B Example 4.17. Consider again grammar (4.11), repeated below:

E—>TE’
E >+TE’| ¢
T—>FT
T >*FT’| ¢

F—(E)|id

W Then:
FIRST(E) = FIRST(T) = FIRST(F) = {(,id } .
FIRST(E’)={+, ¢}
FIRST(T)={* ¢}
FOLLOW(E) = FOLLOW(E)={) ,$}
FOLLOW(T) = FOLLOW(T)={+,) ,$}
FOLLOWF)={+*)>,%$ }

o e -

Grammar Analysis Algorithms (Cont’d)
* Follow(A)

— Ais any nonterminal

— Follow(A) is the set of terminals that my follow A in
some sentential form

Follow(A)={aeV |S="... Aa ... }U
{if S =" 0A then {A} else J}
* First(a)

— The set of all the terminal symbols that can begin a
sentential form derivable from o

— If « 1s the right-hand side of a production, then First(a)
contains terminal symbols that begin strings derivable
from o

First(a)=f{aeV | a ="aB}u
{if o =" A then {\} else &}

25

e
Grammar Analysis Algorithms (Cont’d)

» Definition of C data structures and
subroutines
— first_set[X]
* contains terminal symbols and A

« X is any single vocabulary symbol

— follow_set[A]

* contains terminal symbols and A

* A s a nonterminal symbol

26

Parsers and Recognizers (Cont’d)

« Naming of parsing techniques

TN

The way to parse L: Leftmost
token sequence R: Righmost
» Top-down
» LL
* Bottom-up

» LR

Parsers and Recognizers (Cont’d)

» Two general approaches to parsing

— Top-down parser
* Expanding the parse tree (via predictions) in a
depth-first manner
* Preorder traversal of the parse tree
* Predictive in nature
* Im
3

Parsers and Recognizers (Cont’d)

— Buttom-down parser

* Beginning at its bottom (the leaves of the tree,
which are terminal symbols) and determining the
productions used to generate the leaves

* Postorder traversal of the parse tree
* rm
* LR

1

e
The LL(1) Predict Function

* Given the productions
A—aq,
A—a,

A—a

n

* During a (leftmost) derivation

srs Phisss T B ssx OF
o Oy sz OF
s 00

n---

» Deciding which production to match
— Using lookahead symbols

2

The LL(1) Predict Function

Predict(A — Xy - - Xqy) =
if A eFirst(Xy - - - Xp)
(First(Xy - - -+ Xi) =A) \ Follow(A)
else
First(Xy - - - Xip)

e The limitation of LL(1)

— LL(1) contains exactly those grammars that
have disjoint predict sets for productions that
share a common left-hand side

3

1 <proaram> — bedqin <statement list> end

