Grammar 3

<<Grammar3.ppt>>

(wo

CFGs that are limited to productions of the form A—aB

and C—A from the class of reqular grammars. As their

name suggests, regular grammars define (exactly) the
class of regular sets (see Exercise 6). We observed in
Chapter 3 that the language {[]'| i1} is not regular.

S=[T]
T=[T]]A

This grammar establishes that the languages definable

by regular grammars(regular sets) are a proper subset
of the context-free languages.

Grammar3- 2

NSTSU

|cs

g

(wo

Although CFGs are widely used to define the syntax of
programming languages, not all syntactic rules are
expressible using CFGs. For example, the rule that
variables must be declared before they are used cannot be
expressed in a CFG — there is no way to transmit the exact
set of variables that has been declared to the body of a
program. In practice, syntactic details that cannot be
represented in a CFG are considered part of the static
semantics and are checked by semantic routines (along with
scope and type rules).

Grammar3- 3

|csu‘

CFG can be generalized to create richer definitional
mechanisms. Context-sensitive grammars require that
nonterminals be written only when they appear in a particular
context (for example, aABdB). Type-0 grammars are still more
general and allow arbitrary patterns to be rewritten (for
example, a—). Although context-sensitive and type-0
grammars are more powerful than CFGs, they are also far
less useful. The problem is that efficient parsers for these
extended grammar classes do not exist, and without a parser
there is no way to use a grammar definition to drive a
compiler. Efficient parsers for many classes of CFGs do exist,
however; hence, CFGs represent a nice balance between
generality and practicality. Throughout this text we will focus
on CFGs. Whenever we mention a grammar (without saying
which kind), the grammar will be assumed context-free.

Grammar3- 4

|CSE\

Errors in Context-Free Grammars

CFGs are a definitional mechanism. They may, however,
have errors, just as programs may. Some errors are easy
to detect and fix; others are far more subtle.

The basic notion of CFGs is that we start with the start
symbol and apply productions until a terminal string Is
produced. Some CFGs are flawed, however, in that they
contain “useless” nonterminals. Consider the following
grammar (G,):

S—A|B
A—a
B-Bb

C_'C Grammar3- 5

In G, nonterminal C cannot be reached from S (the start
symbol), and nonterminal B derives no terminal string.
Nonterminals that are unreachable or derive no terminal string
are termed useless. Useless nonterminals (and productions
that involve them) can be safely removed from a grammar
without changing the language defined by the grammar. A
grammar containing useless nonterminals is said to be
nonreduced. After useless nonterminals are removed, the
grammar is reduced. G; Iis nonreduced. After B and C are

removed, we obtain an equivalent grammar, G,, which is
reduced:

S—A
A—a

Grammar3- 6

- .

Algorithms that detect useless nonterminals are easy to write
(see Exercise 7). Many parser generators check to see if a
grammar is reduced. If it is not, the grammar probably
contains errors (often caused by mistyping the grammar
specification).

A more serious grammar flaw is that sometimes a grammar
allows a program to have two or more different parse trees
(and thus a nonunigue structure). Consider, for example, the
following grammar, which generates expressions using just
Infix:
<expression>—<expression> - <expression>
<expression>— |ID
This grammar allow two different parse trees for ID-ID-I1D, as
llustrated in Figures 4.2 and 4.3.

Grammar3- 7

NSTSU

|cs

g

(wo

Grammars that allow different parse trees for the same
terminal string are termed ambiguous. They are rarely used
because a unique structure (that is, parse free) cannot be
guaranteed for all inputs, and hence a unique translation,
guided by the parse tree structure, may not be obtained.
We normally restrict ourselves to unambiguous grammars
In order to guarantee unique structure.

Naturally, we would like an algorithm that checks to
see if a grammar is ambiguous. However, it is impossible to
decide whether a given CFG is ambiguous (Hopcroft and
Ullman 1969), so such an algorithm is impossible to create.
Fortunately for certain grammar classes, including those for
which we can generate parses, we can prove that
constituent grammars are unambiguous.

Grammar3- 8

~84.3 Capabilities of Context-Free

Grammars

Context-free grammars are capable of describing most,
but not all, of the syntax of programming language. In this
section we shall try to indicate what programming language
constructs can, and cannot, be described by context-free
grammars.

Regular Expressions vs. Context-Free
Grammars

Regular expression, as we have seen, are capable of
describing the syntax of tokens. Any syntactic construct that
can be described by a regular expression can also be
described by a context-free grammar.

Grammar3-9

NSTSU
e

(wo

For example, the regular expression (a | b)(a|b| 0| 1)* and
the context-free grammar

S— aA| bA
A— aA|bA|OA|1A| ¢

describe the same language. This grammar was constructed
from the obvious NFA for the regular expression using the
following construction: For each state there is a nonterminal
symbol. If state A has a transition to state B on symbol a,
iIntroduce production A—aB. If A goes to B on input g, introduce
A—B. If Ais an accepting state, introduce A—¢. Make the start
state of the NFA be the start symbol of the grammar.

Grammar3- 10

|csu‘

Since every regular set can be described by a context-free
grammar, we may reasonably ask, “Why bother with regular
expression?” There are several reasons. First, the lexical rules
are usually quite simple and we don’t need a notation as
powerful as context-free grammar. With the regular expression
notation it is a bit easier to understand what set of strings Is
being defined than it is to grasp the language defined by a
collection of productions. Second, it is easier to construct
efficient recognizes from regular expression than from context-
free grammar. Third, separating the syntactic structure of a
language into lexical and nonlexical parts provides a
convenient way of modularizing the front end of a compiler
Into two manageable-sized components.

Grammar3- 11

NSTSU

|cs

g

(wo

There are no firm guidelines as to what to put into the lexical
rules, as opposed to the syntactic rules. Regular expressions
are most useful for describing the structure of lexical constructs
such as identifiers, constants, keywords and so forth. Context-
free grammars, on the other hand, are most useful in
describing nested structures such as balanced parentheses,
matching begin-end’s corresponding if-then-else’s and so on.
These nested structures cannot be described by regular
expressions.

Grammar3- 12

.\'s\'sv
|CSE\
Examples of Context-Free Grammars

w

Let us consider some examples of grammar fragments for
common programming language constructs.
Example 4.7. Consider the grammar (4.10)
S—»(S)S|e (4.10)

This simple grammar generates all strings of balanced
parentheses, and only those. To see this, we shall show that
every sentence derivable from S is balanced, and that every
balanced string is derivable from S. To show that every
sentence derivable from S is balanced, a simple inductive
proof on the number of steps in a derivation suffices. The only
string of terminals derivable from S in one step is the empty
string, which surely is balanced.

Grammar3- 13

- .

Now Iif we assume that all derivations of fewer than n steps produce
balanced sentences, consider a leftmost derivation of exactly n steps.
Such a derivation must be of the form:

S=S)SEX)SE(X)y
The derivation of x and y from S take fewer than n steps so, by
the inductive hypothesis, x and y are balanced. Therefore the
string (X)y must be balanced.

Grammar3- 14

|CSE\

We have thus shown that any string derivable from S is balanced.
We must next show that every balanced string is derivable from S. We
now use induction on the length of a string. The empty string is
derivable from S. Assume that every balanced string of length less
than 2n is derivable from S, and consider a balanced string w of length
2n, n >1. Surely w begins with a left parenthesis. Let (x) be the
shortest prefix of w having an equal number of left and right
parentheses. Then w can be written as (x)y where both x and y
are balanced. Since x and y of length less than 2n, they are
derivable from S by the inductive hypothesis. Thus, we can find
a derivation of the form

S=(S)SS (XSS (XY

proving that w= (X)y is also derivable from S.

Grammar3- 15

NSTSU
lesal

(wo

Example 4.9. The language L,={a"b™c"d™ | n>1 and m>1} is
not context-free. That is, L, consists of a words in a*b*c*d*
such that the number of a’s and c¢’s are equal and the number
of b’'s and d’s are equal. (Recall an means a written n times.) L,
IS embedded in languages which require that procedures be
declared with the same number of formal parameters as there
are actual parameters in their use. That is, a™ and b™ could
represent the formal parameter lists in two procedures declared
to have n and m arguments, respectively. Then c" and d™
represent the actual parameter lists in calls to these two
procedures.

Grammar3- 16

NSTSU
e

(wo

Again note that the typical syntax of procedure definitions and
uses does not concern itself with counting the number of

parameters. For example, the CALL statement in a
FORTRAN-like language might be described

statement — CALL id (expression list)
expression list = expression list, expression
lexpression

with suitable productions for expression. Checking that the

number of actual parameters in the call is correct is usually
done during semantic analysis.

Grammar3- 17

NSTSU
lesal

(we

Example 4.10. The language Ls={a"b"c"| n>0 }, that is,
strings in a*b*c* with equal numbers of a’s, b’'s and C’s, is
not context-free. An example of a problem, which embeds
L3 Is the following. Typeset text uses italics where ordinary
typed text uses underlining. In converting a file of text
destined to be printed on a line printer to text suitable for a
phototypesetter, one has to replace underlined words by
italics. An underlined word is a string of letters followed by
an equal number of backspaces and an equal number of
underscores. If we regard a as any letter, b as backspace,
and c as underscore, the language L3 represents
underlined words.

Grammar3- 18

- .

The conclusion is that we cannot use a grammar to describe
underlined words, and more importantly, we cannot use a
parser-generating tool based solely on context-free grammars
to create a program to convert underlined words to italics. This
situation is unusual, in that most simple text-processing
programs can be written easily with the aid of a scanner
generator like LEX of Chapter 3, which is even less powerful
than a parser generator.

Grammar3- 19

less

(wo

It IS Interesting to note that languages very similar to L,, L,
and L3z are context-free. For example,
L, ={wcwR |wisin (a|b)*}, where wR stands for w
reversed, is context-free. It is generated by the grammar
S—aSa|bSb]|c
L,’= {a"b™c™d" | n>1 and m> 1} is context-free, generated by
S - aSd | aAd
A — bAc | bc
Also, L,’= {a"b™c™d" | n>1 and m> 1} is context-free, with
grammar S~ AB
A — aAb | ab
B - cBd|cd
Finally, L3’'= { a"b" | n>1 } is context-free, with grammar
S—aSb|ab

Grammar3- 20

NSTSU
lesal

(we

It Is worth noting that L3’ is an example of language not
definable by any regular expression. To see this, suppose L3’
were the language of regular expression R. Then we could
construct a DFA. A accepting Ls’, A must be some finite
number of states, say k. Consider the sequence of states, Sy,
S1, S, ..., Sk entered by A given inputs ¢, a, aa, In general,
it is the state entered by A having read i a’s. Then as there are
only k different states, two states among Sp, Si, ..., Sk must be
the same, say si=s;. Then an additional sequence of i b’s
takes sj to an accepting state, since a'b'is in Ls’. But then there
is also a path from the initial state s, to s, to f labeled alb', as
shown in Fig.4.6.

Grammar3- 21

— —
/’ \\

// \‘
Path labeled b
N\ P
\\ //

__’

Path labeled a!
Fig. 4.6. The DFAA.

Thus, A also accepts alb!, which is not in L3’, contradicting the
assumption that L3’ is the language accepted by A.

Grammar3- 22

Colloquially, we say that “finite automata cannot count,”
meaning they cannot accept a language like L3" which
requires that they count the number of a’s exactly. Similarly,
we say ‘grammars can count two things but not three” since
with a context-free grammar we can define L3" but not Ls.

Grammar3- 23

|CSE\

Example 4.11. Consider the abstract language

L1={wcw |wisin(a]|b)*} L, consists of all words
composed of a repeated string of a’'s and b’s separated by a
C, such as aabcaab. It can be proven this language is not
context free. This language abstracts the problem of
checking that identifiers are declared before their use in a
program. That is, the first w in wcw represents the declaration
of an identifier w. The second w represents its use. While it is
beyond the scope of this book to prove it, the non-context-
freedom of L; directly implies the non-context-freedom of
programming languages like Algol and Pascal, which require
declaration of identifiers before their use, and which allow
identifiers of arbitrary length.

Grammar3- 24

|CSE\

For this reason, a grammar for the syntax of Algol or Pascal
does not specify the characters in an identifier. Instead, all
identifiers are represented by a token such as id in the
grammar. In a compiler for such a language, the semantic
analysis phase checks that identifiers have been declared
before their use.

Grammar3- 25

|CSE\

Example 4.12.

The language L, = {a"b™c"d™ | n>1 and m>1 } is not context
free. That is, L, consists of strings in the language generated
by the regular expression a*b*c*d* such that the number of a’s
and c’'s are equal and the number of b’s and d’s are equal.
(Recall an means a written n times.) L, abstracts the problem
of checking that the number of formal parameters in the
declaration of a procedure agrees with the number of actual
parameters in a use of the procedure. That is, an and bm
could represent the formal parameter lists in two procedures
declared to have n and m arguments, respectively. Then cn
and dm represent the actual parameter lists in calls to these
two procedures.

Grammar3- 26

|csu‘

Again note that the typical syntax of procedure definitions
and uses does not concern itself with counting the number of
parameters. For example, the CALL statement in a Fortran-
like language might be described

stmt — call id (expr_list)

expr_list = expr_list, expr | expr
with suitable productions for expr. Checking that the number
of actual parameters in the call is correct is usually done
during the semantic analysis phase.

Example 4.13. The language L3 = {a"b"c" | n>0 }, that is,
strings in L(a*b*c*) with equal numbers of a’s, b's and C's, is
not context free. An example of a problem that embeds Lz Is
the following.

Grammar3- 27

Typeset text uses italics where ordinary typed text uses
underlining. In converting a file of text destined to be printed
on a line printer to text suitable for a phototypesetter, one
has to replace underlined words by italics. An underlined
word Is a string of letters followed by an equal number of
backspaces and an equal number of underscores. If we
regard a as any letter, b as backspace, and ¢ as underscore,
the language Lz represents underlined words. The
conclusion is that we cannot use a grammar to describe
underlined words in this fashion. On the other hand, if we
represent an underlined word as a sequence of letter-
backspace-underscore triples then we can represent
underlined words with the regular expression (abc)*.

Grammar3- 28

|CSE\

It is interesting to note that language very similar to L,, L, and
s are context free. For example,
L'»={wcwR |wisin (a]| b)*}, where wR stands for w reversed,
IS context free. It Is generated by the grammar

S—aSa|bSb|c
The language L,’= { a"b™c"d™ | n>1 and m>1 } is context free,
with grammar

S — aSd | aAd

A — bAc | bc
Also, L',’= {a"b"c™d™ | n>1 and m>1 } is context free, with
grammar

S—~AB

A— aAb | ab

B — cBd|cd

Grammar3- 29

less

(wo

Finally, L's = {a"b" | n>0 } is context free, with grammar
S—aSb|ab

It is worth noting that L'; is the prototypical example of a

language not definable by any regular expression.

Grammar3- 30

