
<<Interpreter.ppt>>

Interpreter



Interpreter - 2

Interpreters allow the following

 Modification of or addition to user 

programs as execution proceeds. This 

facility provides a straightforward 

interactive debugging capability. Such 

modification is easiest in non-block-

structured languages such as APL or 

BASIC, because individual statements can 

be changed without reparsing an entire 

program.



Interpreter - 3

Interpreters allow the following

(cont.)
 Languages in which the type of object that a 

variable denotes may change dynamically. The 
user program is continuously reexamined as 
execution proceeds, and symbols need not have 
a fixed meaning (that is, a symbol may denote 
an integer scalar at one point and a boolean 
array at a later point). Such fluid bindings are 
obviously much more troublesome for compilers, 
as dynamic changes in the meaning of a symbol 
make direct translation into machine code 
impossible.



Interpreter - 4

Interpreters allow the following

(cont.)
 Better diagnostics. Because source text 

analysis (normally done at compile-time) is 

intermixed with execution of the program, 

especially good diagnostics (recreation of 

source lines in error, use of variable 

names in error messages, and so on) are 

produced more easily than they are by 

compilers.



Interpreter - 5

Interpreters allow the following

(cont.)
 A significant degree of machine 

independence, since no machine code is 

generated. All operations are performed 

within the interpreter. Therefore, to move 

an interpreter, we need only recompile it 

on a new machine.



Interpreter - 6

Interpretation can involve large 

overheads
 As execution proceeds, program text must 

be continuously reexamined, with identifier 

bindings, types, and operations potentially 

being reconsidered at each reference. For 

very dynamic languages this can 

represent a 100:1 (or worse) factor in 

execution speed. For more static 

languages (such as BASIC), the speed 

degradation is closer to 10:1.



Interpreter - 7

Interpretation can involve large 

overheads (cont.)
 Substantial space overhead may be involved. 

The interpreter and all support routines must 
usually be kept available. This program 
representation is often not as compact as 
compiled machine code (for example, symbol 
tables are present, and program text may be 
stored in a format designed for easy access and 
modification rather than for space minimization). 
This size penalty may lead to restrictions in the 
size of programs, the number of variables or 
procedures, and so on. Programs beyond these 
built-in limits cannot be handled by the 
interpreter.



Interpreter - 8

Interpretation can involve large 

overheads (cont.)
 Processes compiler control directives (turn 

the listing on or off, include source images 
from a file, and so on). These directives 
are often done via pseudocomments that 
have the syntactic form of a comment but 
include special information intended for 
processing by the compiler. Another 
approach is that used in Ada, where a 
special syntactic structure, the pragma, is 
used for this purpose.



Interpreter - 9

Interpretation can involve large 

overheads (cont.)
 Enters preliminary information into symbol 

and attribute tables (for example, to 

produce a later cross-reference listing).

 Formats and lists the source program.


