful as it

could be.

Introduction2 - 21

Intermediate Code Generation

 After syntax and semantic analysis, some
compilers generate an explicit
intermediate representation of the source
program. We can think of this intermediate
representation as a program for an
abstract machine. This intermediate
representation should have two important
properties; it should be easy to produce,
and easy to translate into the target
program.

Introduction2 - 22

position := initial + initial * 60

lexical analyzer

id1 := id2 + id3 * 60

:=

id1
+

*

id3 60

id2

syntax analyzer

Semantic analyzer

:=

id1
+

*

id3 60

id2
inttoreal

SYMBOL TABLE

1

2

3

4

position …

initial …

rate …

…

Introduction2 - 23

intermediate code
generator

code optimizer

code generator

temp1 := inttoreal(60)
temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

temp1 := id3 * 60.0
id1 := id2 + temp1

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

Translation of a statement

SYMBOL TABLE

1

2

3

4

position …

initial …

rate …

…

Introduction2 - 24

:=

id1

+

*

id3 60

id2

(a)

:=

id 1 +

*id 2

num 60id 3

(b)

The data structure in (b) is for the tree in (a)

temp1 := inttoreal(60)

temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

Introduction2 - 25

 This intermediate form has several properties.

First, each three-address instruction has at most

one operator in addition to the assignment. Thus,

when generating these instructions, the compiler

has to decide on the order in which operations

are to be done; the multiplication precedes the

addition in the source program of (1.1). Second,

the compiler must generate a temporary name

to hold the value computed by each instruction.

Third, some “three-address” instructions have

fewer than three operands, e.g., the first and last

instructions in (1.3).

Introduction2 - 26

Code optimization

 The code optimization phase attempts to
improve the intermediate code, so that faster-
running machine code will result. Some
optimizations are trivial. For example, a natural
algorithm generates the intermediate code (1.3),
using an instruction for each operator in the tree
representation after semantic analysis, even
though there is a better way to perform the same
calculation, using the two instructions

temp1 := id3 * 60.0

id1 := id2 + temp1 (1.4)

Introduction2 - 27

Code Generation

 the final phase of the compiler is the
generation of target code, consisting
normally of relocatable machine code or
assembly code. Memory locations are
selected for each of the variables used by
the program. Then, intermediate
instructions are each translated into a
sequence of machine instructions that
perform the same task. A crucial aspect is
the assignment of variables to registers.

Introduction2 - 28

Code Generation

 For example, using register 1 and register

2, the translation of the code of (1.4) might

become
MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1 (1.5)

MOVF R1, id1

