Grammar 2

<<Grammar2.ppt>>

m0 = HIPE B

(—) #IEEO 3£ (type O grammar)
15785 W E A AR B IRS] » RECMERE 4R RYErSE
AT 1 B PR E AR T e MY R B HE R B
A F HIlaBBAA—>aB R AARIER -
2 EE=HYRER] - nl4Esd T B = HHREE (contracting context-sensitive)
3. A FATHFE =R PRE] - a—=p Hfra,Be (NUT) * S azh

4. 8 8{EHM (automation) BYHEEY © turning machine o

Grammar?2 - 2

=

(—) MIEE1E (type 1 grammar)

155585 R — (AR A T A B R R E RN S D A B R (L
SRBERBARIEE IR SOELNT
N={A B, >} T={a,b,c}
P={2>2—>Abc
Ab—aAbB
Bb—bB
Bc—bcc
A—a}

PHCOEEAN T EPEsabhe o n> 1 -
2. EESHERAI © RN elyEsE i HSCEAHEE (noncontracting context-sensitive)

3. EAFMANNEZ KR : cat — ot
Hris>te (NUT) *: a,pe (NUT) *—A i H.
length(a)< length(B) -

4. HELHEEYERY ¢ R E AR MR I B #M bk (non-deterministic

linear-bounded automata) -

Grammar2 - 3

(=) BFER230XL (type 2 grammar)
1555 - [REZEAEMRACE A gE 2B — IR ot » R EER
HIH e FH e B 5 LEBRAE A SO T 4R 1 5 Bl
BACKUS NORMAL FORM (BNF)H[I &RIgE2 373k -
2 FEE YA - SCEERE (context-free) o

3. EEFHMAAIFERA] - A—> B HFAe N e (NUT) *—i
4. B EREHIHET - JEAETERE AZUEETHY B Eh L

(non-deterministic push-down storage automata) -

Grammar2 - 4

.
(PU) HUBESSTIE (type 3 grammar)

157G« PRI —{E2D SR e AR R Rl R &% i T 55t B FRE I < 688 © 58 5
Z o PRSI E AR AR 28 R ae S BB — B Im ot - M4 AR Al
NGB ZNER NIWEEE
(1)IFEL T 9% HR AT IR IR TR A MY ET A RN A 1E - T8 R a4y
MR R (right-linear production) -
(2)IR&%Im ot L ERAT I F Im L R NPT A FT5R AV /42 - Tl R e SRR
A $1 R (left-linear production) -

2R - HAECATRARRE (regular or finite — state) -

3. E A HTHAS =R PR
(DA - A—>aB
A —a
(2)/céiM: - A—Ba
A —a
Hrf aeT:A>BeN

4. HELEEEVEEY - AIRIREERY B E bk (finite-state automata) -

Grammar2 - 5

B SEEHUERRR

eI
Type Type qf _Ianguage : Production form and restrictions
and recognizing automation
Contracting context-sensitive | a—[
0 (post systems): a,Be (NUT) * ;
Turing machines o # A
Noncontracting context-sensitive: | cat — ofjt
1 Non-deterministic c'te (NUT) *; a,fe (NUT)
linear-bounded automata *—A length(a) < length(p3)
Context-free: A—-p
2 non-deterministic push-down | e (NUT) *—
storage automata Ae N
Right-linear Left-linear
3 Regular or finite-state: A —aB A —Ba
finite-state automata A —a A —a
ael; A>BeN

it XFRoRHEEXPEIRET

Fa S A RE T PTG SR Y 2 B

Grammar2 - 6

.\'S\'SU
|Lm:.‘
o = YT RE B A 2 5 S DO AR EAHRARY - (e RAtET Smts
()RR RAIRR2HVER r S - BURR2IERIRRIAYEN 70 5
& > BIRRLIE A SeOHVEl &5 -
HALRE

(C)BIEE | (3B HEERAURE | SRR - (B REE

H1RSOREA - H iFER0E(1E2 -

Grammar? -

|CSE\

Classes of Grammars

Chomsky [1965] distinguished four classes of grammars. The
most general class, the unrestricted grammars, is not phrase-
structured, and may follow any conceivable set of rules. The other
three classes are phrases-structured:

the context-sensitive, context-free, and right-linear grammars.

The most general phrase-structured class is the context-sensitive
grammar. In this class, each production has the form:
X—>Y

where x and y are members of (NU2), X contains at least one

member of N, and |x| < |y|. Note that the last requirement implies that y
cannot be empty.

Grammar2 - 8

|CSE\

An example of a context-sensitive grammar is:
Gl=({S, B,C},{a, b,c},P,9S)

where the production P are:
1. S—»aSBC
2. S—abC
3. CB—»BC
4. bB—bb
5. bC—bc
6. cC—cc

Let us develop a set of replacements in this grammar. Because S is the
designated starting, we look for a production with S as its left member.
Either of the first two will do:

S—»aSBC

Grammar?2 - 9

.
so that aSBC is a new string. In string aSBC, we can use only another S
rule; let us choose the second one:
aSBC— aabCBC
Here, the third or fifth rule may be chosen; let us choose the third:
aabCBC—aabBCC
Continuing, we find the following sequence of replacements:
aabbCC
aabbcC
aabbcc
We end up with all terminals, so this is the end of the possible
replacements.

We could reach a string for which no production can apply. For
example, in the string aabCBC, if we choose the fifth rule instead of the
third, we obtain aabcBC, and we find that no rule can be applied to this
string. The consequence of such a failure to obtain a terminal string is
simply that we must try other possibilities until we find those that yield
terminal strings.

Grammar?2 - 10

NSYSU
. Context-free Grammars

The next most general class of grammars is the one that we shall be
studying in most of this text-the context-free grammars. In a context-
free grammar, or CFG, each production has the form x — y, where x is
a member of N, and y is any string in (NU2))*. Note that y may be the
empty string. Hence, any CFG with a rule A — ¢ cannot be context-
sensitive: the latter class does not permit such a rule.

An example of CFG that we shall be using repeatedly is an
arithmetic expression grammar GO:

N={E, T, F}
Z:{-I_!*’(’)’a}
S=E
P = the set

1.E>E+T

2.E—>T

3.ToT*F

4.T>F

5.F > (E)

6. F—>a

Grammar?2 - 11

|CSE\

Here, the nonterminal set is clearly {E, T, F}, the terminal set is {+, *, (,), a},
and the start symbol is E. We may obtain a typical expression by applying
the replacement rules, as before:

E derives E + T, using the first rule

E + T derives T + T, using the second rule

T + T derives F + T, using the fourth rule

F + T derives a + T, using the last rule

a + T derives a + F, using the fourth rule

a + F derives a + a, using the last rule

Hence, the string a + a is in GO. Many other examples of derived terminal
strings in this grammar may be obtained.

When a grammar has several productions with the same left member, we
sometimes will use the symbol | , which stands for alternation, as an
abbreviation for two rules. Thus the two rulesE - E + T and E —» T may be

written:
E>E+T|T

Grammar2 - 12

|CSE\

Significance of the Grammar Classification

These grammar classifications are to some extent arbitrary.
One may define many variations on the basic patterns given.
However, these definitions lead to particularly simple classes of
sentence recognizing machines or automata.

An automaton, for our purposes, iIs some machine with a
finite description (but not necessarily containing a finite number
of parts) that, given a grammar, can accept some string of
terminal symbols and can determine whether the string can be
derived in the grammar.

Grammar?2 - 13

NSTSU
lesal

(we

The process of finding a derivation, given a grammar and a
terminal string supposedly derivable in the grammatr, is called
parsing, and an automation capable of parsing | called a parser.
A parsing automaton is of value in a compiler. A grammar is a
concise yet accurate description of some language; it expresses
the class of structures permissible in the language. However, so
far we see only how to construct legal strings in the language.
We need to solve the opposite problem: given some string, how
do we determine if it is legal? We also need to go further than
that; we must determine the sequence of productions needed to
obtain the string. For that we need a parser.

Grammar?2 - 14

s
Each of the three phrase-structured grammar classes has a fairly simple
yet powerful automaton associated with it:

1. The right-linear grammars can be recognized by a finite-state automaton.
which consists merely of a finite set of states and a set of transitions
between pairs of states. Each transition is associated with some terminal
symbol. We shall define finite-state automata more completely in the next
chapter.

2. The CFGs are accepted by a finite-state automaton controlling a push-
down stack, with certain simple rules governing the operations. The push-
down stack is the only element that can be indefinitely large. However,
only a finite group of top stack members are ever referenced in the
description of this automaton.

3. The CSGs are accepted by a two-way, linear bounded automaton, which
IS essentially a Turing machine the tape of which is not permitted to grow
longer than the input string.

Grammar?2 - 15

|CSE\

Right-Linear Grammars

If each production in P has the form A—xB or A—>Xx, where A and
B arein N and x is in 2* , the grammar is said to be right-linear.

The right-linear grammars clearly are a subset of the CFGs. The
following grammar G2 is an example of a right-linear grammatr; it
defines a set of ternary fixed point numbers, with an optional plus or
minus sign:

V> N|+N|-N

N—->0|1]2
N — ON | IN | 2N

Grammar?2 - 16

|csg\
Two other related grammars are the left-linear and regular grammar. A
left-linear grammar has productions in P of the form A — Bx or A — X,
where A, B, and x have previously defined meanings. A regular grammar
IS such that every production in P, with the exception of S — ¢ (S is the
start symbol) is of the form A — aB or A — a, where ais in 2. Further, if S
— ¢ Is In the grammar, then S does not appear on the right of any
production.

The following example of a regular grammar defines the fixed point
decimal numbers with a decimal point; the d stands for a decimal digit:

S—>dB|+A|-A|.G
A—>dB | .G
B—>dB|.H|d

G —dH

H—dH|d

Grammar2 - 17

|CSE\

Comparison to Regular Expression Notation

Consider how the above sample context-free grammar compares to the
regular expression rules given for number in the previous chapter:

number = digit digit*
digit=01]1[2]|3|4|5|6]|7]|8]9]

In basic regular expression rules we have three operations: choice
(given by the vertical bar metasymbol), concatenation (with no
metasymbol), and repetition (given by the asterisk metasymbol). We
also use the equal sign to represent the definition of a name for a regular
expression, and we write the name in italics to distinguish it from a
sequence of actual characters.

Grammar?2 - 18

|CSE\

Grammar rules use similar notations. Names are written in italic (but now
in a different font, so we can tell them from names for regular expressions).
The vertical bar still appears as the metasymbol for choice. Concatenation
IS also used a standard operation. There is, however, no metasymbol for
repetition (like the * of regular expressions), a point to which we shall return
shortly. A further difference in notation is that we now use the arrow symbol
— instead of equality to express the definitions of names. This is because
names cannot now simply be replaced by their definitions, but a more
complex defining process is implied, as a result of the recursive, in that the
name exp appears to the right of the arrow.

Grammar?2 - 19

|CSE\

Note, also, that the grammar rules use regular expressions as
components. In the rules for exp and op there are actually six regular
expressions representing tokens in the language. Five of these are
single-character tokens: +, -, *, (, and). One is the name number, the
name of a token representing sequences of digits.

Grammar rules in a similar form to this example were first used in the
description of the Algo160 language. The notation was developed by
John Backus and adapted by Peter Naur for the Algo160 report. Thus,
grammar rules in this form are usually said to be in Backus-Naur form,
or BNF.

Grammar?2 - 20

- .
The Chomsky Hierarchy and the Limits of Syntax as

Context-Free Rules

When representing the syntactic structure of a useful and powerful tool. But
It is also important to know what can or should be represented by the BNF.
We have already seen a situation in which the grammar may be left
ambiguous intentionally (the dangling else problem), and thus not express
the complete syntax directly. Other situations can arise where we may try to
express too much in the grammar, or where it may be essentially impossible
to express a requirement in the grammar. In this session, we discuss a few of
the common cases.

A frequent question that arises when writing the BNF for a language is the
extent to which the lexical structure should be expressed in the BNF rather
than in a separate description (possibly using regular expression). The
previous discussion has shown that context-free grammars can express
concatenation, repetition, and choice, just as regular expressions can. We
could, therefore, write out grammar rules for the construction of all the tokens
from characters and dispense with regular expressions altogether.

Grammar?2 - 21

|CSE\

For example, consider the definition of a number as a sequence of
digits using regular expressions:

digit=01]2112|3|4]|5]|6]|7|8]9
number = digit digit*

we can write this definition using BNF, instead, as

digt >0]1]2]|3]|4|5|6]|7|8]|9
number — number digit | digit

Note that the recursion in the second rule is used to express repetition
only. A grammar with this property is said to be a regular grammar, and
regular grammars can express everything that regular expressions can. A
conseguence of this is that we could design a parser that would accept
characters directly from the input source file and dispense with the
scanner altogether.

Grammar2 - 22

.
Why isn'’t this a good idea? Efficiency would be compromised. A parser
IS a more powerful machine than a scanner but is correspondingly less
efficient. Nevertheless, it may be reasonable and useful to include a
definition of the tokens in the BNF itself-structure. Of course, the language
Implementor would be expressed to extract these definitions from the
grammar and turn them into a scanner.

A different situation occurs with respect to context rules, which occur
frequently in programming languages. We have been using the term
context-free without explaining why such rules are in fact “free of
context. "The simple reason is that nonterminals appear by themselves to
the left of the arrow in context-free rules. Thus, a rule say that A may be
replaced by a anywhere, regardless of where the A occurs. On the other
hand, we could informally define a context as a pair of strings (of
terminals and nonterminals) 3, y such that a rule would apply only if 3
occurs before and y occurs after the nonterminal. We would write this as

BAy—Bay

Grammar?2 - 23

|CSE\

such a rule in which a#¢is called a context-sensitive grammar rule.
Context-sensitive grammars are more powerful than context-free grammars
but are also much more difficult to use as the basis for parser.

What kind of requirements in programming languages require context-
sensitive rules? Typical examples involve the use of names. The C rule
requiring declaration before use is a typical example. Here, a name must
appear in a declaration before its use in a statement or expression is
allowed:

{intx;

X

Grammar?2 - 24

|CSE\
If we were to try to deal with this requirement using BNF rules, we would,
first, have to include the name strings themselves in the grammar rules
rather than include all names as identifier tokens that are indistinguishable.
Second, for each name we could have to write a rule establishing its
declaration prior to a potential use. But in many languages, the length of
an identifier is unrestricted, and so the number of possible identifiers is (at
least potentially) infinite. Even if names are allowed to be only two
characters long, we have the potential for hundreds of new grammar rules.
Clearly, this is an impossible situation. The solution is similar to that of a
disambiguating rule: we simply state a rule (declaration before use) that is
not explicit in the grammar. There is a difference, however: such a rule
cannot be enforced by the parser itself, since it is beyond the power of
(reasonable) context-free rules to express. Instead, this rule becomes part
of semantic analysis, because it depends on the use of the symbol table
(which records which identifiers have been declared).

Grammar?2 - 25

.

The body of language rules that are beyond the scope of the parser to check,
but that are still capable of being checked by the compiler, are referenced to
as the static semantics of the language. These include type checking (in a
statically typed language) and such rules as declaration before use.
Henceforth, we will regard as syntax only those rules that can be expressed
by BNF rules. Everything else we regard as semantics.

There is one more kind of grammar that is even more general than the
context-sensitive grammars. These grammars are called unrestricted
grammars and have grammar rules of the form a— , where there are no
restrictions on the form of the strings a and 8 (except that a cannot be €). The
four kinds of grammars—unrestricted, context sensitive, context free, and
regular—are also called type 0, type 1, type 2, and type 3 grammars,
respectively. The language classes they construct are also referred to as the
Chomsky hierarchy, after Noam Chomsky, who pioneered their use to
describe natural languages. These grammars represent distinct levels of
computational power.

Grammar?2 - 26

|csa\

Indeed, the unstricted (or type 0) grammars are equivalent to Turing
machines in the same way regular grammars are equivalent to finite automata,
and thus represent the most general kind of computation known. Context-free
grammars also have a corresponding equivalent machine, called a pushdown
automaton, but we will not need the full power of such a machine for our
parsing algorithms and do not discuss it further.

We should also be aware that certain computationally intractable problems
are associated with context-free languages and grammars. For example, in
dealing with ambiguous grammars, it would nice if we could state an algorithm
that would convert an ambiguous grammar into an unambiguous one without
changing the underlying language. Unfortunately, this is known to be an
undecidable problem, so that such an algorithm cannot possibly exist. In fact,
there even exist context-free languages for which no unambiguous grammar
exists (these are called inherently ambiguous languages), and determining
even whether a language is inherently ambiguous is undecidable.

Grammar2 - 27

|CSE\

Fortunately, complications such as inherent ambiguity do not as a
rule arise in programming languages, and the ad hoc techniques for
removing ambiguity that we have described usually prove to be
adequate in practical cases.

Grammar?2 - 28

