11[image: image3.png]=
=l M@
=

· FIRST and FOLLOW

The construction of a predictive parser is aided by two functions associated with a grammar G. These functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G, whenever possible. Sets of tokens yields by FOLLOW function can also be used as synchronizing tokens during panic-mode error recovery.

[image: image3.png]If α is any string of grammar symbols, let FIRST(α) be the set of terminals that begin the strings derived from α. If α (ε, then ε is also in FIRST(α).

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form S (αAaβ for some α and β. Note that there may, at some time during the derivation, have been symbols between A and a, but if so, they derived ε and disappeared. If A can be the rightmost symbol in some sentential form, then $ is in FOLLOW(A).

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.

2. If X (ε is a production, then add ε to FIRST(X).

3. If X is nonterminal and X (Y1Y2…Yk is a production, then place a in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…, FIRST(Yi-1); that is, Y1…Yi-1 (ε. If ε is in FIRST(Yj) for all j=1,2,…, k, then add ε to FIRST(X). For example, everything in FIRST(Y1) is surely in FIRST(X). If Y1 does not derive ε, then we add nothing more to FIRST(X), but if Y1 (ε, then we add FIRST(Y2) and so on.

Now, we can compute FIRST for any string X1X2…Xn as follows. Add to FIRST(X1X2…Xn) all the non-ε symbols of FIRST(X1). Also add the non-ε symbols of FIRST(X2) if ε is in FIRST(X1), the non-ε symbols of FIRST(X3) if ε is in both FIRST(X1) and FIRST(X2), and so on. Finally, add ε to FIRST(X1X2…Xn) if, for all i, FIRST(Xi) contains ε.

To compute FOLLOW(B) for all nonterminals B, apply the following rules until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right endmarker.
(*!*)
2. If there is a production A(αBβ, then everything in FIRST(β) except for ε is placed in FOLLOW(B).

3. If there is a production A(αB, or a production A(αBβ where FIRST(β) contains ε (i.e., β (ε), then everything in FOLLOW(A) is in FOLLOW(B).

Example 4.17. Consider again grammar (4.11), repeated below:

E (TE’

E’(+TE’ | ε

T (FT’

T’(*FT’ | ε

F ((E) | id

Then:

FIRST(E) = FIRST(T) = FIRST(F) = ((,id (.

FIRST(E’) = {+,ε}

FIRST(T’) = {*,ε}

FOLLOW(E) = FOLLOW(E’) = {﹚, $ }

FOLLOW(T) = FOLLOW(T’) = { +, ﹚, $ }

FOLLOW(F) = { +, *,﹚, $ }
For example, id and left parenthesis are added to FIRST(F) by rule (3) in the definition of FIRST with i=1 in each case, since FIRST(id) = {id} and FIRST(‘(‘) = {﹙} by rule (1). Then by rule (3) with i=1, the production T(FT’ implies that id and left parenthesis are in FIRST(T) as well. As another example, ε is in FIRST(E’) by rule (2).

To compute FOLLOW sets, we put $ in FOLLOW(E) by rule (1) for FOLLOW. By rule (2) applied to production F((E), the right parenthesis is also in FOLLOW(E). By rule (3) applied to production E(TE’, $ and right parenthesis are in FOLLOW(E’). Since E’(ε, they are also in FOLLOW(T). For a last example of how the FOLLOW rules are applied, the production E(TE’ implies, by rule (2), that everything other than ε in FIRST(E’) must be placed in FOLLOW(T). We have already seen that $ is in FOLLOW(T).

Example 4.18. Let us apply Algorithm to grammar (4.11). Since FIRST(TE’) = FIRST(T) = {﹙, id}, production E(TE’ cause M[E,﹙] and M[E, id] to acquire the entry E(TE’.

Production E’ (+TE’ cause M[E’, +] to acquire E’(+TE’. Production E’ (ε cause M[E’,)] and M[E’, $] to acquire E’(ε since FOLLOW(E’) ={), $}

The parsing table produced by Algorithm 4.4 for grammar (4.11) was shown in Fig.4.15.

· Construction of Predictive Parsing Table

The following algorithm can be used to construct a predictive parsing table for a grammar G. The idea behind the algorithm is the following. Suppose A((is a production with a in FIRST((). Then only parser will expand A by (when the current input symbol is a. The only complication occurs when (= ε or ((ε. In this case, we should again expand A by (if the current input symbol is in FOLLOW(A), or the $ on the input has been reached and $ is in FOLLOW(A).

Algorithm 4.4 Construction of a predictive parsing table.

Input. Grammar G.

Output. Parsing table M.

Method.

1. For each production A ((of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST((), add A ((to M[A, a].

3. If ε is in FIRST((), add A ((to M[A, b] for each terminal b in FOLLOW(A). If ε is in FIRST(() and $ is in FOLLOW(A), add A ((to M[A, $].

4. Make each undefined entry of M be error.

	NONTER-
MINAL
	INPUT SYMBOL

	
	id
	+
	*
	(
)
	$

	E

E’

T

T’

F
	E (TE’

T (FT’

F (id
	E’(+TE’

T’((
	T’((FT’
	E (TE’

T (FT’

F ((E)
	E’((
T’((
	E’((
T’((

	STACK
	INPUT
	OUTPUT

	$E

$E’T

$E’T’F

$E’T’id

$E’T’

$E’

$E’T+

$E’T

$E’T’F

$E’T’id

$E’T’

$E’T’F*

$E’T’F

$E’T’id

$E’T’

$E’

$
	id + id * id$

id + id * id$

id + id * id$

id + id * id$

 + id * id$

 + id * id$

 + id * id$

 id * id$

 id * id$

 id * id$

 * id$

 * id$

 id$

 id$

 $

 $

 $
	E (TE’

T (FT’

F (id

T’ (ε

E’ (+TE’

T (FT’

F (id

T’ (*FT’

F (id

T’ (ε

E’ (ε

Fig. 4.15. Parsing table M for grammar (4.11)

Fig.4.16 Moves made by predictive parser on input id+id*id

Set ip to point to the first symbol of w$;

repeat

let X be the top stack symbol and a the symbol

pointed to by ip;

if X is a terminal or $ then

if X=a then

pop X from the stack and advance ip

else error()

else /*X is a nonterminal */

if M[X, a] = X (Y1Y2…Yk then begin

pop X from the stack;

push Yk, Yk-1, …, Y1 onto the stack, with

Y1 on top;

output the production X (Y1Y2…Yk

end

else error()

until X = $ /* stack is empty */

Fig.4.14. Predictive parsing program.

Example. Consider the following simple grammar G1. Let us compute FIRSTk and FOLLOWk for its nonterminal, for k=1:

1. G (E ⊥
2. E (TE’

3. E’(+E

4. E’(ε

5. T (FT’

6. T’(*T

7. T’(ε

8. F ((E)

9. F (a

· FIRST1(F) = { (, a} from productions 8 and 9

· FIRST1(T’) = {*, ε} from productions 6 and 7

· FIRST1(T)=FIRST1(FT’)=FIRST1(F FIRST1(T’))={(, a}

· FIRST1(E’) = {+, ε} from productions 3 and 4

· FIRST1(E) = FIRST1(TE’) = { (, a}

· FIRST1(G) = FIRST1(E⊥) = { (,a}

· FOLLOW1(E) = {⊥,) } (FOLLOW1(E’) from productions 1, 3, and 8

· FOLLOW1(G) = { $ } using property (6)

· FOLLOW1(E’) = FOLLOW1(E) from production 2

· FOLLOW1(T) = FIRST1(E’FOLLOW1(E)) (FOLLOW1(T’) from productions 2 and 6

· FOLLOW1(T’) = FOLLOW1(T) from production 5

· FOLLOW1(F) = FIRST1(T’ FOLLOW1(T)) from production 5

By using these relations repeatedly, we obtain the following table of FOLLOW1.

	
	
	
	
	
	
	

	
	1
	2
	3
	4
	5
	6

	G
	$
	
	
	
	
	

	E
	⊥
)
	
	
	
	

	E’
	
	
	⊥
)
	
	

	T
	
	
	⊥
)
	+
	

	T’
	
	
	⊥
)
	+
	

	F
	
	
	⊥
)
	+
	*

Columns 1 and 2 are the contents of FOLLOW1(G) and FOLLOW1(E) known directly from the productions. The remaining columns are determined by inference from these and the FOLLOW1 and FIRST1 relations given.
Set R[X] = (for all nonterminal X in G;

Repeat

(* First *)

For every nonterminal X in G do begin

For every production X (ω do begin

Let x1 x2 … xr = ω;

rx := 1

more := true

while more do begin

if rx > r then begin

R[X] := R[X] + [ε];

more := false

end

else if is_terminal(xrx) then begin

R[X] := R[X] + [xrx];

more := false

end

else begin

R[X] := R[X] + (R[xrx] – [ε])

(*!*)

if not(nullable(xrx) then more := false

end

rx := rx +1;

end {while}

end {for}

end; {for}

until no member of R[X] has been augmented;

For all tokens X in G do F[X] := [];

Let S be the start token of G;

F[S] := [$];

(* Follow *)
repeat

for every token X in G do

if not(X in [ε,$]) then begin

for (every production Z(ω such that

X appears in ω) do

for (every appearance of X in ω) do begin

let ω =αX b1b2…br;

{where α
[image: image1.wmf]Î

(N (Σ);

and bi
[image: image2.wmf]Î

N for 1 (i (r }

let p := 1; { p = position in b1b2…br }

let more := true;

while more do begin

if p (r then begin

F[X] := F[X] + F[Z];

more := false;

end

else begin

F[X] := F[X] + (FIRST[bp] – [ε]);

If nullable(bp) then

p := p + 1

else more:= false;

end {if}

end {while}

end {for}

end {if}
until (no F[S] has been augmented)
*

*

*

*

*

*

*

First1 - 11

_1240142452.unknown

