
YANG

Chap 8 Symbol Table

name attributes

: :

• Collect attributes when a name is

declared.

Two issues:

1. interface: how to use symbol tables

2. implementation: how to implement

it.

• Provide information when a name is

used.

YANG

Chap 8 Symbol Table

§ 8.1 A symbol table class

A symbol table class provides the

following functins:

1. create() : symbol_table

2. destroy (symbol_table)

3. enter (name, table) : pointer to an entry

4. find (name, table) : pointer to an entry

5. set_attributes (*entry, attributes)

6. get_attributes (*entry) : attributes

YANG

Chap 8 Symbol Table

§ 8.2 basic implementation techniques

• basic operations: enter() and find()
• considerations: number of names

storage space
retrieval time

• organizations:
<1> unordered list (linked list/array)

<2> ordered list
» binary search on arrays
» expensive insertion
(+) good for a fixed set of names

(e.g. reserved words, assembly
opcodes)

<3> binary search tree
» On average, searching takes

O(log(n)) time.
» However, names in programsare

not chosen randomly.

<4> hash table: most common
(+) constant time

YANG

Chap 8 Symbol Table

§ 8.2.1 binary search tree

• For balanced tree, search takes

O(log(n)) time.

• For random input, search takes O(log(n))

time.

» However, average search time is

38% greater than that for a

balanced tree.

• In worst case, search takes O(n) time.

e.g. (A B C D E) linear list

(A E B D C) linear list

YANG

Chap 8 Symbol Table

• Solution : keep the tree approximately

balanced.

e.g. AVL tree

T1 T2

| height(T1) - height(T2) |  1

• Insertion/deletion may need to move

some subtrees to keep the tree

approximately balanced.

YANG

Chap 8 Symbol Table

(+) space = O(n)

[compare] hash table needs a fixed

size regardless of the number of

entries.

Application: Sometimes, we may use

multiple symbol tables. AVL is better

than hashing in this case.

YANG

Chap 8 Symbol Table

§ 8.2.2 hash tables

hash : name address

• hash is easy to compute

• hash is uniform and randomizing.

Ex. (C1 + C2 + + Cn) mod m

(C1*C2* *Cn) mod m

(C1 + Cn) mod m

(C1) mod m  C2   Cn

YANG

Chap 8 Symbol Table

• conflicts :

<1> linear resolution

• Try h(n), h(n)+1, h(n)+2, ...

• Problematic if the hash table did

not reserve enough empty slots.

<2> add-the-hash rehash

•Try h(n), (2*h(n)) mod m,

(3*h(n)) mod m, ...

• m must be prime.

<3> quadratic rehash

• Try h(n), (h(n)+1) mod m,

(h(n)+4) mod m, ...

<4> chaining

....

hash
table

chains

YANG

Chap 8 Symbol Table

• Advantages of chaining:

(+) less space overhead of the hash

table

(+) does not fail catastrophically

when the hash table is almost full.

• The chains may be organized as search

trees, rather than linear lists.

• More importantly, we can remove all

names defined in a scope when the

scope is closed.

{ var a;

{ var a, b, c;

...

...

}

}

YANG

Chap 8 Symbol Table

§ 8.2.3 String space

Should we store the identifiers in the

symbol table?

• Name lengths differ significantly.

e.g. i, account_receivable,

a_very_very_long_name

• Space is wasted if space of max

size is reserved.

• Solution : store the identifiers in

string space, and store an index

and length in the symbol table.

YANG

Chap 8 Symbol Table

Ex.

a c c o u n t t e m p l b a l a n c e

1 8 13 20

string space

symbol
table

• Usually, symbol table manages the

string space.

• Names in string space may be re-used.

• Individual scopes may use different

string space. However, in block-

structured languages, a single string

space is good for re-claiming space

(when the name becomes invisible).

......

block 2

block 1

1 7

13 7

8 5

.....

.....

.....

YANG

Chap 8 Symbol Table

• How large is the string space?

• too big waste space

• too small run out of space

Solution : segmented string space

dynamically allocate 1 segment at

a time.

selector

:
: offset length

We need (selector, offset, length)

to identify a name.

:

YANG

Chap 8 Symbol Table

§ 8.3 block-structured symbol table

• Scopes may be nested.

• Typical visibility rules specify that a

use of name refers to the declaration

in the innermost enclosing scope.

Ex. begin int x;

begin real x;

begin

y:=x;

end

end

end

YANG

Chap 8 Symbol Table

• Implication: when a scope is closed,

all declarations in that scope become

inaccessible.

Ex.

begin

.........

begin

int x;

real y;

type z;

:

:

end

/* x,y,z are inaccessible here */

:

:

end

YANG

Chap 8 Symbol Table

 Symbol tables in block-structured

languages:

1. many small tables

2. one global table

<1> many small tables

- one symbol table per scope.

- use a stack of tables.

- The symbol table for the current

scope is on stack top.

- The symbol tables for other

enclosing scopes are placed under

the current one.

- Push a new table when a new scope

is entered.

- Pop a symbol table when a scope

is closed.

YANG

Chap 8 Symbol Table

Ex.

begin
int H,A,L;

begin
real x,y;

:
:

end
begin

char A,C,M;
print(M);
H + A ;
X + L ;

end
end

H:int
A:int
L:int

A:char
C:char
M:char

:

symbol table

stack

YANG

Chap 8 Symbol Table

• To search for a name, we check the

symbol tables on the stack from top

to bottom.

(-) We may need to search multiple

tables.

E.g. A global name is defined in

the bottom-most symbol table.

(-) Space may be wasted if a fixed-

sized hash table is used to

implement symbol tables.

- hash table too big -- waste

- hash table too small -- collisions

YANG

Chap 8 Symbol Table

<2> one global table

- All names are in the same table.

- What about the same name is

declared several times?

• Each name is given a scope

number.

• <name, scope number> should

be unique in the table.

YANG

Chap 8 Symbol Table

begin
int H,A,L;

begin
real x,y;

:
:

end
begin

char A,C,M;
print(M);
H + A;
X + L ;

end
end

Ex.

scope
number

1

2

3

A(3) L(1) A(1)

C(3) H(1)

M(3)

symbol table

YANG

Chap 8 Symbol Table

• To search a name is easy.

• New names are placed at the front of

lists.

•To close a scope, we need to remove

all entries defined in that scope.

(We need to examine each list.)

YANG

Chap 8 Symbol Table

• One global table cannot be implemented

with binary trees easily.

- It is not easy to delete all entries

declared in a scope when the scope

is closed.

- To find a name, we need to search

the last entry (rather than the first

entry).

Ex.

Consider the case when A is being

searched for.

H(1)

A(1) L(1)

A(3) C(3) M(3)

YANG

Chap 8 Symbol Table

Comparisons:

many small tables one global table

simpler more complicated

slower faster search

less efficient efficient storage
(for hash tables) use

Need space for
scope numbers

hash table or trees Use hash tables

Good for keeping Good for 1-pass
symbol tables of compilers.
closed scopes Entries may be

discarded after
(e.g. in multi-pass the scope is
compilers). closed.

YANG

Chap 8 Symbol Table

§ 8.4 Extensions to block-structured

symbol tables

- issues :

• different visibility rules

• different search rules

• multiple uses of a name in the same

scope

• implicit declaration

• use-before-define

Ex.

1. qualified field name

rec1.field1.field2

2. import/export rules

3. with statement in Pascal

4. use statement in Ada

YANG

Chap 8 Symbol Table

• two implementation approaches:

<1> duplicate all the visible names in

the current scope

(+) easy to implement

(-) significant space overhead

<2> use flags in symbol table entries

to control visibility

(-) more complicated

(-) slower

(+) less space overhead

YANG

Chap 8 Symbol Table

§ 8.4.1 fields and records

•The only restriction of field names is

that they be unique within the record.

Ex. A : record
A : int;

X : record
A : real;
B : boolean;
end

end

1

2

• References to fields must be completely

qualified. Ex. A

A.A

A.X.A

• In PL/1 and COBOL, incomplete

qualifications are allowed.

YANG

Chap 8 Symbol Table

• HOW TO HANDLE FIELD NAMES?

<1> one small table for each record type

The table is an attribute of the record type

Ex. R.A Find R

Find A in R s symbol table

(+) easy to implement

(-) waste space if hash table is used,

but good for a binary tree.

<2> treat field names like ordinary names.

- Put them in the same symbol table.

- Need a record number field

(like scope number).

- Each record type has a unique

record number.

Ex. R.A Find R

Find A with record

number of R s type.

- For ordinary names, the record

number is 0.

‘

‘‘‘‘,

‘

‘

,

,

YANG

Chap 8 Symbol Table

§ 8.4.2 export

• Compare:
visibility rule: names are not visible

outside.
record rule: all names are visible

outside with proper
qualification.

export rule: some, but not all, of the
names are visible outside.

• Export rules are for modularization.
e.g. Ada packages, MODULA-2 modules,

C++ classes.

Ex. module IntStack
export push,pop; export rule
const max=25
var stack : array[1..max] of int;

top : 1.. max
procedure push(int);
procedure pop() : int;
begin top:=1; end IntStack;

YANG

Chap 8 Symbol Table

• How to handle export rules?

begin

module
export A,B,C;
int A,B,C;
:
:

end

end

When a scope is closed, move

all exported names outside.

• How to find all exported names when a
scope is closed?

For
export
located
at the
begining

1. When a hash table +

collision chains is used

-- scan each list.

2. When a binary tree, one

for each scope, is

used for each scope

-- cluster at the root.

YANG

Chap 8 Symbol Table

• Implementation:

- Each name has a boolean exported

attribute.

- Use a close_scope() procedure to

handle exported names.

•For Ada packages,

package IntStack is

procedure push(int);

function pop(): int;

end package

package body IntStack is

max: const int := 25;

stack: array

top: int;

procedure push() { }

function pop

begin top := 1; end IntStack

specifica-
tion
(exported)

implemen-
tation

YANG

Chap 8 Symbol Table

• The specification part of a package is

exported.

• The exported names are used with

qualifications, e.g. IntStack.push.

• They can also be imported with use

clauses.

• How to handle packages?

<1> one small table per package (like

one table per record type).

<2> If one big table is used, insert a

end-of-search mark at each chain.

EOS

for ordinary

names
for package

local

specification

Use clauses and qualified

references may pass beyond

EOS during search.

YANG

Chap 8 Symbol Table

• Modular-2 is similar to Ada:

definition module IntStack

export qualified push, pop;

procedure push(int);

procedure pop: int;

end IntStack

implementation module IntStack;

.......

end

All exported names are accessed with

qualifications, e.g. IntStack.push().

YANG

Chap 8 Symbol Table

- Separate compilation

• Packages/modules may be compiled

separately.

• When package specification (or module

definition) is compiled, the information

is saved in a library.

• The information is used to compile

package body or other packages.

• The information allows complete static

checking.

• One table per package is most suitable

for separate compilation.

• C uses #include

- less efficient

- sometimes inconsistent.

YANG

Chap 8 Symbol Table

§ 8.4.3 import rules

• Two kinds of scopes:

- importing scope: e.g. Pascal

- non-importing scope:

e.g. modules in Module-2

• In some languages, non-local objects

can be imported with restrictions,

e.g. read-only.

• Non-local objects must be imported

level by level.

• C++ provides three classes of visibility

- private

- protected

- public

for subclasses and

friends

for general public

YANG

Chap 8 Symbol Table

var x
export x

x

var x;

import x;
x

export: to the outside
import: to the inside

YANG

Chap 8 Symbol Table

Ex. of import

module thingStack
import Thing;
var stack : array [1..3] of Thing;
......

end

- Purpose of import rules:

more precise control

(for increasing reliability)

YANG

Chap 8 Symbol Table

- Implementation

<1> modify search operation

Find the name

check the scope of the name

definition against any

non-importing scopes

var x;
non-importing scope

.... x

<2> process import statements

For an import statement

import thing;

create entries for the imported

names in the current scope.

YANG

Chap 8 Symbol Table

• The above method works well as long

as not many names are imported, but is

problematic when many names are

imported. Consider

var A,B,C, ... ,Z;

import A,B,C, ... ,Z;

import A,B,C, ... ,Z;

import A,B,C, ... ,Z;

- Many entries will be created.

- Solution: use max-depth field for each

name. (This is the maximum depth of

nesting scope in which a name may

be seen.)

YANG

Chap 8 Symbol Table

• The max-depth field is set

- when the name is declared, or

- when the name is exported, or

- when the importing scope is closed.

• difficulty: The entire symbol table must

be searched to find and modify certain

entries when a scope is closed.

- Some production compilers actually

do this!

- We may move the imported names

to the head of chains for easy

modification.

YANG

Chap 8 Symbol Table

§ 8.4.4 Altered search rules

1. with statement

2. qualified names

3. use clause in Ada

YANG

Chap 8 Symbol Table

<1> with statement

Ex. with R do <stmt>

Within <stmt> a name is searched

in the following order :

1. fields of record R

2. other scopes in the normal

order

• To process with statements,

1. easy if each record and each scope

has its own symbol table.

(Use a stack of symbol tables.)

2. for a single big table,

2.1. open a new scope

2.2. keep a stack of all open with

stmts

YANG

Chap 8 Symbol Table

<2> qualified names

Ex. IntStack.A

Find IntStack s symbol table or

scope number

Find A in that symbol table or in that

scope

[similar to record s fields]

- In Ada/CS, packages do not nest.

Things are simpler.

- In Ada, packages may nest.

,

,

YANG

Chap 8 Symbol Table

<3> use clause in Ada

Ex. use pkg1,pkg2;

Names in pkg1 and pkg2 will

become visible.

- two rules:

1. local definition has precedence

if a name is defined both locally

and in pkgs.

2. If a name is defined in both pkg1

and pkg2, the name is not directly

visible.

YANG

Chap 8 Symbol Table

Solutions :

1. Enter names in packages into symbol

table -- expensive if package is big.

2. Search a name in symbol table.

If the name is not found in local

table, search all packages.

3. similar to (2).

After a name is found, put it in local

symbol table to avoid repeated search.

YANG

Chap 8 Symbol Table

§ 8.5 Implicit Declaraton

Ex. FORTRAN implicitly declares

variables (plus their types).

Ex. Algol 60 implicitly declares labels.

Ex. Ada implicitly declares for-loop

indices and open a new scope.

different i

i : integer;

for i in 1..9 loop

........

end loop;

Solution for Ada :

Actually create a new scope.

or

Put a loop index in the same scope

but possibly hide anexisting name

temporarily.

YANG

Chap 8 Symbol Table

Ex. labels in Pascal

• In Pascal, label declarations and label

usages do not mesh well. Specifically,

we may not be able to jump to a label

within the scope of its declaration.

Ex. label 99;

begin

......

for i:=1 to n do begin

99: x:=x+1;

end

goto 99; illegal

99.....

end

Solution: Mark the label (99) as

inaccessible outside the for-loop.

,

YANG

Chap 8 Symbol Table

§ 8.6 Overloading

• In most languages, a name may denote

different objects.

Ex. In Pascal, a name may denote a

function and its return value.

function abc() : integer

begin

abc := abc + 1;

end

• Ada allows much general overloading.

as return value
as a function

procedure names
function names
operators
enumeration literals

may be
overloaded

Ex. function + (X,Y:complex):complex
function + (U,V:polar):polar “ “

““

YANG

Chap 8 Symbol Table

Ex.

type month is (Jan,Feb,...,Oct,Nov,Dec);

type base is (Bin,Oct,Dec);

• The new Oct overloads, rather than

hides, the old Oct.

• There are algorithms to determine the

meaning of an overloaded name

(chap 11) in a given context.

• C++ allows operators (+,-,[],)

to be overloaded.

YANG

Chap 8 Symbol Table

• How to accommodate overloading in

symbol table?

Link together all visible definitions of

an overloaded name.

When an overloaded name is used, all

the definitions are available. Then we

can choose an appropriate one.

» Establish the link when an

overloaded name is defined.

» Purge the link when a scope is

closed

» To ease purging, order the link by

scope.

+ + + ++ + ...

innermost
scope

outtermost
scope

YANG

Chap 8 Symbol Table

Ex. in Pascal

program

function abc() : integer;
begin

:
:

end

begin
:
:

end.

• At this point,

• At this point,

abc int abc func

abc func

YANG

Chap 8 Symbol Table

§ 8.7 Forward Reference

In Pascal, pointer types may introduce

forward references.

type T = integer;
procedure abc();

type P = T;
:
:

type T = real;



which T
does this T
refer?

P is a pointer-to-real type.

YANG

Chap 8 Symbol Table

Same problem for non-local goto in

Algol 60.

L :

proc abc();
begin

goto L;
:
:

L :

end

which L does this
L refer to?

YANG

Chap 8 Symbol Table

• In the most general case

Suppose x may be a forward reference.

var x;

..... x

scopes

Need to check scopes from inside out.

• The Pascal label problem is simpler

since labels have to be declared.

• This is why most languages require

declarations proceede statements.

YANG

Chap 8 Symbol Table

• How to forbid forward reference?

In Pascal, constants cannot be forward

referenced. Then consider

const c=10

procedure abc();

const D=C;

:

:

const C=20;

begin ... end

- So what is the value of D? error!

- It is not easy to detect this error.

- Most Pascal compilers cannot detect

this error, including SUN pc.

- Due to this difficulty, Ada changes the

visibility rule.

YANG

Chap 8 Symbol Table

• How to handle forward reference?

We need more than one pass.

» Collect all definitions.

» Process declarations and stmts.

• For Pascal pointer type,

» link together all references to type T.

» determine the real T after the type

section is completely examined.

• For goto label, use backpatch in one

pass.

• More general forward references,

e.g. in PL/1,

A = B + C

INT A, B, C;

must be processed in multiple passes.

YANG

Chap 8 Symbol Table

• To detect illegal forward reference,

const c=10;

procedure abc;
const d=c;

const c=20;

at this point, assume
c is imported.

at this point, we
find c is in
conflict with
the imported c.

In general, assume x may be forward
referenced.

var x

.......... x x is implicitly
imported at
these points.

