
1

Chapter 6 LR Parsing Techniques

2

Shift-Reduce Parsers

• Reviewing some technologies:

– Phase

– Simple

– Handle of a sentential form

S

A b C

 b C a C

 b C b a C

A sentential form

handle Simple phase

3

Shift-reduce parser

• A parse stack

– Initially empty, contains symbols already parsed

• Elements in the stack are not terminal or nonterminal symbols

– The parse stack catenated with the remaining input

always represents a right sentential form

– Tokens are shifted onto the stack until the top of the

stack contains the handle of the sentential form

4

Shift-reduce parser

• Two questions

1. Have we reached the end of handles and how

long is the handle?

2. Which nonterminal does the handle reduce to?

• We use tables to answer the questions

– ACTION table

– GOTO table

5

Shift-reduce parser

• LR parsers are driven by two tables:

– Action table, which specifies that actions to take

• Shift, reduce, accept or error

– Goto table, which specifies state transition

• We push states, rather than symbols onto the

stack

• Each state represents the possible subtrees of the

parse tree

6

Shift-reduce parser

7

8

9

<program>

begin <stmts> end $

SimpleStmt ; <stmts>

SimpleStmt ; <stmts>



R 4

R 2

R 2

10

LR Parsers

• LR(1):

– left-to-right scanning

– rightmost derivation(reverse)

– 1-token lookahead

• LR parsers are deterministic

– no backup or retry parsing actions

• LR(k) parsers

– decide the next action by examining the tokens
already shifted and at most k lookahead tokens

– the most powerful of deterministic bottom-up
parsers with at most k lookahead tokens.

11

LR(0) Parsing

• A production has the form

– AX1X2…Xj

• By adding a dot, we get a configuration (or an
item)

– A•X1X2…Xj

– AX1X2…Xi • Xi+1 … Xj

– AX1X2…Xj •

• The • indicates how much of a RHS has been
shifted into the stack.

12

LR(0) Parsing

• An item with the • at the end of the RHS

– AX1X2…Xj •

– indicates (or recognized) that RHS should be

reduced to LHS

• An item with the • at the beginning of RHS

– A•X1X2…Xj

– predicts that RHS will be shifted into the stack

13

LR(0) Parsing

• An LR(0) state is a set of configurations

– This means that the actual state of LR(0)

parsers is denoted by one of the items.

• The closure0 operation:

– if there is an configuration B • A  in the set

then add all configurations of the form A • 

to the set.

• The initial configuration

– s0 = closure0({S •  $})

14

LR(0) Parsing

15

16

LR(0) Parsing
• Given a configuration set s, we can compute its

successor, s', under a symbol X

– Denoted go_to0(s,X)=s'

17

LR(0) Parsing
• Characteristic finite state machine (CFSM)

– It is a finite automaton, p.148, para. 2.

– Identifying configuration sets and successor operation with CFSM
states and transitions

18

LR(0) Parsing

• For example, given grammar G2

S'S$

SID|

19

LR(0) Parsing
• CFSM is the goto table of LR(0) parsers.

20

21

LR(0) Parsing
• Because LR(0) uses no lookahead, we must

extract the action function directly from the

configuration sets of CFSM

• Let Q={Shift, Reduce1, Reduce2 , …, Reducen}

– There are n productions in the CFG

• S0 be the set of CFSM states

– P:S02Q

• P(s)={Reducei | B •  s and production i is

B }  (if A • a  s for a Vt Then

{Shift} Else )

22

LR(0) Parsing

• G is LR(0) if and only if  s  S0 |P(s)|=1

• If G is LR(0), the action table is trivially extracted

from P

– P(s)={Shift}  action[s]=Shift

– P(s)={Reducei}, where production j is the augmenting

production,  action[s]=Accept

– P(s)={Reducei}, ij, action[s]=Reducei

– P(s)=  action[s]=Error

23

• Consider G1

SE$

EE+T | T

TID|(E)

CFSM for G1 

24

LR(0) Parsing

• Any state s  S0 for which |P(s)|>1 is said to be

inadequate

• Two kinds of parser conflicts create inadequacies

in configuration sets

– Shift-reduce conflicts

– Reduce-reduce conflicts

25

LR(0) Parsing
• If is easy to introduce inadequacies in

CFSM states

– Hence, few real grammars are LR(0). For
example,

• Consider -productions

– The only possible configuration involving a -production
is of the form A •

– However, is A can generate any terminal string other than
, then a shift action must also be possible (First(A))

• LR(0) parser will have problems in handling
operator precedence properly

26

LR(1) Parsing

• An LR(1) configuration, or item is of the

form

– AX1X2…Xi • Xi+1 … Xj, l where l  Vt{}

• The look ahead commponent l represents a possible

lookahead after the entire right-hand side has been

matched

• The  appears as lookahead only for the augmenting

production because there is no lookahead after the

endmarker

27

LR(1) Parsing

• We use the following notation to represent

the set of LR(1) configurations that shared

the same dotted production

AX1X2…Xi • Xi+1 … Xj, {l1…lm}

={AX1X2…Xi • Xi+1 … Xj, l1} 

{AX1X2…Xi • Xi+1 … Xj, l2} 

…

{AX1X2…Xi • Xi+1 … Xj, lm}

28

LR(1) Parsing

• There are many more distinct LR(1)

configurations than LR(0) configurations.

• In fact, the major difficulty with LR(1)

parsers is not their power but rather finding

ways to represent them in storage-efficient

ways.

29

LR(1) Parsing
• Parsing begins with the configuration

– closure1({S •  $, {}})

30

LR(1) Parsing
• Consider G1

SE$

EE+T | T

TID|(E)

• closure1(S • E$, {})

S • E$, {}

E • E+T, {$}

E • T, {$}

E • E+T, {+}

E • T, {+}

T • ID, {+}

T • (E), {+}

T • ID, {$}

T • (E), {$}

closure1(S • E$, {})=

{

S • E$, {};

E • E+T, {$+}

E • T, {$+}

T • ID, {$+}

T • (E), {$+}

}

31

LR(1) Parsing
• Given an LR(1) configuration set s, we

compute its successor, s', under a symbol X

– go_to1(s,X)

32

LR(1) Parsing

• We can build a finite automation that is

analogue of the LR(0) CFSM

– LR(1) FSM, LR(1) machine

• The relationship between CFSM and LR(1)

macine

– By merging LR(1) machine’s configuration sets,

we can obtain CFSM

33

• G3

SE$

EE+T|T

TT*P|P

PID|(E)

34

• G3

SE$

EE+T|T

TT*P|P

PID|(E)

35

36

LR(1) Parsing

• The go_to table used to drive an LR(1) is

extracted directly from the LR(1) machine

37

LR(1) Parsing

• Action table is extracted directly from the

configuration sets of the LR(1) machine

• A projection function, P

– P : S1Vt2Q

• S1 be the set of LR(1) machine states

• P(s,a)={Reducei | B •,a s and

production i is B }  (if A •

a,b  s Then {Shift} Else )

38

LR(1) Parsing
• G is LR(1) if and only if

– s S1 a Vt |P(s,a)|1

• If G is LR(1), the action table is trivially extracted

from P

– P(s,$)={Shift}  action[s][$]=Accept

– P(s,a)={Shift}, a$  action[s][a]=Shift

– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error

39

40

SLR(1) Parsing

• LR(1) parsers are the most powerful clas of

shift-reduce parsers, using a single

lookahead

– LR(1) grammars exist for virtually all

programming languages

– LR(1)’s problem is that the LR(1) machine

contains so many states that the go_to and

action tables become prohibitively large

41

SLR(1) Parsing

• In reaction to the space inefficiency of LR(1)
tables, computer scientists have devised parsing
techniques that are almost as powerful as LR(1)
but that require far smaller tables

1. One is to start with the CFSM, and then add
lookahead after the CFSM is build

– SLR(1)

2. The other approach to reducing LR(1)’s space
inefficiencies is to merger inessential LR(1) states

– LALR(1)

42

SLR(1) Parsing

• SLR(1) stands for Simple LR(1)

– One-symbol loookahead

– Lookaheads are not built directly into

configurations but rather are added after the

LR(0) configuration sets are built

– An SLR(1) parser will perform a reduce action

for configuration B  • if the lookahead

symbol is in the set Follow(B)

43

SLR(1) Parsing

• The SLR(1) projection function, from

CFSM states,

– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Follow(B) and

production i is B }  (if A • a  s

for a Vt Then {Shift} Else )

44

SLR(1) Parsing

• G is SLR(1) if and only if

– s S0 a Vt |P(s,a)|1

• If G is SLR(1), the action table is trivially

extracted from P

– P(s,$)={Shift}  action[s][$]=Accept

– P(s,a)={Shift}, a$  action[s][a]=Shift

– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error

• Clearly SLR(1) is a proper superset of LR(0)

45

SLR(1) Parsing

• Consider G3

– It is LR(1) but not

LR(0)

– See states 7,11

– Follow(E)={$,+,)}

SE$

EE+T|T

TT*P|P

PID|(E)

46

SE$

EE+T|T

TT*P|P

PID|(E)

47

Limitations of the SLR(1) Technique

• The use of Follow sets to estimate the
lookaheads that predict reduce actions is
less precise than using the exact lookaheads
incorporated into LR(1) configurations

– Consider G4

Elem(List, Elem)

ElemScalar

ListList,Elem

List Elem

Scalar ID

Scalar(Scalar)

Fellow(Elem)={“)”,”,”,….}

48

Fellow(Elem)={“)”,”,”,….}

LR(1) lookahead for

ElemScalar • is “,”

49

LALR(1)

• LALR(1) parsers can be built by first

constructing an LR(1) parser and then

merging states

– An LALR(1) parser is an LR(1) parser in which

all states that differ only in the lookahead

components of the configurations are merged

– LALR is an acronym for Look Ahead LR

50

The core of a configuration

• The core of the above two configurations is the
same

EE+T

T  T*P

T P

P id

P (E)

51

States Merge

• Cognate(s)={c|cs, core(s)=s}

EE+T

T  T*P

T P

P id

P (E)

s

52

LALR(1)
• LALR(1) machine

53

LALR(1)

• The CFSM state is transformed into its

LALR(1) Cognate

– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Cognate(s) and

production i is B }  (if A • a  s

Then {Shift} Else )

54

LALR(1) Parsing

• G is LALR(1) if and only if

– s S0 a Vt |P(s,a)|1

• If G is LALR(1), the action table is trivially

extracted from P

– P(s,$)={Shift}  action[s][$]=Accept

– P(s,a)={Shift}, a$  action[s][a]=Shift

– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error

55

LALR(1) Parsing
• Consider G5

<stmt>ID

<stmt><var>:=<expr>

<var> ID

<var> ID [expr>]

<expr><var>

• Assume statemetns are separated by ;’s, the

grammar is not SLR(1) because

;  Follow(<stmt>) and

;  Follow(<var>), since <expr><var>

56

LALR(1) Parsing

• However, in LALR(1), if we use <var> 

ID the next symbol must be :=

so action[1, :=] = reduce(<var>  ID)

action[1, ;] = reduce(<stmt>  ID)

action[1,[] = shift

• There is no conflict.

57

LALR(1) Parsing

• A common technique to put an LALR(1) grammar
into SLR(1) form is to introduce a new
nonterminal whose global (I.e. SLR) lookaheads
more nearly correspond to LALR’s exact look
aheads

– Follow(<lhs>) = {:=}

<stmt>ID

<stmt><var>:=<expr>

<var> ID

<var> ID [expr>]

<expr><var>

<stmt>ID

<stmt><lhs>:=<expr>

<lhs> ID

<lhs> ID [expr>]

<var> ID

<var> ID [expr>]

<expr><var>

58

LALR(1) Parsing
• At times, it is the CFSM itself that is at fault.

S(Exp1)

S[Exp1]

S(Exp1]
S[Exp1)
<Exp1>ID
<Exp2>ID

• A different expression nonterminal is used to allow error or
warning diagnostics

59

Building LALR(1) Parsers

• In the definition of LALR(1)

– An LR(1) machine is first built, and then its

states are merged to form an automaton

identical in structure to the CFSM

• May be quite inefficient

– An alternative is to build the CFSM first.

• Then LALR(1) lookaheads are “propagated” from

configuration to configuration

60

Building LALR(1) Parsers

• Propagate links:

– Case 1: one configuration is created from

another in a previous state via a shift operation

A •X , L1 A X•  , L2

61

Building LALR(1) Parsers

• Propagate links:

– Case 2: one configuration is created as the

result of a closure or prediction operation on

another configuration

B •A , L1

A • , L2

L2={ x|xFirst(t) and t L1 }

62

Building LALR(1) Parsers

• Step 1: After the CFSM is built, we can create all

the necessary propagate links to transmit

lookaheads from one configuration to another

• Step 2: spontaneous lookaheads are determined

– By including in L2, for configuration A,L2, all

spontaneous lookaheads induced by configurations of

the form B   A,L1

• These are simply the non- values of First()

• Step 3: Then, propagate lookaheads via the

propagate links

– See figure 6.25

63

Building LALR(1) Parsers

64

65

66

Building LALR(1) Parsers

• A number of LALR(1) parser generators use

lookahead propagation to compute the parser

action table

– LALRGen uses the propagation algorithm

– YACC examines each state repeatedly

• An intriguing alternative to propagating LALR

lookaheads is to compute them as needed by doing

a backward search through the CFSM

– Read it yourself. P. 176, Para. 3

67

Calling Semantic Routines in

Shift-Reduce Parsers

• Shift-reduce parsers can normally handle larger
classes of grammars than LL(1) parsers, which is a
major reason for their popularity

• Shift-reduce parsers are not predictive, so we
cannot always be sure what production is being
recognized until its entire right-hand side has been
matched

– The semantic routines can be invoked only after a
production is recognized and reduced

• Action symbols only at the extreme right end of a right-hand
side

68

Calling Semantic Routines in

Shift-Reduce Parsers

• Two common tricks are known that allow more flexible

placement of semantic routine calls

• For example,

<stmt>if <expr> then <stmts> else <stmts> end if

• We need to call semantic routines after the conditional

expression else and end if are matched

– Solution: create new nonterminals that generate 

<stmt>if <expr> <test cond>

then <stmts> <process then part>

else <stmts> end if

<test cond>

<process than part>

69

Calling Semantic Routines in

Shift-Reduce Parsers

• If the right-hand sides differ in the semantic routines that
are to be called, the parser will be unable to correctly
determine which routines to invoke

– Ambiguity will manifest. For example,

<stmt>if <expr> <test cond1>

then <stmts> <process then part>

else <stmts> end if;

<stmt>if <expr> <test cond2>

then <stmts> <process then part>

else <stmts> end if;

<test cond1>

<test cond2>

<process than part>

70

Calling Semantic Routines in

Shift-Reduce Parsers

• An alternative to the use of –generating

nonterminals is to break a production into a

number of pieces, with the breaks placed where

semantic routines are required

<stmt><if head><then part><else part>

<if head>if <expr>

<then part>then <stmts>

<else part>then <stmts> end if;

– This approach can make productions harder to read but

has the advantage that no –generating are needed

