
First1 - 1

FIRST and FOLLOW

 The construction of a predictive parser is aided by two
functions associated with a grammar G. These functions,
FIRST and FOLLOW, allow us to fill in the entries of a
predictive parsing table for G, whenever possible. Sets
of tokens yields by FOLLOW function can also be used
as synchronizing tokens during panic-mode error
recovery.

 If α is any string of grammar symbols, let FIRST(α) be
the set of terminals that begin the strings derived from α.
If α  ε, then ε is also in FIRST(α).*

First1 - 2

 Define FOLLOW(A), for nonterminal A, to be the set of
terminals a that can appear immediately to the right of A
in some sentential form, that is, the set of terminals a
such that there exists a derivation of the form S  αAaβ
for some α and β. Note that there may, at some time
during the derivation, have been symbols between A and
a, but if so, they derived ε and disappeared. If A can be
the rightmost symbol in some sentential form, then $ is in
FOLLOW(A).

*

First1 - 3

 To compute FIRST(X) for all grammar symbols X,
apply the following rules until no more terminals or ε
can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.

2. If X  ε is a production, then add ε to FIRST(X).

3. If X is nonterminal and X  Y1Y2…Yk is a
production, then place a in FIRST(X) if for some i, a
is in FIRST(Yi), and ε is in all of FIRST(Y1),…,
FIRST(Yi-1); that is, Y1…Yi-1  ε. If ε is in

FIRST(Yj) for all j=1,2,…, k, then add ε to
FIRST(X).For example, everything in

FIRST(Y1) is surely in FIRST(X). If Y1 does not
derive ε, then we add nothing more to FIRST(X),
but if Y1  ε, then we add FIRST(Y2) and so on.

*

*

First1 - 4

 Now, we can compute FIRST for any string X1X2…Xn as
follows. Add to FIRST(X1X2…Xn) all the non-ε symbols of
FIRST(X1). Also add the non-ε symbols of FIRST(X2) if ε
is in FIRST(X1), the non-ε symbols of FIRST(X3) if ε is in
both FIRST(X1) and FIRST(X2), and so on. Finally, add ε
to FIRST(X1X2…Xn) if, for all i, FIRST(Xi) contains ε.

First1 - 5

 To compute FOLLOW(B) for all nonterminals B, apply
the following rules until nothing can be added to any
FOLLOW set.

1.Place $ in FOLLOW(S), where S is the start symbol
and $ is the input right endmarker. (*!*)

2.If there is a production AαBβ, then everything in
FIRST(β) except for ε is placed in FOLLOW(B).

3.If there is a production AαB, or a production
AαBβ where FIRST(β) contains ε (i.e., β  *ε),

then everything in FOLLOW(A) is in FOLLOW(B).

First1 - 6

 Example 4.17. Consider again grammar (4.11), repeated
below:

E  TE’
E’ +TE’ | ε
T  FT’
T’ *FT’ | ε
F  (E) | id

 Then:
FIRST(E) = FIRST(T) = FIRST(F) = (,id  .
FIRST(E’) = {+,ε}
FIRST(T’) = {*,ε}
FOLLOW(E) = FOLLOW(E’) = {﹚, $ }
FOLLOW(T) = FOLLOW(T’) = { +, ﹚, $ }
FOLLOW(F) = { +, *,﹚, $ }

First1 - 7

 For example, id and left parenthesis are added to
FIRST(F) by rule (3) in the definition of FIRST with i=1 in
each case, since FIRST(id) = {id} and FIRST(‘(‘) = {﹙}
by rule (1). Then by rule (3) with i=1, the production T
FT’ implies that id and left parenthesis are in FIRST(T)
as well. As another example, ε is in FIRST(E’) by rule (2).

 To compute FOLLOW sets, we put $ in FOLLOW(E) by
rule (1) for FOLLOW. By rule (2) applied to production
F(E), the right parenthesis is also in FOLLOW(E). By
rule (3) applied to production E TE’, $ and right
parenthesis are in FOLLOW(E’). Since E’ ε, they are
also in FOLLOW(T). For a last example of how the
FOLLOW rules are applied, the production ETE’
implies, by rule (2), that everything other than ε in
FIRST(E’) must be placed in FOLLOW(T). We have
already seen that $ is in FOLLOW(T).

*

First1 - 8

 Example 4.18. Let us apply Algorithm to grammar (4.11).

Since FIRST(TE’) = FIRST(T) = {﹙, id}, production

ETE’ cause M[E,﹙] and M[E, id] to acquire the entry

ETE’.

 Production E’  +TE’ cause M[E’, +] to acquire E’

+TE’. Production E’  ε cause M[E’,)] and M[E’, $] to

acquire E’ ε since FOLLOW(E’) ={), $}

 The parsing table produced by Algorithm 4.4 for

grammar (4.11) was shown in Fig.4.15.

First1 - 9

Construction of Predictive

Parsing Table
 The following algorithm can be used to construct a

predictive parsing table for a grammar G. The idea
behind the algorithm is the following. Suppose A is a
production with a in FIRST(). Then only parser will
expand A by  when the current input symbol is a. The
only complication occurs when  = ε or   ε. In this
case, we should again expand A by  if the current input
symbol is in FOLLOW(A), or the $ on the input has been
reached and $ is in FOLLOW(A).

*

First1 - 10

 Algorithm 4.4 Construction of a predictive parsing table.

Input. Grammar G.

Output. Parsing table M.

Method.

1.For each production A   of the grammar, do
steps 2 and 3.

2.For each terminal a in FIRST(), add A   to
M[A, a].

3.If ε is in FIRST(), add A   to M[A, b] for each
terminal b in FOLLOW(A). If ε is in FIRST() and
$ is in FOLLOW(A), add A   to M[A, $].

4.Make each undefined entry of M be error.

First1 - 11

NONTER-

MINAL

INPUT SYMBOL

id + * () $

E

E’

T

T’

F

E  TE’

T  FT’

F  id

E’+TE’

T’  T’FT’

E  TE’

T  FT’

F  (E)

E’ 

T’ 

E’ 

T’ 

Fig. 4.15. Parsing table M for grammar (4.11)

First1 - 12

STACK INPUT OUTPUT

$E

$E’T

$E’T’F

$E’T’id

$E’T’

$E’

$E’T+

$E’T

$E’T’F

$E’T’id

$E’T’

$E’T’F*

$E’T’F

$E’T’id

$E’T’

$E’

$

id + id * id$

id + id * id$

id + id * id$

id + id * id$

+ id * id$

+ id * id$

+ id * id$

id * id$

id * id$

id * id$

* id$

* id$

id$

id$

$

$

$

E  TE’

T  FT’

F  id

T’  ε

E’  +TE’

T  FT’

F  id

T’  *FT’

F  id

T’  ε

E’  ε

Fig.4.16 Moves made by predictive parser on input id+id*id

First1 - 13

 Set ip to point to the first symbol of w$;

repeat

let X be the top stack symbol and a the symbol
pointed to by ip;
if X is a terminal or $ then

if X=a then
pop X from the stack and advance ip

else error()
else /*X is a nonterminal */

if M[X, a] = X  Y1Y2…Yk then begin
pop X from the stack;
push Yk, Yk-1, …, Y1 onto the stack,

with
Y1 on top;
output the production X  Y1Y2…Yk

end
else error()

until X = $ /* stack is empty */

Fig.4.14. Predictive parsing program.

First1 - 14

 Example. Consider the following simple grammar G1.
Let us compute FIRSTk and FOLLOWk for its
nonterminal, for k=1:

1. G  E ⊥
2. E  TE’

3. E’ +E

4. E’ ε

5. T  FT’

6. T’ *T

7. T’ ε

8. F  (E)

9. F  a

First1 - 15

 FIRST1(F) = { (, a} from productions 8 and 9

 FIRST1 (T’) = {*, ε} from productions 6 and 7

 FIRST1 (T)=FIRST1 (FT’)=FIRST1 (F FIRST1 (T’))={(, a}

 FIRST1 (E’) = {+, ε} from productions 3 and 4

 FIRST1 (E) = FIRST1 (TE’) = { (, a}

 FIRST1 (G) = FIRST1 (E⊥) = { (,a}

 FOLLOW1 (E) = {⊥,) }  FOLLOW1 (E’) from
productions 1, 3, and 8

 FOLLOW1 (G) = { $ } using property (6)

 FOLLOW1 (E’) = FOLLOW1 (E) from production 2

 FOLLOW1 (T) = FIRST1 (E’FOLLOW1(E))  FOLLOW1
(T’) from productions 2 and 6

 FOLLOW1 (T’) = FOLLOW1 (T) from production 5

 FOLLOW1 (F) = FIRST1 (T’ FOLLOW1 (T)) from
production 5

First1 - 16

 By using these relations repeatedly, we obtain the
following table of FOLLOW1.

 Columns 1 and 2 are the contents of FOLLOW1 (G) and
FOLLOW1 (E) known directly from the productions. The
remaining columns are determined by inference from
these and the FOLLOW1 and FIRST1 relations given.

1 2 3 4 5 6

G $

E ⊥)

E’ ⊥)

T ⊥) +

T’ ⊥) +

F ⊥) + *

First1 - 17

Set R[X] =  for all nonterminal X in G;

Repeat (* First *)

For every nonterminal X in G do begin

For every production X  ω do begin

Let x1 x2 … xr = ω;

rx := 1

more := true

while more do begin

if rx > r then begin

R[X] := R[X] + [ε];

more := false

end

else if is_terminal(xrx) then begin

R[X] := R[X] + [xrx];

more := false

end

First1 - 18

else begin

R[X] := R[X] + (R[xrx] – [ε]) (*!*)

if not(nullable(xrx) then more := false

end

rx := rx +1;

end {while}

end {for}

end; {for}

until no member of R[X] has been augmented;

First1 - 19

For all tokens X in G do F[X] := [];

Let S be the start token of G;

F[S] := [$]; (* Follow *)

repeat

for every token X in G do

if not(X in [ε,$]) then begin

for (every production Z ω such that

X appears in ω) do

for (every appearance of X in ω) do begin

let ω = α X b1b2…br;

{where α (N  Σ);

and bi N for 1  i  r }

let p := 1; { p = position in b1b2…br }

let more := true;




First1 - 20

while more do begin

if p  r then begin

F[X] := F[X] + F[Z];

more := false;

end

else begin

F[X] := F[X] + (FIRST[bp] – [ε]);

If nullable(bp) then

p := p + 1

else more:= false;

end {if}

end {while}

end {for}

end {if}

until (no F[S] has been augmented)

