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· FIRST and FOLLOW

The construction of a predictive parser is aided by two functions associated with a grammar G. These functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G, whenever possible. Sets of tokens yields by FOLLOW function can also be used as synchronizing tokens during panic-mode error recovery.

[image: image3.png]If α is any string of grammar symbols, let FIRST(α) be the set of terminals that begin the strings derived from α. If α ( ε, then ε is also in FIRST(α).

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form S ( αAaβ for some α and β. Note that there may, at some time during the derivation, have been symbols between A and a, but if so, they derived ε and disappeared. If A can be the rightmost symbol in some sentential form, then $ is in FOLLOW(A).

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.

2. If X ( ε is a production, then add ε to FIRST(X).

3. If X is nonterminal and X ( Y1Y2…Yk is a production, then place a in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…, FIRST(Yi-1); that is, Y1…Yi-1 ( ε. If ε is in FIRST(Yj) for all j=1,2,…, k, then add ε to FIRST(X). For example, everything in FIRST(Y1) is surely in FIRST(X). If Y1 does not derive ε, then we add nothing more to FIRST(X), but if Y1 ( ε, then we add FIRST(Y2) and so on.

Now, we can compute FIRST for any string X1X2…Xn as follows. Add to FIRST(X1X2…Xn) all the non-ε symbols of FIRST(X1). Also add the non-ε symbols of FIRST(X2) if ε is in FIRST(X1), the non-ε symbols of FIRST(X3) if ε is in both FIRST(X1) and FIRST(X2), and so on. Finally, add ε to FIRST(X1X2…Xn) if, for all i, FIRST(Xi) contains ε.

To compute FOLLOW(B) for all nonterminals B, apply the following rules until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right endmarker.
(*!*)
2. If there is a production A(αBβ, then everything in FIRST(β) except for ε is placed in FOLLOW(B).

3. If there is a production A(αB, or a production A(αBβ where FIRST(β) contains ε (i.e., β ( ε), then everything in FOLLOW(A) is in FOLLOW(B).

Example 4.17. Consider again grammar (4.11), repeated below:

E ( TE’

E’( +TE’ | ε

T ( FT’

T’( *FT’ | ε

F ( (E) | id

Then:

FIRST(E) = FIRST(T) = FIRST(F) = ((,id ( .

FIRST(E’) = {+,ε}

FIRST(T’) = {*,ε}

FOLLOW(E) = FOLLOW(E’) = {﹚, $ }

FOLLOW(T) = FOLLOW(T’) = { +, ﹚, $ }

FOLLOW(F) = { +, *,﹚, $ }
For example, id and left parenthesis are added to FIRST(F) by rule (3) in the definition of FIRST with i=1 in each case, since FIRST(id) = {id} and FIRST(‘(‘) = {﹙} by rule (1). Then by rule (3) with i=1, the production T( FT’ implies that id and left parenthesis are in FIRST(T) as well. As another example, ε is in FIRST(E’) by rule (2).

To compute FOLLOW sets, we put $ in FOLLOW(E) by rule (1) for FOLLOW. By rule (2) applied to production F((E), the right parenthesis is also in FOLLOW(E). By rule (3) applied to production E( TE’, $ and right parenthesis are in FOLLOW(E’). Since E’( ε, they are also in FOLLOW(T). For a last example of how the FOLLOW rules are applied, the production E(TE’ implies, by rule (2), that everything other than ε in FIRST(E’) must be placed in FOLLOW(T). We have already seen that $ is in FOLLOW(T).

Example 4.18. Let us apply Algorithm to grammar (4.11). Since FIRST(TE’) = FIRST(T) = {﹙, id}, production E(TE’ cause M[E,﹙] and M[E, id] to acquire the entry E(TE’.

Production E’ ( +TE’ cause M[E’, +] to acquire E’( +TE’. Production E’ ( ε cause M[E’, )] and M[E’, $] to acquire E’( ε since FOLLOW(E’) ={), $}

The parsing table produced by Algorithm 4.4 for grammar (4.11) was shown in Fig.4.15.

· Construction of Predictive Parsing Table

The following algorithm can be used to construct a predictive parsing table for a grammar G. The idea behind the algorithm is the following. Suppose A(( is a production with a in FIRST((). Then only parser will expand A by ( when the current input symbol is a. The only complication occurs when ( = ε or ( ( ε. In this case, we should again expand A by ( if the current input symbol is in FOLLOW(A), or the $ on the input has been reached and $ is in FOLLOW(A).

Algorithm 4.4 Construction of a predictive parsing table.

Input. Grammar G.

Output. Parsing table M.

Method.

1. For each production A ( ( of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST((), add A ( ( to M[A, a].

3. If ε is in FIRST((), add A ( ( to M[A, b] for each terminal b in FOLLOW(A). If ε is in FIRST(() and $ is in FOLLOW(A), add A ( ( to M[A, $].

4. Make each undefined entry of M be error.
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Fig. 4.15. Parsing table M for grammar (4.11)

Fig.4.16 Moves made by predictive parser on input id+id*id

Set ip to point to the first symbol of w$;

repeat


let X be the top stack symbol and a the symbol

pointed to by ip;

if X is a terminal or $ then


if X=a then



pop X from the stack and advance ip


else error()

else  /*X is a nonterminal */


if M[X, a] = X ( Y1Y2…Yk then begin



pop X from the stack;



push Yk, Yk-1, …, Y1 onto the stack, with



Y1 on top;



output the production X ( Y1Y2…Yk


end


else error()

until X = $  /* stack is empty */

Fig.4.14. Predictive parsing program.

Example. Consider the following simple grammar G1. Let us compute FIRSTk and FOLLOWk for its nonterminal, for k=1:

1. G ( E ⊥
2. E ( TE’

3. E’( +E

4. E’( ε

5. T ( FT’

6. T’( *T

7. T’( ε

8. F ( (E)

9. F ( a

· FIRST1(F) = { (, a} from productions 8 and 9

· FIRST1(T’) = {*, ε} from productions 6 and 7

· FIRST1(T)=FIRST1(FT’)=FIRST1(F FIRST1(T’))={(, a}

· FIRST1(E’) = {+, ε} from productions 3 and 4

· FIRST1(E) = FIRST1(TE’) = { (, a}

· FIRST1(G) = FIRST1(E⊥) = { (,a}

· FOLLOW1(E) = {⊥, ) } ( FOLLOW1(E’) from productions 1, 3, and 8

· FOLLOW1(G) = { $ } using property (6)

· FOLLOW1(E’) = FOLLOW1(E) from production 2

· FOLLOW1(T) = FIRST1(E’FOLLOW1(E)) ( FOLLOW1(T’) from productions 2 and 6

· FOLLOW1(T’) = FOLLOW1(T) from production 5

· FOLLOW1(F) = FIRST1(T’ FOLLOW1(T)) from production 5

By using these relations repeatedly, we obtain the following table of FOLLOW1.
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Columns 1 and 2 are the contents of FOLLOW1(G) and FOLLOW1(E) known directly from the productions. The remaining columns are determined by inference from these and the FOLLOW1 and FIRST1 relations given.
Set R[X] = ( for all nonterminal X in G;

Repeat


(* First *)

For every nonterminal X in G do begin



For every production X ( ω do begin




Let x1 x2 … xr = ω;




rx := 1




more := true




while more do begin





if rx > r then begin






R[X] := R[X] + [ ε ];






more := false






end





else if is_terminal(xrx) then begin






R[X] := R[X] + [ xrx ];






more := false






end





else begin






R[X] := R[X] + (R[xrx] – [ ε ])

(*!*)





if not(nullable(xrx) then more := false






end





rx := rx +1;





end {while}




end {for}



end; {for}


until no member of R[X] has been augmented;

For all tokens X in G do F[X] := [];

Let S be the start token of G;

F[S] := [$];

(* Follow *)
repeat


for every token X in G do


if not( X in [ε,$]) then begin



for (every production Z( ω such that




X appears in ω ) do



for (every appearance of X in ω) do begin




let ω =αX b1b2…br;





{where α
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and bi
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let p := 1; { p = position in b1b2…br }




let more := true;




while more do begin





if p ( r then begin






F[X] := F[X] + F[Z];






more := false;






end





else begin






F[X] := F[X] + (FIRST[bp] – [ ε ]);






If nullable(bp) then







p := p + 1






else more:= false;





end {if}




end {while}



end {for}



end {if}
until (no F[S] has been augmented)
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