
YANG

Chap7 Semantic Processing

• Syntax-directed translation

- analysis: variable declarations, type

errors

- synthesis: IR or actual code

• The semantic action is attached to the

productions (or subtrees of a syntax

tree).

• parsing: build the parse tree

• semantic processing:

build and decorate the abstract

syntax tree (AST)

EX. Nonterminals for operator

precedence and associativity need

not be included.

EX. Nonterminals used for ease of

parsing may be omitted in the

abstract syntax tree.

YANG

Chap7 Semantic Processing

Ex. parse tree

<assign>

<target> := <exp>

id
<exp> + <term>

<term>

<term> * <factoor>

<factor>

Const

id

<factor>

id

abstract syntax tree

:=

id +

* id

const id

YANG

Chap7 Semantic Processing

• Semantic routines traverse the AST,

computing attributes of the nodes of

AST.

• Initially, only leaves (i.e. terminals, e.g.

const, id) have attributes.

Ex. Y := 3*X + I

:=

id(Y) +

* id(I)

const(3) id(X)

YANG

Chap7 Semantic Processing

• We then propagate the attributes to

other nodes, using some functions, e.g.

- build symbol table

- attach attributes of nodes

- check types, etc.

• bottom-up/top-down propagation

<program>

declaration
<stmt>

:=

id +

* id

const id

exp.

typesymbol
table

check types:

integer * or floating *

Need to consult symbol table
for types of id’s.

‘‘‘‘‘‘‘

‘

‘‘‘‘‘

‘‘‘

‘‘

‘‘

‘‘‘

YANG

Chap7 Semantic Processing

• After attribute propagation is done,

the tree is decorated and ready for code

generation.

• We make another pass over the

decorated AST to generate code.

• Actually,

building the AST

decorating the AST

generating code

these can be

combined

in a single pass.

• What we have described is essentially

the attribute grammars(AG).

Details in chap.14.

YANG

Chap7 Semantic Processing

Conceptually

:=

id +

*
id

const id

Attributes flow in the AST.

YANG

Chap7 Semantic Processing

§7.1.2 Compiler Organization Alternatives

<1> 1- pass analysis and synthesis

scanning

parsing

checking

translation

interleaved in a

single pass.

Ex. Micro compiler in chap.2.

• Since code generation is limited to

looking at one tuple at a time, few

optimizations are possible.

Ex. Consider register allocation, which

requires a more global view of the

AST.

YANG

Chap7 Semantic Processing

• We wish the code generator completely

hide machine details and semantic

routines become independent of

machines.

• However, this is violated sometimes in

order to produce better code.

Ex. Suppose there are several classes

of registers, each for a different

purpose.

Then register allocation is better

done by semantic routines than

code generator since semantic

routines have a broader view of the

AST.

YANG

Chap7 Semantic Processing

<2> 1-pass + peephole

1 pass : generate code

1 pass : peephole optimization

• Peephole : looking at only a few

instructions at a time

- simple but effective

- simplify code generator since there

is a pass of post-processing.

YANG

Chap7 Semantic Processing

<3> 1 pass + code gen pass

1st pass: analysis and IR

2nd pass: code generation

(+) flexible design for the code generator

(+) may use optimizations for IR

(+) greater independence of target

machines (the front-end is quite

independent of target machines.)

(+) re-targeting is easier.

YANG

Chap7 Semantic Processing

<4> multipass analysis

• For limited addr. space,

scanner

parser

declaration

static checking

each is a pass.

• complete separation of analysis and

synthesis.

YANG

Chap7 Semantic Processing

<5> multipass synthesis

IR

machine-
independent
optimization
passes

machine-
dependent
optimization
passes

code
gen
passes

peephole

• Many complicated optimization and

code generation algorithms require

multiple passes.

YANG

Chap7 Semantic Processing

<6> multi-language and multi-target
compilers

• Components may be shared and
parameterized.

FORTRAN PASCAL ADA C

machine-independent
optimization

SUN PC main-frame

.....

language- and machine-independent IRs

Ex. Ada uses Diana(language-dependent
IR)

Ex. GCC uses two IRs.
- one is high-level tree-oriented
- the other(RTL) is more machine-
oriented

YANG

Chap7 Semantic Processing

§7.1.3 Single Pass

• In Micro of chap 2, scanning, parsing and
semantic processing are interleaved in a
single pass.
(+) simple front-end
(+) less storage if no explicit trees
(-) immediately available information is

limited since no complete tree is built.

•Relationships

scanner

call

tokens

parser

semantic
rtn 1

semantic
rtn 2

semantic
rtn k

semantic
records

call

• Each terminal and nonterminal has a

semantic record.

• Semantic records may be considered as

the attributes of the terminals and

non-terminals.

YANG

Chap7 Semantic Processing

- For terminals, the semantic records are

created by the scanner.

- For nonterminals, the semantic records

are created by a semantic routine

when a production is recognized.

ex. A B C D #SR

A

B C D #SR

- Semantic records are transmitted among

semantic routines via a semantic stack.

YANG

Chap7 Semantic Processing

Ex. <assign>

ID (A) := <exp>

<exp> + <term>

<term> const (1)

id (B)

A

B

1

B

A

<exp>

AA

1 pass = 1 post-order traversal of the
parse tree

parsing actions build parse trees
semantic actions post-order traversal

<exp> <exp>+<term>

<assign> ID:=<exp>

gencode(+,B,1,tmp1)

gencode(:=,A,tmp1)

YANG

Chap7 Semantic Processing

Compare

<1> build a parse tree and then traverse

(+) flexible

(+) more powerful

<2> build and traverse the tree in an

interleaved way

(+) simple

(-) limited

YANG

Chap7 Semantic Processing

§ 7.2 Semantic Processing

• Semantic routines may be invoked in

two ways:

<1> By parsing procedures, as in the

recursive descent parser in chap 2

<2> by the parser driver, as in LL and

LR parsers.

YANG

Chap7 Semantic Processing

§ 7.2.1 LL(1)

<exp> <term> + <exp> #add

<exp>

<term>
+

<exp>
#add

+
<exp>
#add

<exp>
#add #add

parse
stack

semantic
stack

<term>
<exp>
<term> <exp>

• Some productions have no action

symbols; others may have several.

• Semantic routines are called when action

symbols appear on stack top.

YANG

Chap7 Semantic Processing

§ 7.2.2 LR(1)

• Semantic routines are invoked only

when a structure is recognized.

• In LR parsing, a structure is recognized

when the RHS is reduced to LHS.

• Therefore, action symbols must be

placed at the end.

Ex. # ifThen
<stmt>

if <cond> then <stmt> end
if <cond> then <stmt> else <stmt> end

ifThenElse

After shifting “ if <cond> “ , the parser

cannot decide which of #ifThen and

#ifThenElse should be invoked.

• cf. In LL parsing, the structure is

recognized when a nonterminal is

expanded.

YANG

Chap7 Semantic Processing

• However, sometimes we do need to
perform semantic actions in the middle
of a production.

Ex.

<stmt> if <exp> then <stmt> end

generate code
for <exp> Need a

conditional
jump here.

generate code
for <stmt>

Solution: Use two productions:

<stmt> <if head>
then <stmt> end #finishIf

<if head> if <exp> #startIf

semantic hook
(only for semantic processing)

YANG

Chap7 Semantic Processing

Another problem:
What if the action is not at the end?

Ex.
<prog> #start begin <stmt> end

We need to call #start.

Solution: Introduce a new nonterminal.

<prog>

<head> #start

• YACC automatically performs such

transformations.

<head> begin <stmt> end

YANG

Chap7 Semantic Processing

§ 7.2.3 Semantic Record Representation

• Since we need to use a stack of

semantic records, all semantic records

must have the same type.

» variant record in Pascal

» union type in C

Ex.

enum kind {OP, EXP, STMT, ERROR};

typedef struct {

enum kind tag;

union {

op_rec_type OP_REC;

exp_rec_type EXP_REC;

stmt_rec_type STMT_REC;

......

}

} sem_rec_type;

YANG

Chap7 Semantic Processing

- How to handle errors?

Ex. A semantic routine needs to create

a record for each identifier in an

expression.

What if the identifier is not declared?

Solution 1: make a bogus record

This method may create a chain

of meaningless error messages

due to this bogus record.

Solution 2: create an ERROR

semantic record

No error message will be

printed when ERROR record

is encountered.

YANG

Chap7 Semantic Processing

• WHO controls the semantic stack?

» action routines

» parser

§ 7.2.4 Action-controlled semantic stack

• Action routines take parameters from

the semantic stack directly and push

results onto the stack.

• Implementing stacks:

1. array

2. linked list

• Usually, the stack is transparent - any

records in the stack may be accessed

by the semantic routines.

(-) difficult to change

YANG

Chap7 Semantic Processing

Two other disadvantages:

(-) Action routines need to manage the

stack.

(-) Control of the stack is distributed

among the many action routines.

• Each action routine pops some

records and pushes 0 or 1 record.

• If any action routine makes a

mistake, the whole stack is corrupt.

YANG

Chap7 Semantic Processing

Solution 1: Let parser control the stack

Solution 2: Introduce additional stack

routines

parser
stack

routines
action

routines

• If action routines do not control the

stack, we can use opague (or abstract)

stack: only push() and pop() are

provided.

(+) clean interface

(-) less efficient

YANG

Chap7 Semantic Processing

§ 7.2.5 parser-controlled stack

• LR
Semantic stack and parse stack operate
in parallel [shifts and reduces in the
same way].

Ex. <stmt> if <exp> then <stmt> end

<stmt>
then

<exp>
if
:

<stmt>
then

<exp>
if

..........

..........

..........

..........

parser stack semantic stack

may be combined

Ex. YACC generates such

parser-controlled semantic stack.

<exp> <exp> + <term>

{ $$.value=$1.value+$3.value;}

YANG

Chap7 Semantic Processing

• LL parser-controlled semantic stack

- Every time a production A B C D

is predicted,

A

B

C

D

::

parse
stack

:

A
:

D

C
B
:

A
:

top

right

current
left

12
11
10
9
8
7

semantic
stack

Need four pointers fir the semantic stack

(left, right, current, top).

YANG

Chap7 Semantic Processing

However, when a new production

B E F G

is predicted, the four pointers will be

overwritten. Therefore, create a new EOP

record for the four pointers on the

parse stack.

YANG

Chap7 Semantic Processing

parse
stack

A
:

B
C
D

EOP(...)
:

E
F
G

EOP(7,9,9,12)
C
D

EOP(......)
:

semantic
stack

:
A
:

D
C
B
:
A
:

G
F
E
D
C
B
:
A
:

 EFGABCD B

top

right

current

left

top

right

current

left

current

9
8
7

12
11
10
9
8
7

15
14
13
12
11
10
9
8
7

YANG

Chap7 Semantic Processing

• When EOP record appears on stack top,

restore the four pointers, which

essentially pops off records from the

semantic stack.

YANG

Chap7 Semantic Processing

• Note that all push() and pop() are done

by the parser, not by the action routines.

• Semantic records are passed to the

action routines by parameters.

Ex.

<primary> (<exp>) #copy($2,$$)

• Initial information is stored in the

semantic record of LHS.

After the RHS is processed, the resulting

information is stored back in the

semantic record of LHS.

initially

:
A
:

D
C
B
:
A
:

:
A
:

finally

information flow
(attributes)

YANG

Chap7 Semantic Processing

Figure 7.10 Micro grammar with

parameterizd action symbols

Trace an example:

begin a := b + c end;

YANG

Chap7 Semantic Processing

(-) Semantic stack may grow very big.

<fix> Certain nonterminals never use

semantic records, e.g. <stmt list>

and <id list>.

We may insert #reuse before the

last nonterminal in each of their

productions.

Ex.

<stmt list> <stmt> #reuse <stmt tail>

<stmt tail> <stmt> #reuse <stmt tail>

<stmt tail>

YANG

Chap7 Semantic Processing

Evaluation:

Parser-controlled semantic stack is easy

with LR, but not so with LL.

YANG

Chap7 Semantic Processing

§ 7.3 Intermediate representation and

code generation

Two possibilities:

1.

.....
semantic
routines

code
generation

machine
code

(+) no extra pass for code generation

(+) allows simple 1-pass compilation

2.
semantic
routines

code
generation

machine
code

IR

(+) allows higher-level operations

e.g. open block, call procedures.

(+) better optimization because IR

is at a higher level.

(+) machine dependence is isolated

in code generation.

.....

YANG

Chap7 Semantic Processing

IR: good for optimization and portability

machine code: simple

YANG

Chap7 Semantic Processing

§ 7.3.2

1. postfix form

Ex.

a+b

(a+b)*c

a+b*c

a:=b*c+b*d

ab+

ab+c*

abc*+

abc*bd*+:=

(+) simple and concise

(+) good for driving an interpreter

(-) NOT good for optimization or

code generation

YANG

Chap7 Semantic Processing

2. 3-addr code

» triple : op arg1 arg2

» quadruple: op arg1 arg2 arg3

a := b*c + b*d

(1) (* b c) (1) (* b c t1)
(2) (* b d) (2) (* b d t2)
(3) (+ (1) (2)) (3) (+ t1 t2 t3)
(4) (:= (3) a) (4) (:= t3 a _)

intermediate results

are referenced by

the instruction #

use temporary

names

• triple: more concise

But what if instructions are deleted,

moved or added during optimization?

• Triples and quadruples are more similar

to machine code.

YANG

Chap7 Semantic Processing

• More detailed 3-addr code:

» Add type information

Ex. a := b*c + b*d

Suppose b,c are integer type, d is

float type.

(1) (I* b c) (I* b c t1)

(2) (FLOAT b _) (FLOAT b t2 _)

(3) (F* (2) d) (F* t2 d t3)

(4) (FLOAT (1) _) (FLOAT t1 t4 _)

(5) (*f+ (4) (3)) (F+ t4 t3 t5)

(6) (:= (5) a) (:= t5 a _)

YANG

Chap7 Semantic Processing

• Sometimes, the number of arguments to

operators may vary. The generalized

3-addr code is called tuples.

Ex. (I* b c t1)

(FLOAT b t2)

(F* t2 d t3)

(FLOAT t1 t4)

(F+ t4 t3 t5)

(:= t5 a)

YANG

Chap7 Semantic Processing

3. Sometimes, we use trees or DAG

Ex. a := b*c + b*d

:=

a +

* *

b c b d

:=

a +

* *

b c d

• More generally, we may use AST as IR.

Machine-independent optimization is

implemented as tree transformations.

.....

Ex. Ada uses Diana.

