/ G@hap7 Semantic Processin\g \

« Syntax-directed translation
- analysis: variable declarations, type
errors
- synthesis: IR or actual code

* The semantic action is attached to the
productions (or subtrees of a syntax
tree).

 parsing: build the parse tree

e sSemantic processing:
build and decorate the abstract
syntax tree (AST)

EX. Nonterminals for operator
precedence and associativity need
not be included.

EX. Nonterminals used for ease of
parsing may be omitted in the

\abstraet syntax tree. /

/ Chap7 Semantic Processing

EX. parse tree

<assign>

e

<target> = <exp>

oIS

<exp> + <term>

N
<term> <factor>
<ter|m> * <fac;coor> 1d
<fac|tor> id
Const

abstract syntax tree

T
1d +
*/\id
N

\\\\ const id

J

/ Ghap7 Semantic Processin

6\

AST.

const, id) have attributes.

EX. Y =3*X + |

1d(Y) /\

* id(I)

N

const(3) 1d(X)

o

« Semantic routines traverse the AST,
computing attributes of the nodes of

« Initially, only leaves (i.e. terminals, e.g.

/ Ghap7 Semantic Processing \

* We then propagate the attributes to
other nodes, using some functions, e.g.
- build symbol table
- attach attributes of nodes
- check types, etc.
* bottom-up/top-down propagation

19913115

<pr0gram> Céece
_ <stmt>
declaration ‘

PN

id + exp.

symbol */\i g type

table AN
const iId

666

check types:
« Integer * or floating *

Need to consult symbol table
for types of id’s.

/ Ghap7 Semantic Processing \

 After attribute propagation is done,
the tree Is decorated and ready for code
generation.

 We make another pass over the
decorated AST to generate code.

 Actually,

building the AST these can be
decorating the AST) combined
generating code In a single pass.

* What we have described is essentially
the attribute grammars(AG).
Details in chap.14.

\ J

/ Ghap7 Semantic Processin

Conceptually

D
)

econst * °*i1d °

Attributes flow In the AST.

o

/ Ghap7 Semantic Processing \

<1> 1- pass analysis and synthesis

scanning _ _
parsing |r_1terleaved INn a
checking single pass.
translation

Ex. Micro compiler in chap.2.
« Since code generation is limited to
looking at one tuple at a time, few
optimizations are possible.

Ex. Consider register allocation, which
requires a more global view of the
AST.

\ J

§7.1.2 Compiler Organization Alternativ

E

/ Chap7 Semantic Processing \

* We wish the code generator completely
hide machine details and semantic
routines become independent of
machines.

« However, this is violated sometimes In
order to produce better code.

EX. Suppose there are several classes
of reqgisters, each for a different
purpose.

Then register allocation is better
done by semantic routines than
code generator since semantic
routines have a broader view of the
AST.

o W,

/ Chap7 Semantic Processing \

<2> 1-pass + peephole

1 pass : generate code
1 pass : peephole optimization

* Peephole : looking at only a few
Instructions at a time

- simple but effective
- simplify code generator since there
IS a pass of post-processing.

/ Chap7 Semantic Processing \

<3>1 pass + code gen pass

1st pass: analysis and IR
2nd pass: code generation

(+) flexible design for the code generator

(+) may use optimizations for IR

(+) greater independence of target
machines (the front-end is quite
Independent of target machines.)

(+) re-targeting is easier.

/ Ghap7 Semantic Processing \

<4> multipass analysis

 For limited addr. space,

scanner
parser
declaration
static checking

each is a pass.

« complete separation of analysis and
synthesis.

/ Ghap7 Semantic Processing \

<5> multipass synthesis

multiple passes.

o

machine- machine-
__. Independent ___, dependent
IR optimization optimization
passes passes
code
__. gen — peephole —
passes

 Many complicated optimization and
code generation algorithms require

J

/ Ghap7 Semantic Processing \

<6> multi-language and multi-target
compilers

« Components may be shared and
parameterized.

FORTRAN PASCAL ADA c|: -----

S

machine-independent
optimization

SUN PC main-frame

language- and machine-independent IRs

Ex. Ada uses Diana(language-dependent
IR)
Ex. GCC uses two IRs.
- one Is high-level tree-oriented
- the other(RTL) is more machine-
oriented

/ @hap7 Semantic Processin\g \

§7.1.3 Single Pass

* In Micro of chap 2, scanning, parsing and

semantic processing are interleaved In a

single pass.

(+) simple front-end

(+) less storage if no explicit trees

(-) iImmediately available information is
limited since no complete tree is built.

*Relationships semantic

rrn l
call call W
scanner~—; parser — semantic’ |Sémantig
tokens rtn 2 records

semantic
retn k

« Each terminal and nonterminal has a
semantic record.

« Semantic records may be considered as
the attributes of the terminals and

@-terminals. /

/ Ghap7 Semantic Processing \

- For terminals, the semantic records are
created by the scanner.

- For nonterminals, the semantic records
are created by a semantic routine
when a production is recognized.

ex. A— BCD#SR

A O

/I\

B, C, Dy #SR

- Semantic records are transmitted among
semantic routines via a semantic stack.

\ J

/ Ghap7 Semantic Processing \

EX. <assign>

/I\

ID (A) = <exp>

PN

<exp> + <term>

<term> const (1)

i(|:I (B)

<exp>—<exp>+<term>

<assign>—I|D:=<exp>

1 /
B B <exp>
A A A A
gencode(+,B,1,tmp1)” /

gencode(:=,A,tmpl)

1 pass = 1 post-order traversal of the
parse tree

parsing actions —— build parse trees
E{nantic actions — post-order traver}a,l/

/ Ghap7 Semantic Processing \

Compare

<1> build a parse tree and then traverse

(+) flexible
(+) more powerful

<2> pbuild and traverse the tree in an
Interleaved way

(+) simple
(-) limited

o W,

/ Ghap7 Semantic Processin\g \

§ 7.2 Semantic Processing

« Semantic routines may be invoked in
two ways:

<1> By parsing procedures, as in the
recursive descent parser in chap 2

<2> by the parser driver, as in LL and
LR parsers.

/ @Qhap7 Semantic Processin\g \

§7.2.1 LL(D)
<exp> <term> + <exp> #add
parse
stack
<term>
+
+

<exp>| |<exp>

<exp>
<exp>| | #add || #2dd #add #add|

semantic <exp->
<term> <exp>
stack <term> P

« Some productions have no action
symbols; others may have several.

« Semantic routines are called when action
symbols appear on stack top.

\ J

/ @Qhap7 Semantic Processin\g \

§ 7.2.2 LR(1)

« Semantic routines are invoked only
when a structure is recognized.

 In LR parsing, a structure is recognized
when the RHS is reduced to LHS.

* Therefore, action symbols must be
placed at the end.

Ex. # 1fThen
<stmt>
—1f <cond> then <stmt> end
—If <cond>Tthen <stmt> else <stmt> end

1IfThenElse

After shifting « if <cond> « ., the parser

cannot decide which of #i1fThen and
#ifThenElse should be invoked.

e cf. In LL parsing, the structure is
recognized when a nonterminal is

@panded. /

/ Ghap7 Semantic Processinlg \

* However, sometimes we do need to
perform semantic actions in the middle

of a production.

EX.
<stmt>— if <exp> * then <stmt>end

i

generate code ?enerate code
or <stmt>
for <exp> Need a
conditional
jump here.

Solution: Use two productions:

<stmt> — <if head>
then <stmt> end #finishif
<if head>— If <exp> #startlf

7

semantic hook
(only for semantic processing)

o W,

/ Ghap7 Semantic Processing \

Another problem:
What If the action is not at the end?

EX.
<prog> — #start begin <stmt> end

We need to call #start.

Solution: Introduce a new nonterminal.
<prog>—" <head> begin <stmt> end

<head> — #start

* YACC automatically performs such
transformations.

o W,

/ Ghap7 Semantic Processing \

§ 7.2.3 Semantic Record Representation

* Since we need to use a stack of
semantic records, all semantic records
must have the same type.

» variant record in Pascal
» union type in C

EX.
enum kind {OP, EXP, STMT, ERRORY};
typedef struct {
enum kind tag;
union {
Op_rec type OP_REC,;
exp _rec type EXP_REC;
stmt _rec type STMT REC;

} sem_rec_type,;

o W,

/ Chap7 Semantic Processin\g \

- How to handle errors?

EXx. A semantic routine needs to create
a record for each identifier in an
expression.

What if the identifier is not declared?

Solution 1: make a bogus record
This method may create a chain
of meaningless error messages
due to this bogus record.

Solution 2: create an ERROR
semantic record
No error message will be
printed when ERROR record
IS encountered.

\ J

/ Ghap7 Semantic Processin\g \

* WHO controls the semantic stack?
» action routines
» parser

§ 7.2.4 Action-controlled semantic stack

e Action routines take parameters from
the semantic stack directly and push
results onto the stack.

* Implementing stacks:
1. array
2. linked list

« Usually, the stack is transparent - any
records in the stack may be accessed
by the semantic routines.

(-) difficult to change

\ J

/ @Qhap7 Semantic Processin\g \

Two other disadvantages:

(-) Action routines need to manage the
stack.

(-) Control of the stack is distributed
among the many action routines.

« Each action routine pops some
records and pushes 0 or 1 record.

* If any action routine makes a
mistake, the whole stack is corrupt.

\ J

/ Ghap7 Semantic Processin\g \

Solution 1: Let parser control the stack
Solution 2: Introduce additional stack
routines

stack action

parser —— ; .
routines routines

« If action routines do not control the
stack, we can use opague (or abstract)
stack: only push() and pop() are
provided.

(+) clean interface
(-) less efficient

\ J

/ Ghap7 Semantic Processing \

§ 7.2.5 parser-controlled stack

* LR
Semantic stack and parse stack operate
iIn parallel [shifts and reduces in the
same way].

EX. <stmt>—— If <exp> then <stmt> end

<stmt> | e <stmt>
then | «ooeeeee then
<EXP> | e <exp>
if | e i

parser stack semantic stack
AN 7

may be combined

Ex. YACC generates such
parser-controlled semantic stack.

<exp> — <exp> + <term>
{ $$.value=%$1.value+$3.value;}

/ Ghap7 Semantic Processin\g \

* LL parser-controlled semantic stack
- Every time a productionA—BCD

IS predicted,
B
parse C
stack A —> D
semantic 12 T top
stack 11 D
10 C right
— | =>9 1 B T
: 8 - v\c:urrent
A 7 A — |eft

Need four pointers fir the semantic stack
(left, right, current, top).

o W,

/ @Qhap7 Semantic Processin\g \

However, when a new production

B—EFG

IS predicted, the four pointers will be
overwritten. Therefore, create a new EOP
record for the four pointers on the

parse stack.

hap7 Semantic Processing \

parse
stack

A—>BCD

semantic
stack

current

~ 0 ©

i

o

E
F
G
B EOP(7,9,9,12)
C C
D B—> EFG D
EOP(.) | — |_EOP(...)
15 —1op
14 CFB
13 right
12 —top 19 E
11/ D 1D ™
100G /rlg 1ol _c_|current
91 B 9| B [—left
8- | >current g[-
71 A |+<— left 71 A

W,

/ Chap7 Semantic Processin\g \

 When EOP record appears on stack top,
restore the four pointers, which
essentially pops off records from the
semantic stack.

/ Ghap7 Semantic Processin\g \

EX.

initially D

-

C
<B
S

information flow

\ (attributes)

* Note that all push() and pop() are done
by the parser, not by the action routines.

« Semantic records are passed to the
action routines by parameters.

<primary> — (<exp>) #copy($2,$$)

* Initial information is stored In the
semantic record of LHS.
After the RHS is processed, the resulting
Information is stored back in the
semantic record of LHS.

finally

J

/ Ghap7 Semantic Processinlg \

Figure 7.10 Micro grammar with
parameterizd action symbols

Trace an example:

begina :=b + cend;

/ @Qhap7 Semantic Processin\g \

(-) Semantic stack may grow very big.

<fix> Certain nonterminals never use
semantic records, e.g. <stmt list>
and <id list>.

We may Iinsert #reuse before the
last nonterminal in each of their
productions.

EX.
<stmt list> " <stmt> #reuse <stmt tail>
<stmt tail>— <stmt> #reuse <stmt tail>
<stmt tail>—

\ J

/ Ghap7 Semantic Processin\g \

Evaluation:

Parser-controlled semantic stack is easy
with LR, but not so with LL.

e

hap7 Semantic Processin\g \

code generation

Two possibilities:

semantic
routines

generation

semantic

§ 7.3 Intermediate representation and

code machine

code

(+) no extra pass for code generation
(+) allows simple 1-pass compilation

IR|code

routines

generation

machine

code

(+) allows higher-level operations

e.g. open block, call procedures.

IS at a higher level.

\ In code generation.

(+) better optimization because IR

(+) machine dependence is isolated

J

/ @Qhap7 Semantic Processin\g \

IR: good for optimization and portability

machine code: simple

/ @Qhap7 Semantic Processin\g \

§ 7.3.2

1. postfix form

EX.
a+b ab+
(a+b)*c ab+c*
a+b*c abc*+
a:.=b*c+b*d abc*bd*+:=

(+) simple and concise

(+) good for driving an interpreter

(-) NOT good for optimization or
code generation

\ J

/ Ghap7 Semantic Processing \

2. 3-addr code
» triple

. oOp argl arg?2
» quadruple: op argl arg2 arg3

(4) (::;%1 a)

Intermediate results
are referenced by
the instruction #

e triple: more concise

K to machine code.

use temporary

a := b*c + b*d
() (* b c) () (* b c tl)
(2) (* b d) 2) (* b d t2)
) (+ (1) (2) 3) (+ t1 t213)
4) (= 3a _)

Nnames

But what if instructions are deleted,
moved or added during optimization?

 Triples and quadruples are more similar

J

/ Ghap7 Semantic Processin\g \

Ex. a:=b*c + b*d

float type.
1) (I b c)
(2) (FLOAT b)
(3) (F* (2) d)

(4) (FLOAT (1) _)
©) (+ (4 3)
6) (= 5) a)

o

 More detailed 3-addr code:
» Add type information

Suppose b,c are integer type, d is

(I* b c tl)
(FLOAT b t2)
(F* t2 dt3)

(FLOAT tl1 t4)
(F+ t4 t3 t5)

(= t5 a)

J

/ Chap7 Semantic Processin\g \

« Sometimes, the number of arguments to
operators may vary. The generalized
3-addr code is called tuples.

Ex. (I* b c tl)
(FLOAT b t2)
(F* t2 d t3)
(FLOAT t1 t4)
(F+ t4 t315)
(= t5 a)

/ Chap7 Semantic Processin\g \

3. Sometimes, we use trees or DAG

Ex. a:=b*c + b*d

AN a/\

AN 2N
SN /N //(\
b c b d b c d

» More generally, we may use AST as IR.
Machine-independent optimization is
Implemented as tree transformations.

A= A= N\ = o

EXx. Ada uses Diana.

\ J

