FIRST and FOLLOW

The construction of a predictive parser is aided by two
functions associated with a grammar G. These functions,
FIRST and FOLLOW, allow us to fill in the entries of a
predictive parsing table for G, whenever possible. Sets
of tokens yields by FOLLOW function can also be used

as synchronizing tokens during panic-mode error
recovery.

If a is any string of grammar symbols, let FIRST(a) be
the set of terminals that begin the strings derived from a.
If a = ¢, then ¢ is also in FIRST(a).

Firstl - 1

Define FOLLOW(A), for nonterminal A, to be the set of

terminals a that can appear immediately to the right of A
In some sentential form, that is, the set of terminals a
such that there exists a derivation of the form S = aAaf
for some a and 3. Note that there may, at some time
during the derivation, have been symbols between A and
a, but if so, they derived € and disappeared. If A can be
the rightmost symbol in some sentential form, then $ is in
FOLLOW(A).

Firstl - 2

To compute FIRST(X) for all grammar symbols X,
apply the following rules until no more terminals or ¢
can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.
2. If X — ¢ is a production, then add € to FIRST(X).

3. If Xis nonterminal and X —» Y,Y,...Y, IS a
production, then place a in FIRST(X) if for some |, a
Is In FIRST(Y)), and ¢ is in all of FIRST(Y),-.
FIRST(Y,,); thatis, Y,;...Y,; e, If g is in
FIRST(Y,) for aIIJ 1,2,..., K, then add ¢ to
FIRST(XB For example everything In
FIRST(Y,) Is surely in FIRST(X). If Y, does not
derive €, then we add nothing more to FIRST(X),
butif Y, = ¢, then we add FIRST(Y,) and so on.

Firstl - 3

SYSU‘

0
B

e,

= Now, we can compute FIRST for any string X, X,...X, as
follows. Add to FIRST(XX,...X,) all the non-& symbols of
FIRST(X,). Also add the non-g symbols of FIRST(X,) if €
IS In FIRST(X,), the non-g symbols of FIRST(X;) if € is in
both FIRST(X;) and FIRST(X,), and so on. Finally, add ¢
to FIRST(XX,...X,) If, for all i, FIRST(X;) contains ¢.

Firstl - 4

= To compute FOLLOW(B) for all nonterminals B, apply

the following rules until nothing can be added to any

FOLLOW set.
1.Place $ in FOLLOW(S), where S is the start symbol
and $ is the input right endmarker. (*1%)

2.1f there is a production A—»aBf3, then everything in
FIRST(B) except for € is placed in FOLLOW(B).

3.If there is a production A—aB, or a production
A—aB[3 where FIRST([3) contains € (i.e., B = ¥¢),
then everything in FOLLOW(A) isin FOLLOW(B).

Firstl -5

Example 4.17. Consider again grammar (4.11), repeated
below:

E—>TE

E'—> +TE’| ¢

T—>FT

T—>*FT | ¢

F— (E)|Id
= Then:
FIRST(E) = FIRST(T) = FIRST(F) = {(,id } .
FIRST(E') =
FIRST(T’) = {
FOLLOW(E) = FOLLOW(E’) ={) , }
FOLLOW(T)=FOLLOW(T')={+
FOLLOW(F)={+,*),% }

Firstl - 6

=!- For example, id and left parenthesis are added to

FIRST(F) by rule (3) in the definition of FIRST with i=1 In
each case, since FIRST(id) = {id} and FIRST('(') ={ (}
by rule (1). Then by rule (3) with i=1, the production T—
FT implies that id and left parenthesis are in FIRST(T)
as well. As another example, € is in FIRST(E’) by rule (2).

= To compute FOLLOW sets, we put $in FOLLOW(E) by
rule (1) for FOLLOW. By rule (2) applied to production
F—(E), the right parenthesis is also in FOLLOW(E). By
rule (3) applied to production E— TE’, $ and right
parenthesis are in FOLLOW(E’). Slnce E'= ¢, they are
also in FOLLOW(T). For a last example of how the
FOLLOW rules are applied, the production E>TE’
implies, by rule (2), that everything other than € in
FIRST(E’) must be placed in FOLLOW(T). We have
already seen that $ is in FOLLOW(T).

Firstl - 7

i)
B
[

CSE

Example 4.18. Let us apply Algorithm to grammar (4.11).
Since FIRST(TE’) = FIRST(T) = { (, id}, production
E—-TE' cause M[E, (] and MI[E, id] to acquire the entry
E->TE'.

= Production E’ —» +TE’ cause M[E’, +] to acquire E'—
+TE’. Production E’ — € cause M[E’,)] and M[E’, $] to
acquire E'— € since FOLLOW(E’) ={), $}

= The parsing table produced by Algorithm 4.4 for
grammar (4.11) was shown in Fig.4.15.

Firstl - 8

[)
A -
=

w 55
=

Construction of Predictive
Parsing Table

= The following algorithm can be used to construct a
predictive parsing table for a grammar G. The idea
behind the algorithm is the following. Suppose A—a is a
production with a in FIRST(a). Then only parser will
expand A by a when the current input symbol is a. The
only complication occurs when o = € or oo = €. In this
case, we should again expand A by « if the current input
symbol is in FOLLOW(A), or the $ on the input has been
reached and $ is in FOLLOW(A).

Firstl - 9

\'SYSU‘
csn O
[|

Algorithm 4.4 Construction of a predictive parsing table.
Input. Grammar G.

Output. Parsing table M.
Method.

1.For each production A — a of the grammar, do
steps 2 and 3.

2.For each terminal a in FIRST(a), add A — o to
MIA, a].

3.feisin FIRST(a), add A — a to M[A, b] for each
terminal b in FOLLOW(A). If e is in FIRST(a) and
$isin FOLLOW(A), add A — a to M[A, $].

4.Make each undefined entry of M be error.

Firstl - 10

‘NSYSU‘

NONTER- INPUT SYMBOL

MINAL id N ~ () $
E E—>TE E—>TE

E’ E’—>+TFE’ E’—> ¢ E’— ¢
T T—>FT T—>FT

T’ T > ¢ T’ —>*FT’ T > ¢ T'—> ¢
F F—id F— (E)

Fig. 4.15. Parsing table M for grammar (4.11)

Firstl - 11

‘NSYSU‘

STACK INPUT OUTPUT
$E id + id * id$

$E’T id + id * id$ E—>TE
SE’T’F id + id * id$ T > FT
$E’T’id id +id * id$ F—id
SE’T’ +id * id$

$E’ +id * id$ T >¢

SE T+ +id * id$ E’— +TFE’
$E’T id * id$

SE’T’F id * id$ T—>FT
SE’T’id id * id$ F—id
SE’T’ *1d$

SE’T’F* *1d$ T = *FT’
SE’T’F 1d$

SE’T’id id$ F—id
SE’T’ $

SE’ $ T >¢

$ $ E’—>¢

Fig.4.16 Moves made by predictive parser on input id+id*id

Firstl - 12

‘NSYSU‘
Set ip to point to the first symbol of w$;

repeat

let X be the top stack symbol and a the symbol
pointed to by Ip;
If X is aterminal or $ then
If X=a then
pop X from the stack and advance ip
else error()
else /*XIs a nonterminal */
If M[X, a] =X —> Y1Y2...Yk then begin
pop X from the stack;
push Yk, Yk-1, ..., Y1 onto the stack,
with
Y1 on top;
. output the production X - Y1Y2...Yk
en
else error()

until X =$ /* stack is empty */
Fig.4.14. Predictive parsing program.

Firstl - 13

© © N o g & W Ddh E

Example. Consider the following simple grammar G1.

Let us compute FIRST, and FOLLOW, for its
nonterminal, for k=1:

G—o>E L
E—>TFE
E'—> +E
E'— ¢
To>FT
T—>*T
T'—> ¢
F— (E)
F—>a

Firstl - 14

[)

.

A -
=

CLh =
o ©6 06 06 0 o o &l

FIRST,(F) ={ (, a} from productions 8 and 9

FIRST, (T') = {*, €} from productions 6 and 7

FIRST, (T)=FIRST, (FT’)=FIRST, (F FIRST, (T"))={(, a}
FIRST, (E’) = {+, €} from productions 3 and 4

FIRST, (E) = FIRST, (TE’) ={ (, a}

FIRST, (G) =FIRST, (EL) ={(,a}

FOLLOW, (E) ={L,) } v FOLLOW, (E’) from
productions 1, 3, and 8

FOLLOW, (G) ={$ } using property (6)
FOLLOW, (E’) = FOLLOW, (E) from production 2

FOLLOW, (T) = FIRST, (E’ FOLLOW1(E)) v FOLLOW,
(T") from productlons 2 and 6

FOLLOW, (T") = FOLLOW, (T) from production 5

FOLLOW, (F) = FIRST, (T’ FOLLOW, (T)) from
productlon 5

Firstl - 15

SYSU‘

0
B

e,

= By using these relations repeatedly, we obtain the
following table of FOLLOW1.

1 2 3 4 5 6
G |$
E 1L)
E’ 1L)
T L) +
T 1L) +
F 1L) + *

= Columns 1 and 2 are the contents of FOLLOW, (G) and
FOLLOW, (E) known directly from the productions. The
remaining columns are determined by inference from
these and the FOLLOW, and FIRST, relations given.

Firstl - 16

=mbet R[X] = & for all nonterminal X in G;
Repeat (* First *)
For every nonterminal X in G do begin
For every production X — w do begin
Let Xy X5 ... X, = W;
X =1
more = true
while more do begin
If rx >r then begin
RIX] :==R[X] +[¢€];
more = false
end
else if is_terminal(x,,) then begin
RIX] := RIX] + [Xy]
more = false
end

Firstl - 17

else begin
RIX] := RIX] + (Rxpd —[€]) (*1%)
If not(nullable(x,,) then more := false
end

X :=rx +1;

end {while}

end {for}
end; {for}
until no member of R[X] has been augmented,;

Firstl - 18

=
For all tokens X in G do F[X] := [];

Let S be the start token of G;
FIS] .= [$]; (* Follow *)
repeat
for every token X in G do
if not(X in [€,9]) then begin
for (every production Z— w such that
X appearsin w) do
for (every appearance of X in w) do begin
let w=a Xb,b,...b,;
{where a &N U 2);
andb,eNforl1<i<r}
let p:=1; { p = position in b;b,...b, }
let more = true;

Firstl - 19

while more do begin

If p > r then begin
FIX] == F[X] + F[Z];
more = false;
end

else begin

FIX] .= F[X] + (FIRST[bp]-[¢€]);

If nullable(bp) then

p=p+tl
else more:= false;
end {if}
end {while}
end {for}
end {if}

until (no F[S] has been augmented)

Firstl - 20

