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Chapter 6 LR Parsing Techniques
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Shift-Reduce Parsers

• Reviewing some technologies:

– Phase

– Simple

– Handle of a sentential form

S

A b C

 b C a C

 b C b a C

A sentential form

handle Simple phase
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Shift-reduce parser

• A parse stack

– Initially empty, contains symbols already parsed

• Elements in the stack are not terminal or nonterminal symbols

– The parse stack catenated with the remaining input 

always represents a  right sentential form

– Tokens are shifted onto the stack until the top of the 

stack contains the handle of the sentential form
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Shift-reduce parser

• Two questions

1. Have we reached the end of handles and how 

long is the handle?

2. Which nonterminal does the handle  reduce to?

• We use tables to answer the questions

– ACTION table

– GOTO table
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Shift-reduce parser

• LR parsers are driven by two tables:

– Action table, which specifies that actions to take

• Shift, reduce, accept or error

– Goto table, which specifies state transition

• We push states, rather than symbols onto the 

stack

• Each state represents the possible subtrees of the 

parse tree
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Shift-reduce parser
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<program>

begin <stmts> end $

SimpleStmt ; <stmts>

SimpleStmt ; <stmts>



R 4

R 2

R 2
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LR Parsers

• LR(1):  

– left-to-right scanning

– rightmost derivation(reverse)

– 1-token lookahead

• LR parsers are deterministic

– no backup or retry parsing actions

• LR(k) parsers 

– decide the next action by examining the tokens 
already shifted and at most k lookahead tokens

– the most powerful of deterministic bottom-up 
parsers with at most k lookahead tokens.
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LR(0) Parsing

• A production has the form 

– AX1X2…Xj

• By adding a dot, we get a configuration (or an 
item)

– A•X1X2…Xj

– AX1X2…Xi • Xi+1 … Xj

– AX1X2…Xj •

• The • indicates how much of a RHS has been 
shifted into the stack.
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LR(0) Parsing

• An item with the • at the end of the RHS

– AX1X2…Xj •

– indicates (or recognized) that RHS  should be 

reduced to LHS

• An item with the • at the beginning of RHS

– A•X1X2…Xj

– predicts that RHS will be shifted into the stack
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LR(0) Parsing

• An LR(0) state is a set of configurations

– This means that the actual state of LR(0) 

parsers is denoted by one of the items.

• The closure0 operation:

– if there is an configuration B • A  in the set 

then add all configurations of the form A • 

to the set.

• The initial configuration

– s0 = closure0({S •  $})
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LR(0) Parsing
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LR(0) Parsing
• Given a configuration set s, we can compute its 

successor, s', under a symbol X

– Denoted go_to0(s,X)=s'
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LR(0) Parsing
• Characteristic finite state machine (CFSM)

– It is a finite automaton, p.148, para. 2.

– Identifying configuration sets and successor operation with CFSM 
states and transitions
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LR(0) Parsing

• For example, given grammar G2

S'S$

SID|
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LR(0) Parsing
• CFSM is the goto table of LR(0) parsers.
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LR(0) Parsing
• Because LR(0) uses no lookahead, we must 

extract the action function directly from the 

configuration sets of CFSM

• Let Q={Shift, Reduce1, Reduce2 , …, Reducen}

– There are n productions in the CFG

• S0 be the set of CFSM states

– P:S02Q

• P(s)={Reducei | B •  s and production i is 

B }  (if A • a  s for a Vt Then 

{Shift} Else )
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LR(0) Parsing

• G is LR(0) if and only if  s  S0 |P(s)|=1

• If G is LR(0), the action table is trivially extracted 

from P

– P(s)={Shift}  action[s]=Shift

– P(s)={Reducei}, where production j is the augmenting 

production,  action[s]=Accept

– P(s)={Reducei}, ij, action[s]=Reducei

– P(s)=  action[s]=Error
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• Consider  G1

SE$

EE+T | T

TID|(E)

CFSM for G1 
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LR(0) Parsing

• Any state s  S0 for which |P(s)|>1 is said to be 

inadequate

• Two kinds of parser conflicts create inadequacies 

in configuration sets

– Shift-reduce conflicts

– Reduce-reduce conflicts
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LR(0) Parsing
• If is easy to introduce inadequacies in 

CFSM states

– Hence, few real grammars are LR(0). For 
example,

• Consider -productions

– The only possible configuration involving a -production 
is of the form A •

– However, is A can generate any terminal string other than 
, then a shift action must also be possible (First(A))

• LR(0) parser will have problems in handling 
operator precedence properly
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LR(1) Parsing

• An LR(1) configuration, or item is of the 

form

– AX1X2…Xi • Xi+1 … Xj, l where l  Vt{}

• The look ahead commponent l represents a possible 

lookahead after the entire right-hand side has been 

matched

• The  appears as lookahead only for the augmenting 

production because there is no lookahead after the 

endmarker
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LR(1) Parsing

• We use the following notation to represent 

the set of LR(1) configurations that shared 

the same dotted production

AX1X2…Xi • Xi+1 … Xj, {l1…lm}

={AX1X2…Xi • Xi+1 … Xj, l1} 

{AX1X2…Xi • Xi+1 … Xj, l2} 

…

{AX1X2…Xi • Xi+1 … Xj, lm}
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LR(1) Parsing

• There are many more distinct LR(1) 

configurations than LR(0) configurations.

• In fact, the major difficulty with LR(1) 

parsers is not their power but rather finding 

ways to represent them in storage-efficient 

ways.
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LR(1) Parsing
• Parsing begins with the configuration 

– closure1({S •  $, {}})
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LR(1) Parsing
• Consider  G1

SE$

EE+T | T

TID|(E) 

• closure1(S • E$, {})

S • E$, {}

E • E+T, {$}

E • T, {$}

E • E+T, {+}

E • T, {+}

T • ID, {+}

T • (E), {+}

T • ID, {$}

T • (E), {$}

closure1(S • E$, {})=

{

S • E$, {};

E • E+T, {$+}

E • T, {$+}

T • ID, {$+}

T • (E), {$+}

}
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LR(1) Parsing
• Given an LR(1) configuration set s, we 

compute its successor, s', under a symbol X

– go_to1(s,X)
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LR(1) Parsing

• We can build a finite automation that is 

analogue of the LR(0) CFSM 

– LR(1) FSM, LR(1) machine

• The relationship between CFSM and LR(1) 

macine

– By merging LR(1) machine’s configuration sets, 

we can obtain CFSM 
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• G3

SE$

EE+T|T

TT*P|P

PID|(E)
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• G3

SE$

EE+T|T

TT*P|P

PID|(E)
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LR(1) Parsing

• The go_to table used to drive an LR(1) is 

extracted directly from the LR(1) machine



37

LR(1) Parsing

• Action table is extracted directly from the 

configuration sets of the LR(1) machine

• A projection function, P

– P : S1Vt2Q

• S1 be the set of LR(1) machine states

• P(s,a)={Reducei | B •,a s and 

production i is B }  (if A • 

a,b  s Then {Shift} Else )
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LR(1) Parsing
• G is LR(1) if and only if 

– s S1 a Vt |P(s,a)|1

• If G is LR(1), the action table is trivially extracted 

from P

– P(s,$)={Shift}  action[s][$]=Accept

– P(s,a)={Shift}, a$  action[s][a]=Shift

– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error
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SLR(1) Parsing

• LR(1) parsers are the most powerful clas of 

shift-reduce parsers, using a single 

lookahead

– LR(1) grammars exist for virtually all 

programming languages

– LR(1)’s problem is that the LR(1) machine 

contains so many states that the go_to and 

action tables become prohibitively large
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SLR(1) Parsing

• In reaction to the space inefficiency of LR(1) 
tables, computer scientists have devised parsing 
techniques that are almost as powerful as LR(1) 
but that require far smaller tables

1. One is to start with the CFSM, and then add 
lookahead after the CFSM is build

– SLR(1)

2. The other approach to reducing LR(1)’s space 
inefficiencies is to merger inessential LR(1) states

– LALR(1)
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SLR(1) Parsing

• SLR(1) stands for Simple LR(1)

– One-symbol loookahead 

– Lookaheads are not built directly into 

configurations but rather are added after the 

LR(0) configuration sets are built

– An SLR(1) parser will perform a reduce action 

for configuration B  • if the lookahead 

symbol is in the set Follow(B)
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SLR(1) Parsing

• The SLR(1) projection function, from 

CFSM states, 

– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Follow(B) and 

production i is B }  (if A • a  s

for a Vt Then {Shift} Else )
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SLR(1) Parsing

• G is SLR(1) if and only if 

– s S0 a Vt |P(s,a)|1

• If G is SLR(1), the action table is trivially 

extracted from P

– P(s,$)={Shift}  action[s][$]=Accept

– P(s,a)={Shift}, a$  action[s][a]=Shift

– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error

• Clearly SLR(1) is a proper superset of LR(0)
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SLR(1) Parsing

• Consider G3

– It is LR(1) but not 

LR(0)

– See states 7,11

– Follow(E)={$,+,)}

SE$

EE+T|T

TT*P|P

PID|(E)
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SE$

EE+T|T

TT*P|P

PID|(E)



47

Limitations of the SLR(1) Technique

• The use of Follow sets to estimate the 
lookaheads that predict reduce actions is 
less precise than using the exact lookaheads 
incorporated into LR(1) configurations

– Consider G4

Elem(List, Elem)

ElemScalar

ListList,Elem

List Elem

Scalar ID

Scalar(Scalar)

Fellow(Elem)={“)”,”,”,….}
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Fellow(Elem)={“)”,”,”,….}

LR(1) lookahead for 

ElemScalar • is “,”
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LALR(1)

• LALR(1) parsers can be built by first 

constructing an LR(1) parser and then 

merging states

– An LALR(1) parser is an LR(1) parser in which 

all states that differ only in the lookahead 

components of the configurations are merged

– LALR is an acronym for Look Ahead LR
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The core of a configuration

• The core of the above two configurations is the 
same

EE+T

T  T*P

T P

P id

P (E)
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States Merge

• Cognate(s)={c|cs, core(s)=s}

EE+T

T  T*P

T P

P id

P (E)

s
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LALR(1)
• LALR(1)  machine
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LALR(1)

• The CFSM state is transformed into its 

LALR(1) Cognate 

– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Cognate(s) and 

production i is B }  (if A • a  s

Then {Shift} Else )
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LALR(1) Parsing

• G is LALR(1) if and only if 

– s S0 a Vt |P(s,a)|1

• If G is LALR(1), the action table is trivially 

extracted from P

– P(s,$)={Shift}  action[s][$]=Accept

– P(s,a)={Shift}, a$  action[s][a]=Shift

– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error
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LALR(1) Parsing
• Consider G5

<stmt>ID

<stmt><var>:=<expr>

<var>  ID

<var>  ID [expr>] 

<expr><var>

• Assume statemetns are separated by ;’s, the 

grammar is not SLR(1) because

;  Follow(<stmt>) and

;  Follow(<var>), since <expr><var>
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LALR(1) Parsing

• However, in LALR(1), if we use <var> 

ID the next symbol must be :=

so  action[ 1, := ] = reduce(<var>  ID)

action[ 1, ; ]   = reduce(<stmt>  ID)

action[ 1,[ ]    = shift

• There is no conflict.
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LALR(1) Parsing

• A common technique to put an LALR(1) grammar 
into SLR(1) form is to introduce a new 
nonterminal whose global (I.e. SLR) lookaheads 
more nearly correspond to LALR’s exact look 
aheads

– Follow(<lhs>) = {:=}

<stmt>ID

<stmt><var>:=<expr>

<var>  ID

<var>  ID [expr>] 

<expr><var>

<stmt>ID

<stmt><lhs>:=<expr>

<lhs>  ID

<lhs>  ID [expr>] 

<var>  ID

<var>  ID [expr>] 

<expr><var>
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LALR(1) Parsing
• At times, it is the CFSM itself that is at fault. 

S(Exp1)

S[Exp1]

S(Exp1]
S[Exp1)
<Exp1>ID
<Exp2>ID

• A different expression nonterminal is used to allow error or 
warning diagnostics
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Building LALR(1) Parsers

• In the definition of LALR(1)

– An LR(1) machine is first built, and then its 

states are merged to form an automaton 

identical in structure to the CFSM

• May be quite inefficient

– An alternative is to build the CFSM first.

• Then LALR(1) lookaheads are “propagated” from 

configuration to configuration
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Building LALR(1) Parsers

• Propagate links:

– Case 1: one configuration is created from 

another in a previous state via a shift operation

A •X , L1  A X•  , L2
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Building LALR(1) Parsers

• Propagate links:

– Case 2: one configuration is created as the 

result of a closure or prediction operation on 

another configuration

B •A , L1

A • , L2

L2={ x|xFirst(t) and t L1 }
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Building LALR(1) Parsers

• Step 1: After the CFSM is built, we can create all 

the necessary propagate links to transmit 

lookaheads from one configuration to another

• Step 2: spontaneous lookaheads are determined

– By including in L2, for configuration A,L2, all 

spontaneous lookaheads induced by configurations of 

the form B   A,L1

• These are simply the non- values of First() 

• Step 3: Then, propagate lookaheads via the 

propagate links

– See figure 6.25
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Building LALR(1) Parsers
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Building LALR(1) Parsers

• A number of LALR(1) parser generators use 

lookahead propagation to compute the parser 

action table

– LALRGen uses the propagation algorithm

– YACC examines each state repeatedly

• An intriguing alternative to propagating LALR 

lookaheads is to compute them as needed by doing 

a backward search through the CFSM

– Read it yourself.  P. 176, Para. 3
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Calling Semantic Routines in 

Shift-Reduce Parsers

• Shift-reduce parsers can normally handle larger 
classes of grammars than LL(1) parsers, which is a 
major reason for their popularity

• Shift-reduce parsers are not predictive, so we 
cannot always be sure what production is being 
recognized until its entire right-hand side has been 
matched

– The semantic routines can be invoked only after a 
production is recognized and reduced

• Action symbols only at the extreme right end of a right-hand 
side
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Calling Semantic Routines in 

Shift-Reduce Parsers

• Two common tricks are known that allow more flexible 

placement of semantic routine calls

• For example,

<stmt>if <expr> then <stmts> else <stmts> end if

• We need to call semantic routines after the conditional 

expression else and end if are matched

– Solution: create new nonterminals that generate 

<stmt>if <expr> <test cond> 

then <stmts> <process then part> 

else <stmts> end if

<test cond>

<process than part>
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Calling Semantic Routines in 

Shift-Reduce Parsers

• If the right-hand sides differ in the semantic routines that 
are to be called, the parser will be unable to correctly 
determine which routines to invoke

– Ambiguity will manifest. For example,

<stmt>if <expr> <test cond1> 

then <stmts> <process then part> 

else <stmts> end if;

<stmt>if <expr> <test cond2> 

then <stmts> <process then part> 

else <stmts> end if;

<test cond1>

<test cond2>

<process than part>
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Calling Semantic Routines in 

Shift-Reduce Parsers

• An alternative to the use of –generating

nonterminals is to break a production into a 

number of pieces, with the breaks placed where 

semantic routines are required

<stmt><if head><then part><else part>

<if head>if <expr>

<then part>then <stmts>

<else part>then <stmts> end if;

– This approach can make productions harder to read but 

has the advantage that no –generating are needed 


