FIRST and FOLLOW

The construction of a predictive parser is aided by two
functions associated with a grammar G. These functions,
FIRST and FOLLOW, allow us to fill in the entries of a
predictive parsing table for G, whenever possible. Sets
of tokens yields by FOLLOW function can also be used

as synchronizing tokens during panic-mode error
recovery.

If a is any string of grammar symbols, let FIRST(a) be
the set of terminals that begin the strings derived from a.
If a = ¢, then ¢ is also in FIRST(a).
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Define FOLLOW(A), for nonterminal A, to be the set of

terminals a that can appear immediately to the right of A
In some sentential form, that is, the set of terminals a
such that there exists a derivation of the form S = aAaf
for some a and 3. Note that there may, at some time
during the derivation, have been symbols between A and
a, but if so, they derived € and disappeared. If A can be
the rightmost symbol in some sentential form, then $ is in
FOLLOW(A).
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To compute FIRST(X) for all grammar symbols X,
apply the following rules until no more terminals or ¢
can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.
2. If X — ¢ is a production, then add € to FIRST(X).

3. If Xis nonterminal and X —» Y,Y,...Y, IS a
production, then place a in FIRST(X) if for some |, a
Is In FIRST(Y)), and ¢ is in all of FIRST(Y ),-.
FIRST(Y,,); thatis, Y,;...Y,; e, If g is in
FIRST(Y,) for aIIJ 1,2,..., K, then add ¢ to
FIRST(XB For example everything In
FIRST(Y,) Is surely in FIRST(X). If Y, does not
derive €, then  we add nothing more to FIRST(X),
butif Y, = ¢, then we add FIRST(Y,) and so on.
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= Now, we can compute FIRST for any string X, X,...X, as
follows. Add to FIRST(XX,...X,) all the non-& symbols of
FIRST(X,). Also add the non-g symbols of FIRST(X,) if €
IS In FIRST(X,), the non-g symbols of FIRST(X;) if € is in
both FIRST(X;) and FIRST(X,), and so on. Finally, add ¢
to FIRST(XX,...X,) If, for all i, FIRST(X;) contains ¢.
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= To compute FOLLOW(B) for all nonterminals B, apply

the following rules until nothing can be added to any

FOLLOW set.
1.Place $ in FOLLOW(S), where S is the start symbol
and $ is the input right endmarker. (*1%)

2.1f there is a production A—»aBf3, then everything in
FIRST(B) except for € is placed in FOLLOW(B).

3.If there is a production A—aB, or a production
A—aB[3 where FIRST([3) contains € (i.e., B = ¥¢),
then everything in FOLLOW(A) isin  FOLLOW(B).
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Example 4.17. Consider again grammar (4.11), repeated
below:

E—>TE

E'—> +TE’| ¢

T—>FT

T—>*FT | ¢

F— (E)|Id
= Then:
FIRST(E) = FIRST(T) = FIRST(F) = {(,id } .
FIRST(E') =
FIRST(T’) = {
FOLLOW(E) = FOLLOW(E’) ={) , }
FOLLOW(T)=FOLLOW(T')={+
FOLLOW(F)={+,*),% }
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=!- For example, id and left parenthesis are added to

FIRST(F) by rule (3) in the definition of FIRST with i=1 In
each case, since FIRST(id) = {id} and FIRST('(') ={ ( }
by rule (1). Then by rule (3) with i=1, the production T—
FT implies that id and left parenthesis are in FIRST(T)
as well. As another example, € is in FIRST(E’) by rule (2).

= To compute FOLLOW sets, we put $in FOLLOW(E) by
rule (1) for FOLLOW. By rule (2) applied to production
F—(E), the right parenthesis is also in FOLLOW(E). By
rule (3) applied to production E— TE’, $ and right
parenthesis are in FOLLOW(E’). Slnce E'= ¢, they are
also in FOLLOW(T). For a last example of how the
FOLLOW rules are applied, the production E>TE’
implies, by rule (2), that everything other than € in
FIRST(E’) must be placed in FOLLOW(T). We have
already seen that $ is in FOLLOW(T).
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Example 4.18. Let us apply Algorithm to grammar (4.11).
Since FIRST(TE’) = FIRST(T) = { (, id}, production
E—-TE' cause M[E, (] and MI[E, id] to acquire the entry
E->TE'.

= Production E’ —» +TE’ cause M[E’, +] to acquire E'—
+TE’. Production E’ — € cause M[E’, )] and M[E’, $] to
acquire E'— € since FOLLOW(E’) ={), $}

= The parsing table produced by Algorithm 4.4 for
grammar (4.11) was shown in Fig.4.15.
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Construction of Predictive
Parsing Table

= The following algorithm can be used to construct a
predictive parsing table for a grammar G. The idea
behind the algorithm is the following. Suppose A—a is a
production with a in FIRST(a). Then only parser will
expand A by a when the current input symbol is a. The
only complication occurs when o = € or oo = €. In this
case, we should again expand A by « if the current input
symbol is in FOLLOW(A), or the $ on the input has been
reached and $ is in FOLLOW(A).
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Algorithm 4.4 Construction of a predictive parsing table.
Input. Grammar G.

Output. Parsing table M.
Method.

1.For each production A — a of the grammar, do
steps 2 and 3.

2.For each terminal a in FIRST(a), add A — o to
MIA, a].

3.feisin FIRST(a), add A — a to M[A, b] for each
terminal b in FOLLOW(A). If e is in FIRST(a) and
$isin FOLLOW(A), add A — a to M[A, $].

4.Make each undefined entry of M be error.
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NONTER- INPUT SYMBOL

MINAL id N ~ ( ) $
E E—>TE E—>TE

E’ E’—>+TFE’ E’—> ¢ E’— ¢
T T—>FT T—>FT

T’ T > ¢ T’ —>*FT’ T > ¢ T'—> ¢
F F—id F— (E)

Fig. 4.15. Parsing table M for grammar (4.11)
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STACK INPUT OUTPUT
$E id + id * id$

$E’T id + id * id$ E—>TE
SE’T’F id + id * id$ T > FT
$E’T’id id +id * id$ F—id
SE’T’ +id * id$

$E’ +id * id$ T >¢

SE T+ +id * id$ E’— +TFE’
$E’T id * id$

SE’T’F id * id$ T—>FT
SE’T’id id * id$ F—id
SE’T’ *1d$

SE’T’F* *1d$ T = *FT’
SE’T’F 1d$

SE’T’id id$ F—id
SE’T’ $

SE’ $ T >¢

$ $ E’—>¢

Fig.4.16 Moves made by predictive parser on input id+id*id
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Set ip to point to the first symbol of w$;

repeat

let X be the top stack symbol and a the symbol
pointed to by Ip;
If X is aterminal or $ then
If X=a then
pop X from the stack and advance ip
else error()
else /*XIs a nonterminal */
If M[X, a] =X —> Y1Y2...Yk then begin
pop X from the stack;
push Yk, Yk-1, ..., Y1 onto the stack,
with
Y1 on top;
. output the production X - Y1Y2...Yk
en
else error()

until X =$ /* stack is empty */
Fig.4.14. Predictive parsing program.
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Example. Consider the following simple grammar G1.

Let us compute FIRST, and FOLLOW, for its
nonterminal, for k=1:

G—o>E L
E—>TFE
E'—> +E
E'— ¢
To>FT
T—>*T
T'—> ¢
F— (E)
F—>a
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FIRST,(F) ={ (, a} from productions 8 and 9

FIRST, (T') = {*, €} from productions 6 and 7

FIRST, (T)=FIRST, (FT’)=FIRST, (F FIRST, (T"))={(, a}
FIRST, (E’) = {+, €} from productions 3 and 4

FIRST, (E) = FIRST, (TE’) ={ (, a}

FIRST, (G) =FIRST, (EL) ={(,a}

FOLLOW, (E) ={L,) } v FOLLOW, (E’) from
productions 1, 3, and 8

FOLLOW, (G) ={$ } using property (6)
FOLLOW, (E’) = FOLLOW, (E) from production 2

FOLLOW, (T) = FIRST, (E’ FOLLOW1(E)) v FOLLOW,
(T") from productlons 2 and 6

FOLLOW, (T") = FOLLOW, (T) from production 5

FOLLOW, (F) = FIRST, (T’ FOLLOW, (T)) from
productlon 5
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= By using these relations repeatedly, we obtain the
following table of FOLLOW1.

1 2 3 4 5 6
G |$
E 1L )
E’ 1L )
T L) +
T 1L ) +
F 1L ) + *

= Columns 1 and 2 are the contents of FOLLOW, (G) and
FOLLOW, (E) known directly from the productions. The
remaining columns are determined by inference from
these and the FOLLOW, and FIRST, relations given.
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=mbet R[X] = & for all nonterminal X in G;
Repeat (* First *)
For every nonterminal X in G do begin
For every production X — w do begin
Let Xy X5 ... X, = W;
X =1
more = true
while more do begin
If rx >r then begin
RIX] :==R[X] +[¢€];
more = false
end
else if is_terminal(x,,) then begin
RIX] := RIX] + [ Xy ]
more = false
end
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else begin
RIX] := RIX] + (Rxpd —[€])  (*1%)
If not(nullable(x,,) then more := false
end

X :=rx +1;

end {while}

end {for}
end; {for}
until no member of R[X] has been augmented,;
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For all tokens X in G do F[X] := [];

Let S be the start token of G;
FIS] .= [$]; (* Follow *)
repeat
for every token X in G do
if not( X in [€,9]) then begin
for (every production Z— w such that
X appearsin w ) do
for (every appearance of X in w) do begin
let w=a Xb,b,...b,;
{where a &N U 2);
andb,eNforl1<i<r}
let p:=1; { p = position in b;b,...b, }
let more = true;
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while more do begin

If p > r then begin
FIX] == F[X] + F[Z];
more = false;
end

else begin

FIX] .= F[X] + (FIRST[bp]-[¢€]);

If nullable(bp) then

p=p+tl
else more:= false;
end {if}
end {while}
end {for}
end {if}

until (no F[S] has been augmented)

Firstl - 20



