Interpreter

<<Interpreter.ppt>>



.
Interpreters allow the following

= Modification of or addition to user
programs as execution proceeds. This
facility provides a straightforward
Interactive debugging capability. Such
modification Is easiest in non-block-
structured languages such as APL or
BASIC, because individual statements can
be changed without reparsing an entire
program.

Interpreter - 2



Interpreters allow the following
(cont.)

= Languages in which the type of object that a
variable denotes may change dynamically. The
user program is continuously reexamined as
execution proceeds, and symbols need not have
a fixed meaning (that is, a symbol may denote
an integer scalar at one point and a boolean
array at a later point). Such fluid bindings are
obviously much more troublesome for compilers,
as dynamic changes in the meaning of a symbol
make direct translation into machine code
Impossible.

Interpreter - 3



Interpreters allow the following
(cont.)

= Better diagnostics. Because source text
analysis (normally done at compile-time) Is
Intermixed with execution of the program,
especially good diagnostics (recreation of
source lines In error, use of variable
names Iin error messages, and so on) are
produced more easily than they are by
compilers.

Interpreter - 4



Interpreters allow the following
(cont.)

= A significant degree of machine
Independence, since no machine code Is
generated. All operations are performed
within the interpreter. Therefore, to move
an interpreter, we need only recompile it
on a new machine.

Interpreter - 5



Interpretation can involve large
overheads

= AS execution proceeds, program text must
be continuously reexamined, with identifier
bindings, types, and operations potentially
being reconsidered at each reference. For
very dynamic languages this can
represent a 100:1 (or worse) factor in
execution speed. For more static
languages (such as BASIC), the speed
degradation is closer to 10:1.

Interpreter - 6



Interpretation can involve large
overheads (cont.)

= Substantial space overhead may be involved.
The interpreter and all support routines must
usually be kept available. This program
representation is often not as compact as
compiled machine code (for example, symbol
tables are present, and program text may be
stored in a format designed for easy access and
modification rather than for space minimization).
This size penalty may lead to restrictions in the
size of programs, the number of variables or
procedures, and so on. Programs beyond these
built-in limits cannot be handled by the
Interpreter. Inerpreter - 7



Interpretation can involve large

overheads (cont.)

= Processes compiler control directives (turn
the listing on or off, include source images
from a file, and so on). These directives
are often done via pseudocomments that
have the syntactic form of a comment but
Include special information intended for
processing by the compiler. Another
approach is that used in Ada, where a
special syntactic structure, the pragma, IS
used for this purpose.

Interpreter - 8



Interpretation can involve large
overheads (cont.)

= Enters preliminary information into symbol
and attribute tables (for example, to
produce a later cross-reference listing).

= Formats and lists the source program.

Interpreter - 9



