
<<Grammar3.ppt>>

Grammar 3

Grammar3- 2

CFGs that are limited to productions of the form AaB

and Cλ from the class of regular grammars. As their

name suggests, regular grammars define (exactly) the

class of regular sets (see Exercise 6). We observed in

Chapter 3 that the language { [i] i| i1} is not regular.

S[T]

T[T] | λ

This grammar establishes that the languages definable

by regular grammars(regular sets) are a proper subset

of the context-free languages.

Grammar3- 3

Although CFGs are widely used to define the syntax of

programming languages, not all syntactic rules are

expressible using CFGs. For example, the rule that

variables must be declared before they are used cannot be

expressed in a CFG – there is no way to transmit the exact

set of variables that has been declared to the body of a

program. In practice, syntactic details that cannot be

represented in a CFG are considered part of the static

semantics and are checked by semantic routines (along with

scope and type rules).

Grammar3- 4

CFG can be generalized to create richer definitional

mechanisms. Context-sensitive grammars require that

nonterminals be written only when they appear in a particular

context (for example, A). Type-0 grammars are still more

general and allow arbitrary patterns to be rewritten (for

example, ). Although context-sensitive and type-0

grammars are more powerful than CFGs, they are also far

less useful. The problem is that efficient parsers for these

extended grammar classes do not exist, and without a parser

there is no way to use a grammar definition to drive a

compiler. Efficient parsers for many classes of CFGs do exist,

however; hence, CFGs represent a nice balance between

generality and practicality. Throughout this text we will focus

on CFGs. Whenever we mention a grammar (without saying

which kind), the grammar will be assumed context-free.

Grammar3- 5

Errors in Context-Free Grammars

CFGs are a definitional mechanism. They may, however,

have errors, just as programs may. Some errors are easy

to detect and fix; others are far more subtle.

The basic notion of CFGs is that we start with the start

symbol and apply productions until a terminal string is

produced. Some CFGs are flawed, however, in that they

contain “useless” nonterminals. Consider the following

grammar (G1):

SA | B

Aa

BB b

Cc

Grammar3- 6

In G1, nonterminal C cannot be reached from S (the start

symbol), and nonterminal B derives no terminal string.

Nonterminals that are unreachable or derive no terminal string

are termed useless. Useless nonterminals (and productions

that involve them) can be safely removed from a grammar

without changing the language defined by the grammar. A

grammar containing useless nonterminals is said to be

nonreduced. After useless nonterminals are removed, the

grammar is reduced. G1 is nonreduced. After B and C are

removed, we obtain an equivalent grammar, G2, which is

reduced:

SA

Aa

Grammar3- 7

Algorithms that detect useless nonterminals are easy to write

(see Exercise 7). Many parser generators check to see if a

grammar is reduced. If it is not, the grammar probably

contains errors (often caused by mistyping the grammar

specification).

A more serious grammar flaw is that sometimes a grammar

allows a program to have two or more different parse trees

(and thus a nonunique structure). Consider, for example, the

following grammar, which generates expressions using just

infix:

<expression><expression> - <expression>

<expression> ID

This grammar allow two different parse trees for ID-ID-ID, as

illustrated in Figures 4.2 and 4.3.

Grammar3- 8

Grammars that allow different parse trees for the same

terminal string are termed ambiguous. They are rarely used

because a unique structure (that is, parse free) cannot be

guaranteed for all inputs, and hence a unique translation,

guided by the parse tree structure, may not be obtained.

We normally restrict ourselves to unambiguous grammars

in order to guarantee unique structure.

Naturally, we would like an algorithm that checks to

see if a grammar is ambiguous. However, it is impossible to

decide whether a given CFG is ambiguous (Hopcroft and

Ullman 1969), so such an algorithm is impossible to create.

Fortunately for certain grammar classes, including those for

which we can generate parses, we can prove that

constituent grammars are unambiguous.

Grammar3- 9

4.3 Capabilities of Context-Free

Grammars

Context-free grammars are capable of describing most,

but not all, of the syntax of programming language. In this

section we shall try to indicate what programming language

constructs can, and cannot, be described by context-free

grammars.

Regular Expressions vs. Context-Free

Grammars

Regular expression, as we have seen, are capable of

describing the syntax of tokens. Any syntactic construct that

can be described by a regular expression can also be

described by a context-free grammar.

Grammar3- 10

For example, the regular expression (a | b)(a | b | 0 | 1)* and

the context-free grammar

S aA | bA

A aA | bA | 0A | 1A | 

describe the same language. This grammar was constructed

from the obvious NFA for the regular expression using the

following construction: For each state there is a nonterminal

symbol. If state A has a transition to state B on symbol a,

introduce production AaB. If A goes to B on input , introduce

AB. If A is an accepting state, introduce A. Make the start

state of the NFA be the start symbol of the grammar.

Grammar3- 11

Since every regular set can be described by a context-free

grammar, we may reasonably ask, “Why bother with regular

expression?” There are several reasons. First, the lexical rules

are usually quite simple and we don’t need a notation as

powerful as context-free grammar. With the regular expression

notation it is a bit easier to understand what set of strings is

being defined than it is to grasp the language defined by a

collection of productions. Second, it is easier to construct

efficient recognizes from regular expression than from context-

free grammar. Third, separating the syntactic structure of a

language into lexical and nonlexical parts provides a

convenient way of modularizing the front end of a compiler

into two manageable-sized components.

Grammar3- 12

There are no firm guidelines as to what to put into the lexical

rules, as opposed to the syntactic rules. Regular expressions

are most useful for describing the structure of lexical constructs

such as identifiers, constants, keywords and so forth. Context-

free grammars, on the other hand, are most useful in

describing nested structures such as balanced parentheses,

matching begin-end’s corresponding if-then-else’s and so on.

These nested structures cannot be described by regular

expressions.

Grammar3- 13

Examples of Context-Free Grammars

Let us consider some examples of grammar fragments for

common programming language constructs.

Example 4.7. Consider the grammar (4.10)

S (S) S |  (4.10)

This simple grammar generates all strings of balanced

parentheses, and only those. To see this, we shall show that

every sentence derivable from S is balanced, and that every

balanced string is derivable from S. To show that every

sentence derivable from S is balanced, a simple inductive

proof on the number of steps in a derivation suffices. The only

string of terminals derivable from S in one step is the empty

string, which surely is balanced.

Grammar3- 14

Now if we assume that all derivations of fewer than n steps produce

balanced sentences, consider a leftmost derivation of exactly n steps.

Such a derivation must be of the form:

S  (S) S  (x) S  (x) y

The derivation of x and y from S take fewer than n steps so, by

the inductive hypothesis, x and y are balanced. Therefore the

string (x)y must be balanced.

* *

Grammar3- 15

We have thus shown that any string derivable from S is balanced.

We must next show that every balanced string is derivable from S. We

now use induction on the length of a string. The empty string is

derivable from S. Assume that every balanced string of length less

than 2n is derivable from S, and consider a balanced string w of length

2n, n 1. Surely w begins with a left parenthesis. Let (x) be the

shortest prefix of w having an equal number of left and right

parentheses. Then w can be written as (x)y where both x and y

are balanced. Since x and y of length less than 2n, they are

derivable from S by the inductive hypothesis. Thus, we can find

a derivation of the form

S  (S) S  (x) S  (x) y

proving that w= (x)y is also derivable from S.

* *

Grammar3- 16

Example 4.9. The language L2={anbmcndm | n1 and m1} is

not context-free. That is, L2 consists of a words in a*b*c*d*

such that the number of a’s and c’s are equal and the number

of b’s and d’s are equal. (Recall an means a written n times.) L2

is embedded in languages which require that procedures be

declared with the same number of formal parameters as there

are actual parameters in their use. That is, an and bm could

represent the formal parameter lists in two procedures declared

to have n and m arguments, respectively. Then cn and dm

represent the actual parameter lists in calls to these two

procedures.

Grammar3- 17

Again note that the typical syntax of procedure definitions and

uses does not concern itself with counting the number of

parameters. For example, the CALL statement in a

FORTRAN-like language might be described

statement  CALL id (expression list)

expression list  expression list, expression

|expression

with suitable productions for expression. Checking that the

number of actual parameters in the call is correct is usually

done during semantic analysis.

Grammar3- 18

Example 4.10. The language L3= { anbncn | n0 }, that is,

strings in a*b*c* with equal numbers of a’s, b’s and c’s, is

not context-free. An example of a problem, which embeds

L3 is the following. Typeset text uses italics where ordinary

typed text uses underlining. In converting a file of text

destined to be printed on a line printer to text suitable for a

phototypesetter, one has to replace underlined words by

italics. An underlined word is a string of letters followed by

an equal number of backspaces and an equal number of

underscores. If we regard a as any letter, b as backspace,

and c as underscore, the language L3 represents

underlined words.

Grammar3- 19

The conclusion is that we cannot use a grammar to describe

underlined words, and more importantly, we cannot use a

parser-generating tool based solely on context-free grammars

to create a program to convert underlined words to italics. This

situation is unusual, in that most simple text-processing

programs can be written easily with the aid of a scanner

generator like LEX of Chapter 3, which is even less powerful

than a parser generator.

Grammar3- 20

It is interesting to note that languages very similar to L1, L2

and L3 are context-free. For example,

L1 ‘= { wcwR | w is in (a | b) * }, where wR stands for w

reversed, is context-free. It is generated by the grammar

S  aSa | bSb | c

L2’= {anbmcmdn | n1 and m 1} is context-free, generated by

S  aSd | aAd

A  bAc | bc

Also, L2’= {anbmcmdn | n1 and m 1} is context-free, with

grammar S  AB

A  aAb | ab

B  cBd | cd

Finally, L3’= { anbn | n1 } is context-free, with grammar

S  aSb | ab

Grammar3- 21

It is worth noting that L3’ is an example of language not

definable by any regular expression. To see this, suppose L3’

were the language of regular expression R. Then we could

construct a DFA. A accepting L3’, A must be some finite

number of states, say k. Consider the sequence of states, s0,

s1, s2, …, sk entered by A given inputs , a, aa, … . In general,

it is the state entered by A having read i a’s. Then as there are

only k different states, two states among s0, s1, …, sk must be

the same, say si= sj. Then an additional sequence of i b’s

takes si to an accepting state, since aibi is in L3’. But then there

is also a path from the initial state s0 to s1 to f labeled ajbi, as

shown in Fig.4.6.

Grammar3- 22

S0
Si = Sj f

Path labeled bi

Path labeled ai

Path labeled aj

Fig. 4.6. The DFA A.

Thus, A also accepts ajbi, which is not in L3’, contradicting the

assumption that L3’ is the language accepted by A.

Grammar3- 23

Colloquially, we say that “finite automata cannot count,”

meaning they cannot accept a language like L3’ which

requires that they count the number of a’s exactly. Similarly,

we say “grammars can count two things but not three” since

with a context-free grammar we can define L3’ but not L3.

Grammar3- 24

Example 4.11. Consider the abstract language

L1 = { wcw | w is in (a | b) * }. L1 consists of all words

composed of a repeated string of a’s and b’s separated by a

c, such as aabcaab. It can be proven this language is not

context free. This language abstracts the problem of

checking that identifiers are declared before their use in a

program. That is, the first w in wcw represents the declaration

of an identifier w. The second w represents its use. While it is

beyond the scope of this book to prove it, the non-context-

freedom of L1 directly implies the non-context-freedom of

programming languages like Algol and Pascal, which require

declaration of identifiers before their use, and which allow

identifiers of arbitrary length.

Grammar3- 25

For this reason, a grammar for the syntax of Algol or Pascal

does not specify the characters in an identifier. Instead, all

identifiers are represented by a token such as id in the

grammar. In a compiler for such a language, the semantic

analysis phase checks that identifiers have been declared

before their use.

Grammar3- 26

Example 4.12.

The language L2 = { anbmcndm | n1 and m1 } is not context

free. That is, L2 consists of strings in the language generated

by the regular expression a*b*c*d* such that the number of a’s

and c’s are equal and the number of b’s and d’s are equal.

(Recall an means a written n times.) L2 abstracts the problem

of checking that the number of formal parameters in the

declaration of a procedure agrees with the number of actual

parameters in a use of the procedure. That is, an and bm

could represent the formal parameter lists in two procedures

declared to have n and m arguments, respectively. Then cn

and dm represent the actual parameter lists in calls to these

two procedures.

Grammar3- 27

Again note that the typical syntax of procedure definitions

and uses does not concern itself with counting the number of

parameters. For example, the CALL statement in a Fortran-

like language might be described

stmt  call id (expr_list)

expr_list  expr_list, expr | expr

with suitable productions for expr. Checking that the number

of actual parameters in the call is correct is usually done

during the semantic analysis phase.

Example 4.13. The language L3 = { anbncn | n0 }, that is,

strings in L(a*b*c*) with equal numbers of a’s, b’s and c’s, is

not context free. An example of a problem that embeds L3 is

the following.

Grammar3- 28

Typeset text uses italics where ordinary typed text uses

underlining. In converting a file of text destined to be printed

on a line printer to text suitable for a phototypesetter, one

has to replace underlined words by italics. An underlined

word is a string of letters followed by an equal number of

backspaces and an equal number of underscores. If we

regard a as any letter, b as backspace, and c as underscore,

the language L3 represents underlined words. The

conclusion is that we cannot use a grammar to describe

underlined words in this fashion. On the other hand, if we

represent an underlined word as a sequence of letter-

backspace-underscore triples then we can represent

underlined words with the regular expression (abc)*.

Grammar3- 29

It is interesting to note that language very similar to L1, L2 and

L3 are context free. For example,

L’1= { wcwR | w is in (a | b)* }, where wR stands for w reversed,

is context free. It is generated by the grammar

S  aSa | bSb | c

The language L2’= { anbmcndm | n1 and m1 } is context free,

with grammar

S  aSd | aAd

A  bAc | bc

Also, L’2’= { anbncmdm | n1 and m1 } is context free, with

grammar

S  AB

A  aAb | ab

B  cBd | cd

Grammar3- 30

Finally, L’3 = { anbn | n0 } is context free, with grammar

S  aSb | ab

It is worth noting that L’3 is the prototypical example of a

language not definable by any regular expression.

