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CFGs that are limited to productions of the form AaB 

and Cλ from the class of regular grammars. As their 

name suggests, regular grammars define (exactly) the 

class of regular sets (see Exercise 6). We observed in 

Chapter 3 that the language { [i] i| i1} is not regular.

S[ T ]

T[ T ] | λ

This grammar establishes that the languages definable 

by regular grammars(regular sets) are a proper subset 

of the context-free languages.
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Although CFGs are widely used to define the syntax of 

programming languages, not all syntactic rules are 

expressible using CFGs. For example, the rule that 

variables must be declared before they are used cannot be 

expressed in a CFG – there is no way to transmit the exact 

set of variables that has been declared to the body of a 

program. In practice, syntactic details that cannot be 

represented in a CFG are considered part of the static 

semantics and are checked by semantic routines (along with 

scope and type rules).
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CFG can be generalized to create richer definitional 

mechanisms. Context-sensitive grammars require that 

nonterminals be written only when they appear in a particular 

context (for example, A). Type-0 grammars are still more 

general and allow arbitrary patterns to be rewritten (for 

example, ). Although context-sensitive and type-0 

grammars are more powerful than CFGs, they are also far 

less useful. The problem is that efficient parsers for these 

extended grammar classes do not exist, and without a parser 

there is no way to use a grammar definition to drive a 

compiler. Efficient parsers for many classes of CFGs do exist, 

however; hence, CFGs represent a nice balance between 

generality and practicality. Throughout this text we will focus 

on CFGs. Whenever we mention a grammar (without saying 

which kind), the grammar will be assumed context-free.
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Errors in Context-Free Grammars

CFGs are a definitional mechanism. They may, however, 

have errors, just as programs may. Some errors are easy 

to detect and fix; others are far more subtle.

The basic notion of CFGs is that we start with the start 

symbol and apply productions until a terminal string is 

produced. Some CFGs are flawed, however, in that they 

contain “useless” nonterminals. Consider the following 

grammar (G1):

SA | B

Aa

BB b

Cc
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In G1, nonterminal C cannot be reached from S (the start 

symbol), and nonterminal B derives no terminal string. 

Nonterminals that are unreachable or derive no terminal string 

are termed useless. Useless nonterminals (and productions 

that involve them) can be safely removed from a grammar 

without changing the language defined by the grammar. A 

grammar containing useless nonterminals is said to be 

nonreduced. After useless nonterminals are removed, the 

grammar is reduced. G1 is nonreduced. After B and C are 

removed, we obtain an equivalent grammar, G2, which is 

reduced:

SA

Aa
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Algorithms that detect useless nonterminals are easy to write 

(see Exercise 7). Many parser generators check to see if a 

grammar is reduced. If it is not, the grammar probably 

contains errors (often caused by mistyping the grammar 

specification).

A more serious grammar flaw is that sometimes a grammar 

allows a program to have two or more different parse trees 

(and thus a nonunique structure). Consider, for example, the 

following grammar, which generates expressions using just 

infix:

<expression><expression> - <expression>

<expression> ID

This grammar allow two different parse trees for ID-ID-ID, as 

illustrated in Figures 4.2 and 4.3.
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Grammars that allow different parse trees for the same 

terminal string are termed ambiguous. They are rarely used 

because a unique structure (that is, parse free) cannot be 

guaranteed for all inputs, and hence a unique translation, 

guided by the parse tree structure, may not be obtained. 

We normally restrict ourselves to unambiguous grammars 

in order to guarantee unique structure.

Naturally, we would like an algorithm that checks to 

see if a grammar is ambiguous. However, it is impossible to 

decide whether a given CFG is ambiguous (Hopcroft and 

Ullman 1969), so such an algorithm is impossible to create. 

Fortunately for certain grammar classes, including those for 

which we can generate parses, we can prove that 

constituent grammars are unambiguous.
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4.3 Capabilities of Context-Free 

Grammars

Context-free grammars are capable of describing most, 

but not all, of the syntax of programming language. In this 

section we shall try to indicate what programming language 

constructs can, and cannot, be described by context-free 

grammars.

Regular Expressions vs. Context-Free 

Grammars

Regular expression, as we have seen, are capable of 

describing the syntax of tokens. Any syntactic construct that 

can be described by a regular expression can also be 

described by a context-free grammar.
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For example, the regular expression (a | b)(a | b | 0 | 1)* and 

the context-free grammar

S aA | bA

A aA | bA | 0A | 1A | 

describe the same language. This grammar was constructed 

from the obvious NFA for the regular expression using the 

following construction: For each state there is a nonterminal 

symbol. If state A has a transition to state B on symbol a, 

introduce production AaB. If A goes to B on input , introduce 

AB. If A is an accepting state, introduce A. Make the start 

state of the NFA be the start symbol of the grammar.
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Since every regular set can be described by a context-free 

grammar, we may reasonably ask, “Why bother with regular 

expression?” There are several reasons. First, the lexical rules 

are usually quite simple and we don’t need a notation as 

powerful as context-free grammar. With the regular expression 

notation it is a bit easier to understand what set of strings is 

being defined than it is to grasp the language defined by a 

collection of productions. Second, it is easier to construct 

efficient recognizes from regular expression than from context-

free grammar. Third, separating the syntactic structure of a 

language into lexical and nonlexical parts provides a 

convenient way of modularizing the front end of a compiler 

into two manageable-sized components.
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There are no firm guidelines as to what to put into the lexical 

rules, as opposed to the syntactic rules. Regular expressions 

are most useful for describing the structure of lexical constructs 

such as identifiers, constants, keywords and so forth. Context-

free grammars, on the other hand, are most useful in 

describing nested structures such as balanced parentheses, 

matching begin-end’s corresponding if-then-else’s and so on. 

These nested structures cannot be described by regular 

expressions.
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Examples of Context-Free Grammars

Let us consider some examples of grammar fragments for 

common programming language constructs.

Example 4.7. Consider the grammar (4.10)

S (S) S |  (4.10)

This simple grammar generates all strings of balanced 

parentheses, and only those. To see this, we shall show that 

every sentence derivable from S is balanced, and that every 

balanced string is derivable from S. To show that every 

sentence derivable from S is balanced, a simple inductive 

proof on the number of steps in a derivation suffices. The only 

string of terminals derivable from S in one step is the empty 

string, which surely is balanced.
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Now if we assume that all derivations of fewer than n steps produce 

balanced sentences, consider a leftmost derivation of exactly n steps. 

Such a derivation must be of the form:

S  (S) S  (x) S  (x) y

The derivation of x and y from S take fewer than n steps so, by 

the inductive hypothesis, x and y are balanced. Therefore the 

string (x)y must be balanced.

* *
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We have thus shown that any string derivable from S is balanced. 

We must next show that every balanced string is derivable from S. We 

now use induction on the length of a string. The empty string is 

derivable from S. Assume that every balanced string of length less 

than 2n is derivable from S, and consider a balanced string w of length 

2n, n 1. Surely w begins with a left parenthesis. Let (x) be the 

shortest prefix of w having an equal number of left and right 

parentheses. Then w can be written as (x)y where both x and y 

are balanced. Since x and y of length less than 2n, they are 

derivable from S by the inductive hypothesis. Thus, we can find 

a derivation of the form

S  (S) S  (x) S  (x) y

proving that w= (x)y is also derivable from S.

* *
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Example 4.9. The language L2={anbmcndm | n1 and m1} is 

not context-free. That is, L2 consists of a words in a*b*c*d* 

such that the number of a’s and c’s are equal and the number 

of b’s and d’s are equal. (Recall an means a written n times.) L2

is embedded in languages which require that procedures be 

declared with the same number of formal parameters as there 

are actual parameters in their use. That is, an and bm could 

represent the formal parameter lists in two procedures declared 

to have n and m arguments, respectively. Then cn and dm

represent the actual parameter lists in calls to these two 

procedures.
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Again note that the typical syntax of procedure definitions and 

uses does not concern itself with counting the number of 

parameters. For example, the CALL statement in a 

FORTRAN-like language might be described

statement  CALL id (expression list)

expression list  expression list, expression

|expression

with suitable productions for expression. Checking that the 

number of actual parameters in the call is correct is usually 

done during semantic analysis.
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Example 4.10. The language L3= { anbncn | n0 }, that is, 

strings in a*b*c* with equal numbers of a’s, b’s and c’s, is 

not context-free. An example of a problem, which embeds 

L3 is the following. Typeset text uses italics where ordinary 

typed text uses underlining. In converting a file of text 

destined to be printed on a line printer to text suitable for a 

phototypesetter, one has to replace underlined words by 

italics. An underlined word is a string of letters followed by 

an equal number of backspaces and an equal number of 

underscores. If we regard a as any letter, b as backspace, 

and c as underscore, the language L3 represents 

underlined words. 
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The conclusion is that we cannot use a grammar to describe 

underlined words, and more importantly, we cannot use a 

parser-generating tool based solely on context-free grammars 

to create a program to convert underlined words to italics. This 

situation is unusual, in that most simple text-processing 

programs can be written easily with the aid of a scanner 

generator like LEX of Chapter 3, which is even less powerful 

than a parser generator.
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It is interesting to note that languages very similar to L1, L2 

and L3 are context-free. For example, 

L1 ‘= { wcwR | w is in (a | b) * }, where wR stands for w 

reversed, is context-free. It is generated by the grammar

S  aSa | bSb | c

L2’= {anbmcmdn | n1 and m 1} is context-free, generated by

S  aSd | aAd

A  bAc | bc

Also, L2’= {anbmcmdn | n1 and m 1} is context-free, with 

grammar S  AB

A  aAb | ab

B  cBd | cd

Finally, L3’= { anbn | n1 } is context-free, with grammar

S  aSb | ab
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It is worth noting that L3’ is an example of language not 

definable by any regular expression. To see this, suppose L3’ 

were the language of regular expression R. Then we could 

construct a DFA. A accepting L3’, A must be some finite 

number of states, say k. Consider the sequence of states, s0, 

s1, s2, …, sk entered by A given inputs , a, aa, … . In general, 

it is the state entered by A having read i a’s. Then as there are 

only k different states, two states among s0, s1, …, sk must be 

the same, say si= sj. Then an additional sequence of i b’s 

takes si to an accepting state, since aibi is in L3’. But then there 

is also a path from the initial state s0 to s1 to f labeled ajbi, as 

shown in Fig.4.6. 
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S0
Si = Sj f

Path labeled bi

Path labeled ai

Path labeled aj

Fig. 4.6. The DFA A.

Thus, A also accepts ajbi, which is not in L3’, contradicting the 

assumption that L3’ is the language accepted by A.
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Colloquially, we say that “finite automata cannot count,” 

meaning they cannot accept a language like L3’ which 

requires that they count the number of a’s exactly. Similarly, 

we say “grammars can count two things but not three” since 

with a context-free grammar we can define L3’ but not L3.
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Example 4.11. Consider the abstract language 

L1 = { wcw | w is in ( a | b ) * }. L1 consists of all words 

composed of a repeated string of a’s and b’s separated by a 

c, such as aabcaab. It can be proven this language is not 

context free. This language abstracts the problem of 

checking that identifiers are declared before their use in a 

program. That is, the first w in wcw represents the declaration 

of an identifier w. The second w represents its use. While it is 

beyond the scope of this book to prove it, the non-context-

freedom of L1 directly implies the non-context-freedom of 

programming languages like Algol and Pascal, which require 

declaration of identifiers before their use, and which allow 

identifiers of arbitrary length.



Grammar3- 25

For this reason, a grammar for the syntax of Algol or Pascal 

does not specify the characters in an identifier. Instead, all 

identifiers are represented by a token such as id in the 

grammar. In a compiler for such a language, the semantic 

analysis phase checks that identifiers have been declared 

before their use.
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Example 4.12.

The language L2 = { anbmcndm | n1 and m1 } is not context 

free. That is, L2 consists of strings in the language generated 

by the regular expression a*b*c*d* such that the number of a’s 

and c’s are equal and the number of b’s and d’s are equal. 

(Recall an means a written n times.)  L2 abstracts the problem 

of checking that the number of formal parameters in the 

declaration of a procedure agrees with the number of actual 

parameters in a use of the procedure. That is, an and bm 

could represent the formal parameter lists in two procedures 

declared to have n and m arguments, respectively. Then cn 

and dm represent the actual parameter lists in calls to these 

two procedures.
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Again note that the typical syntax of procedure definitions 

and uses does not concern itself with counting the number of 

parameters. For example, the CALL statement in a Fortran-

like language might be described

stmt  call id (expr_list)

expr_list  expr_list, expr | expr

with suitable productions for expr. Checking that the number 

of actual parameters in the call is correct is usually done 

during the semantic analysis phase.

Example 4.13. The language L3 = { anbncn | n0 }, that is, 

strings in L(a*b*c*) with equal numbers of a’s, b’s and c’s, is 

not context free. An example of a problem that embeds L3 is 

the following.



Grammar3- 28

Typeset text uses italics where ordinary typed text uses 

underlining. In converting a file of text destined to be printed 

on a line printer to text suitable for a phototypesetter, one 

has to replace underlined words by italics. An underlined 

word is a string of letters followed by an equal number of 

backspaces and an equal number of underscores. If we 

regard a as any letter, b as backspace, and c as underscore, 

the language L3 represents underlined words. The 

conclusion is that we cannot use a grammar to describe 

underlined words in this fashion. On the other hand, if we 

represent an underlined word as a sequence of letter-

backspace-underscore triples then we can represent 

underlined words with the regular expression (abc)*.
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It is interesting to note that language very similar to L1, L2 and 

L3 are context free. For example, 

L’1= { wcwR | w is in (a | b)* }, where wR stands for w reversed, 

is context free. It is generated by the grammar

S  aSa | bSb | c

The language L2’= { anbmcndm | n1 and m1 } is context free, 

with grammar

S  aSd | aAd

A  bAc | bc

Also, L’2’= { anbncmdm | n1 and m1 } is context free, with 

grammar

S  AB

A  aAb | ab

B  cBd | cd
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Finally, L’3 = { anbn | n0 } is context free, with grammar

S  aSb | ab

It is worth noting that L’3 is the prototypical example of a 

language not definable by any regular expression.


