N

Chap 8 Symbol Table

| =4

a

™

Name

attributes

declared.

used.

TWO ISsues:

It.

o

* Collect attributes when a name is

* Provide information when a name is

1. interface: how to use symbol tables

2. Implementation: how to implement

J

| =4

P o ¥

a

Chap 8 Symbol Table

™

§ 8.1 A symbol table class

A symbol table class provides the
following functins:

1. create() : symbol table

2. destroy (symbol_table)

5. set_attributes (*entry, attributes)

6. get_attributes (*entry) : attributes

o

3. enter (name, table) : pointer to an entry

4. find (name, table) : pointer to an entry

J

| =4

P o ¥

Chap 8 Symbol Table

4 h

§ 8.2 basic implementation techniques

 basic operations: enter() and find()

e considerations: number of names
storage space
retrieval time

e Organizations:

<1> unordered list (linked list/array)

<2> ordered list
» binary search on arrays
» expensive insertion
(+) good for a fixed set of names
(e.g. reserved words, assembly
opcodes)

<3> binary search tree
» On average, searching takes
O(log(n)) time.
» However, names in programsare
not chosen randomly.

<4> hash table: most common
\ (+) constant time /

| =4

P o

Chap 8 Symbol Table

a

§ 8.2.1 binary search tree

™

 For balanced tree, search takes
O(log(n)) time.

* For random input, search takes O(log(n))
time.
» However, average search time is
38% greater than that for a
balanced tree.

 In worst case, search takes O(n) time.

eg. (ABCDE) = linearlist
(AEBDC) = linear list

\ J

| =4

P ¥

Chap 8 Symbol Table

4 N

« Solution : keep the tree approximately
balanced.

e.g. AVL tree

£

| height(T1) - height(T2) | <1

* Insertion/deletion may need to move
some subtrees to keep the tree
approximately balanced.

o W,

| =4

P ¥

Chap 8 Symbol Table

™

[compare] hash table needs a fixed
size regardless of the number of
entries.

a

(+) space = O(n)

Application: Sometimes, we may use
multiple symbol tables. AVL is better
than hashing in this case.

| =4

P o ¥

Chap 8 Symbol Table

4 h

§ 8.2.2 hash tables

hash : name » address

* hash is easy to compute

* hash is uniform and randomizing.

Ex. (C1+C2+ ... + Cn) mod m
(C1*C2* ... *Cn) mod m

(C1+ Cn) mod m
(C1®C2 @ ® Cn)Ymod m

| =4

P o ¥

Chap 8 Symbol Table

a

« conflicts :
<1> linear resolution
* Try h(n), h(n)+1, h(n)+2, ...
* Problematic if the hash table did
not reserve enough empty slots.

™

<2> add-the-hash rehash
*Try h(n), (2*h(n)) mod m,
(3*h(n)) mod m, ...
 m must be prime.

<3> quadratic rehash
* Try h(n), (h(n)+1) mod m,
(h(n)+4) mod m, ...
<4> chaining

hash chains

e Y

| =4

N

Chap 8 Symbol Table

a

« Advantages of chaining:

(+) less space overhead of the hash
table

(+) does not fail catastrophically
when the hash table i1s almost full.

* The chains may be organized as search
trees, rather than linear lists.

 More importantly, we can remove all
names defined in a scope when the
scope Is closed.

{ var a;

{ vara, b, c;

NG J

| =4

P o ¥

a

Chap 8 Symbol Table

™

§ 8.2.3 String space

Should we store the identifiers in the
symbol table?

e.g. I, account receivable,
a_very _very long name

Size IS reserved.

and length in the symbol table.

o

 Name lengths differ significantly.

« Space Is wasted If space of max

« Solution : store the identifiers in
string space, and store an index

W,

Chap 8 Symbol Table

™
/

EX.

=

13 20
accounttemp‘lba‘lance

string space

117 ...
symbol 13| 7|
table

8 5

« Usually, symbol table manages the
string space.

« Names In string space may be re-used.

* Individual scopes may use different
string space. However, in block-
structured languages, a single string
space is good for re-claiming space
(when the name becomes invisible).

N J
block 1

| =4

P o ¥

Chap 8 Symbol Table

a

 How large Is the string space?

™

*too big —— waste space
* too small — run out of space

Solution : segmented string space

dynamically allocate 1 segment at
a time.

selector

N

offset length

We need (selector, offset, length)
to identify a name.

\ J

| =4

P ¥

Chap 8 Symbol Table

a

§ 8.3 block-structured symbol table
e Scopes may be nested.

™

 Typical visibility rules specify that a
use of name refers to the declaration
INn the innermost enclosing scope.

EX. — begin Int X;

— begin real Xx;

— begin
y-=X,

— end

end

\ — end /

| =4

P o ¥

4 N

Chap 8 Symbol Table

* Implication: when a scope is closed,
all declarations in that scope become
Inaccessible.

EX.
begin
begin
Int X;
real v;
type z;
end
[* X,y,z are inaccessible here */
end

o W,

| =4

P o ¥

Chap 8 Symbol Table

a

e Symbol tables in block-structured
languages:

™

1. many small tables
2. one global table

<1> many small tables

- one symbol table per scope.

- use a stack of tables.

- The symbol table for the current
scope Is on stack top.

- The symbol tables for other
enclosing scopes are placed under
the current one.

- Push a new table when a new scope
IS entered.

- Pop a symbol table when a scope
IS closed.

\ J

a

P o ¥

| =4

Chap 8 Symbol Table

EX.

end

— begin
int H,A,L;

begin
real X,y;

— end |
— begin

char A,C,M;
prlnt(M)
H+A... .

A:char

stack

o

;i C:char
| H:Int
Acint | | Michar
L:int '

symbol table

J

| =4

P o ¥

Chap 8 Symbol Table

e

 TOo search for a name, we check the
symbol tables on the stack from top
to bottom.

™

(-) We may need to search multiple
tables.

E.g. A global name is defined In
the bottom-most symbol table.

(-) Space may be wasted if a fixed-
sized hash table is used to
Implement symbol tables.

- hash table too big -- waste
- hash table too small -- collisions

\ J

| =4

P o ¥

Chap 8 Symbol Table

e

<2> one global table

™

- All names are in the same table.
- What about the same name is
declared several times?
« Each name iIs given a scope
number.
« <name, scope number> should
be unique in the table.

a

P o ¥

Chap 8 Symbol Table

/

EX.

scope
number

@

begi

n
int HA,L;

2

©

begin
real X,y,;

| end.
— begin

char A,C,M;
print(M);
H+A...;
X+L...:
end

end

"LA(3) - L(1) * A(1)

.[C

(3) 1H(1)

> M(3)

symbol table /

| =4

P o ¥

Chap 8 Symbol Table

« To search a name Is easy.

 New names are placed at the front of
lists.

*To close a scope, we need to remove
all entries defined in that scope.
(We need to examine each list.)

| =4

P o ¥

Chap 8 Symbol Table

4 N

* One global table cannot be implemented
with binary trees easily.
- It Is not easy to delete all entries
declared in a scope when the scope
IS closed.
- To find a name, we need to search
the last entry (rather than the first

entry).
EX. H(1)
e
SN TN
A(3)| |[C(3) M(3)

Consider the case when A is being
searched for.

o J

P ¥

a

Chap 8 Symbol Table

| =4

™

Comparisons:

many small tables

simpler
slower

less efficient
(for hash tables)

hash table or trees

Good for keeping
symbol tables of
closed scopes

(e.g. In multi-pass
compilers).

one global table

more complicated
faster search

efficient storage
use

Need space for
scope numbers

Use hash tables

Good for 1-pass
compilers.
Entries may be
discarded after

the scope is

closed.

| =4

P ¥

Chap 8 Symbol Table

a

§ 8.4 Extensions to block-structured
symbol tables

™

- ISsues :
e different visibility rules
« different search rules
* multiple uses of a name Iin the same
scope
« implicit declaration
* use-before-define
EX.
1. qualified field name
recl.fieldl.field2
2. Import/export rules
3. with statement in Pascal
4. use statement in Ada

| =4

P o ¥

Chap 8 Symbol Table

a

* two iImplementation approaches:

™

<1> duplicate all the visible names in
the current scope
(+) easy to implement
(-) significant space overhead

<2> use flags in symbol table entries
to control visibility
(-) more complicated
(-) slower
(+) less space overhead

| =4

P o ¥

Chap 8 Symbol Table

a

§ 8.4.1 fields and records

™

*The only restriction of field names is
that they be unique within the record.

Ex. A :record
A :Int;
2

X : record
A : real;
B : boolean;
end

end

* References to fields must be completely
qualified. Ex. A
AA
AX.A

 In PL/1 and COBOL, incomplete
qualifications are allowed.

J

| =4

P o ¥

Chap 8 Symbol Table

e

* HOW TO HANDLE FIELD NAMES?

™

<1> one small table for each record type
The table is an attribute of the record type
Ex. RA FindR
Find Ain R s symbol table
(+) easy to implement
(-) waste space if hash table Is used,
but good for a binary tree.

<2> treat, field names like ordinary names.
- Put them in the samé symbol table.
- Need a record number field
(like scope number).
- Each record type has a unique
record number.
Ex. RA FindR
Find A with record
number of R s type.
\- For ordinary names, the record
number is 0.

| =4

P o ¥

Chap 8 Symbol Table

a

§ 8.4.2 export

« Compare:

visibility rule: names are not visible
outside.

record rule: all names are visible
outside with proper
qualification.

export rule: some, but not all, of the
names are visible outside.

* EXport rules are for modularization.
e.g. Ada packages, MODULA-2 modules,
C++ classes.

Ex. module IntStack
export push,pop;
const max=25
var stack : array[l..max] of Iint;

top : 1.. max
procedure push(int);

procedure pop() : int;
begin top:=1; end IntStack;

export rule

P o ¥

Chap 8 Symbol Table

e

 How to handle export rules?
begin

/

— module
export A,B,C;
int A,B,C;

_— end |

When a scope Is closed, move
all exported names outside.

— end

 How to find all exported names when a
scope Is closed?

1. When a hash table +

For -1 bt
export collision chains is used
located -- scan each list.

at the 2. When a binary tree, one
begining for each scope, is

used for each scope
-- cluster at the root.

| =4

P o ¥

Chap 8 Symbol Table

* Implementation:

- Each name has a boolean exported
attribute.

- Use a close scope() procedure to
handle exported names.

*For Ada packages,
package IntStack is

Egﬁmflca— procedure push(int);
(exported) function pop(): int;
end package

package body IntStack is
max: const int := 25;
Implemen- stack: array
tation top: int;

procedure push() {.... }
function pop
tack

\ begin top :=1; end IntS/

| =4

P o ¥

Chap 8 Symbol Table

4 N

* The specification part of a package is
exported.
* The exported names are used with
qualifications, e.g. IntStack.push.
* They can also be imported with use
clauses.
 How to handle packages?
<1> one small table per package (like
one table per record type).
<2> If one big table is used, insert a
end-of-search mark at each chain.

> > > EOS >
\for ordinary) (rpackag(l
names local

specification

W,

Use clauses and qualified
references may pass beyond
EOS during search.

| =4

P ¥

Chap 8 Symbol Table

a

« Modular-2 i1s similar to Ada:

™

definition module IntStack
export qualified push, pop;
procedure push(int);
procedure pop: int;

end IntStack

Implementation module IntStack;

All exported names are accessed with
qualifications, e.g. IntStack.push().

o W,

| =4

P o ¥

Chap 8 Symbol Table

a

- Separate compilation

™

« Packages/modules may be compiled
separately.

* When package specification (or module
definition) is compiled, the information
IS saved In a library.

* The information is used to compile
package body or other packages.

* The information allows complete static
checking.

* One table per package is most suitable
for separate compilation.

 C uses #include
- less efficient

K— sometimes inconsistent. /

| =4

P o ¥

Chap 8 Symbol Table

a

§ 8.4.3 importrules

™

* Two Kinds of scopes:
- Importing scope: e.g. Pascal
- non-importing scope:
e.g. modules in Module-2

* In some languages, non-local objects
can be imported with restrictions,
e.g. read-only.

* Non-local objects must be imported
level by level.

« C++ provides three classes of visibility

- private > for subclasses and
- protected friends

- public —— for general public

\ J

| =4

P o ¥

Chap 8 Symbol Table

var Xx:
var X _ o
export X IMmport X,
exp LY

export: to the outside
Import: to the inside

| =4

P o ¥

Chap 8 Symbol Table

a

Ex. of import

™

module thingStack

Import Thing; ~
var stack : array [1..3] of Thing;

- Purpose of import rules:
more precise control
(for increasing reliability)

| =4

P o ¥

Chap 8 Symbol Table

a

- Implementation
<1> modify search operation
Find the name
check the scope of the name
definition against any
non-importing scopes

™

var X;

— hon-importing scope

. X....

<2> process import statements
For an import statement
Import thing;

create entries for the imported

K names in the current scope. /

| =4

P o ¥

Chap 8 Symbol Table

a

™

problematic when many names are
Imported. Consider

var ABC, ... Z;

import AB,C, ... ,Z;

import A,B,C, ... ,Z;

import A,B,C, ... ,Z;

- Many entries will be created.

Kbe seen.)

* The above method works well as long
as not many names are imported, but is

- Solution: use max-depth field for each
name. (This is the maximum depth of
nesting scope in which a name may

J

| =4

P o ¥

a

Chap 8 Symbol Table

™

* The max-depth field is set
- when the name is declared, or
- when the name is exported, or

entries when a scope is closed.

do this!

to the head of chains for easy
modification.

o

- when the importing scope is closed.
e difficulty: The entire symbol table must
be searched to find and modify certain
- Some production compilers actually

- We may move the imported names

J

P o ¥

| =4

Chap 8 Symbol Table

a

§ 8.4.4 Altered search rules

1. with statement
2. qualified names
3. use clause in Ada

| =4

P o ¥

Chap 8 Symbol Table

a

<1> with statement

™

Ex. with R do <stmt>
Within <stmt> a name is searched
In the following order :
1. fields of record R
2. other scopes in the normal
order

« To process with statements,
1. easy if each record and each scope
has its own symbol table.
(Use a stack of symbol tables.)
2. for a single big table,
2.1. open a new scope
2.2. keep a stack of all open with
stmts

\ J

| =4

P o ¥

Chap 8 Symbol Table

a

<2> gualified names
Ex. IntStack.A

™

Find IntStack’s symbol table or
scope number

Find A in that symbol table or in that
scope ,

[similar to record s fields]

- In Ada/CS, packages do not nest.
Things are simpler.

- In Ada, packages may nest.

\ J

| =4

P o ¥

Chap 8 Symbol Table

4 h

<3> use clause in Ada

EX. use pkgl,pkg2;
Names in pkgl and pkg2 will
become visible.

- two rules:
1. local definition has precedence

If a name is defined both locally
and in pkgs.

2. If a name is defined in both pkgl
and pkg2, the name is not directly

visible.

| =4

P o ¥

Chap 8 Symbol Table

™

1. Enter names in packages into symbol
table -- expensive If package is big.

a

Solutions :

2. Search a name in symbol table.
If the name is not found in local
table, search all packages.

3. similar to (2).
After a name is found, put it in local
symbol table to avoid repeated search.

P o ¥

Chap 8 Symbol Table

\J =4

a

§ 8.5 Implicit Declaraton

Ex. FORTRAN implicitly declares
variables (plus their types).

™

Ex. Algol 60 implicitly declares labels.

Ex. Ada implicitly declares for-loop
Indices and open a new scope.

1. Integer,;
different i for 1 In 1..9 loop

end loop;

Solution for Ada :

Actually create a new scope.

or
Put a loop index in the same scope
but possibly hide anexisting name

\ temporarily. /

| =4

P o ¥

a

Chap 8 Symbol Table

™

Ex. labels in Pascal

within the scope of its declaration.

Ex. label 99;
begin
for 1:=1 to n do begin
99: x:i=x+1;
end
goto 99; Illegal
99.....
end

Solution: Mark the label (99) as
Inaccessible outside the for-loop.

o

 In Pascal, label declarations and label
usages do not mesh well. Specifically,
we may not be able to jump to a label

J

| =4

P o ¥

Chap 8 Symbol Table

e

§ 8.6 Overloading

™

* In most languages, a name may denote
different objects.

EX. In Pascal, a name may denote a
function and its return value.

function abc() : integer
begin

abc := abgc + 1;
end I

as return value as a function

« Ada allows much general overloading.
procedure names
function names > may be
operators overloaded
enumeration literals

Ex. function “+¢ (X,Y:complex):complex
Kfunction “+“ (U,V:polar):polar /

| =4

P o ¥

Chap 8 Symbol Table

4 N

type month is (Jan,Feb,...,Oct,Nov,Dec);
type base is (Bin,Oct,Dec);

* The new Oct overloads, rather than
hides, the old Oct.

* There are algorithms to determine the
meaning of an overloaded name
(chap 11) in a given context.

 C++ allows operators (+,-,[],)
to be overloaded.

o W,

P o ¥

Chap 8 Symbol Table

| =4

a

™

symbol table?

an overloaded name.

closed

scope.

« How to accommodate overloading In

Link together all visible definitions of

When an overloaded name is used, all
the definitions are available. Then we
can choose an appropriate one.

» Establish the link when an
overloaded name is defined.
» Purge the link when a scope is

» To ease purging, order the link by

- +

+ o + o + o +

N

Innermost
scope

:+ ———-Pp s n

~_

outtermost
scope

P ¥

Chap 8 Symbol Table

| =4

a

Ex. In Pascal

program
begin .

end

begin

end.

o

function abc() : integer;

At this point,

abc

INt

abc

func

—

abc

func

«—— At this point,

| =4

P o ¥

Chap 8 Symbol Table

a

§ 8.7 Forward Reference

™

In Pascal, pointer types may introduce
forward references.

type T =Integer;
procedure abc(); which T
type P=1T;" does this T
; refer?

type T = real,;

P Is a pointer-to-real type.

| =4

P o ¥

Chap 8 Symbol Table

e

Same problem for non-local goto In
Algol 60.

™

— L e
proc abc(); _ _
begin ,— which L does this
goto L; L refer to?
L -
end

| =4

P o ¥

Chap 8 Symbol Table

a

™

* In the most general case

var X;

scopes

~—.

* The Pascal label problem is simpler
since labels have to be declared.

* This iIs why most languages require
declarations proceede statements.

o

Suppose x may be a forward reference.

Need to check scopes from inside out.

W,

P o ¥

| =4

Chap 8 Symbol Table

a

* How to forbid forward reference?

™

In Pascal, constants cannot be forward
referenced. Then consider

const c¢=10
procedure abc();
const D=C;

const C=20;
begin ... end

- So what is the value of D? error!

- It Is not easy to detect this error.
- Most Pascal compilers cannot detect
this error, including SUN pc.

Que to this difficulty, Ada changes the

visibility rule. /

| =4

P o ¥

Chap 8 Symbol Table

e

« How to handle forward reference?
We need more than one pass.
» Collect all definitions.
» Process declarations and stmts.

™

* For Pascal pointer type,
» link together all references to type T.
» determine the real T after the type
section is completely examined.

« For goto label, use backpatch in one
pass.

» More general forward references,
e.g. IinPL/1,

A=B+C
INT A, B, C;

{ust be processed in multiple passesj

a

P o ¥

Chap 8 Symbol Table

| =4

™

procedure
const

const

var X

» To detect illegal forward reference,

const c¢=10;

abc:

c=20: CIs imported.

at this point, we
find cis In
conflict with
the imported c.

at this point, assume

In general, assume x may be forward
referenced.

X Is implicitly

Nk

X
Imported at
these points.

W,

