
1

Chapter 4 Grammars and Parsing



2

Context-Free Grammars: Concepts and 

Notation

• A context-free grammar G = (Vt, Vn, S, P)

– A finite terminal vocabulary Vt

• The token set produced by scanner

– A finite set of nonterminal vacabulary Vn

• Intermediate symbols

– A start symbol S Vn that starts all derivations
– Also called goal symbol

– P, a finite set of productions (rewriting rules) of the 

form A X1X2  Xm

• AVn, Xi  VnVt, 1i m

• A  is a valid production



3

Context-Free Grammars: Concepts and 

Notation (Cont’d)

• Other notations

– Vacabulary V of G, 

• V= VnVt

– L(G), the set of string s derivable from S

• Context-free language of grammar G

– Notational conventions

• a,b,c,  denote symbols in Vt

• A,B,C,  denote symbols in Vn

• U,V,W,  denote symbols in V

• ,,, denote strings in V*

• u,v,w,  denote strings in Vt
*



4

Context-Free Grammars: Concepts and 

Notation (Cont’d)

• Derivation

– One step derivation

• If A, then A 

– One or more steps derivation +

– Zero or more steps derivation *

• If S *, then  is said to be sentential form 

of the CFG

– SF(G) is the set of sentential forms of grammar G

• L(G) = {x Vt
*|S+x}

– L(G)=SF(G)Vt
*



5

Context-Free Grammars: Concepts and 

Notation (Cont’d)

• Left-most derivation, a top-down parsers

lm ,  lm ,
+ lm

*

– E.g. of leftmost derivation of F(V+V)

EPrefix(E)

EV Tail

PrefixF

Prefix

Tail+E

Tail 

G0

E lm Prefix(E)

 lm F(E)

 lm F(V Tail)

 lm F(V+E)

 lm F(V+V Tail)

 lm F(V+V)



6

Context-Free Grammars: Concepts and 

Notation (Cont’d)
• Right-most derivation (canonical derivation)

 rm ,  rm ,
+ rm

*

– Buttom-up parsers

– E.g. of leftmost derivation of F(V+V)

EPrefix(E)

EV Tail

PrefixF

Prefix

Tail+E

Tail 

G0

E rm Prefix(E)

 rm Prefix(V Tail)

 rm Prefix(V+E)

 rm Prefix(V+V Tail)

 rm Prefix(V+V)

 rm F(V+V)

Same # of steps, but different 
order



7

Context-Free Grammars: Concepts and 

Notation (Cont’d)
• A parse tree

– rooted by the start symbol

– Its leaves are grammar symbols or 



8

Context-Free Grammars: Concepts and 

Notation (Cont’d)

• A phase of a sentential form is a sequence of 

symbols descended from a single nonterminal 

in the parse tree

– Simple or prime phrase

• The handle of a sentential form is the left-

most simple phrase



9

Context-Free Grammars: Concepts and 

Notation (Cont’d)

• Regular grammars

– is of CFGs

– Limited to productions of the form 

AaB

C

– See exercise 6

• The handle of a sentential form is the left-

most simple phrase



10

Errors in Context-Free Grammars

• CFGs are a definitional mechanism. They 

may have errors, just as programs may.

• Flawed CFG

1. Useless nonterminals

• Unreachable

• Derive no terminal string

SA|B

Aa

BBb

Cc

Nonterminal C cannot be reached form S

Nonterminal B derives no terminal string

S is the start symbol. Do exercise 7.



11

Errors in Context-Free Grammars

• Ambiguous:

– Grammars that allow different parse trees for the same 
terminal string

• It is impossible to decide whether a given CFG is 
ambiguous



12

Errors in Context-Free Grammars

• It is impossible to decide whether a given 

CFG is ambiguous

– For certain grammar classes, we can prove that 

constituent grammars are unambiguous

• Wrong language

• A general comparison algorithm applicable 

to all CFGs is known to be impossible



13

Transforming Extened BNF Grammars

• Extended BNF BNF

– Extended BNF allows 

• Square bracket []

• Optional list {}



14

Parsers and Recognizers

• Recognizer

– An algorithm that does boolean-valued test

• “Is this input syntactically valid?

• Parser

– Answers more general questions

• Is this input valid?

• And, if it is, what is its structure (parse tree)?



15

Parsers and Recognizers (Cont’d)

• Two general approaches to parsing

– Top-down parser

• Expanding the parse tree (via predictions) in a 

depth-first manner

• Preorder traversal of the parse tree

• Predictive in nature

• lm

• LL



16

Parsers and Recognizers (Cont’d)

– Buttom-down parser

• Beginning at its bottom (the leaves of the tree, 

which are terminal symbols) and determining the 

productions used to generate the leaves

• Postorder traversal of the parse tree

• rm

• LR



17

Parsers and Recognizers (Cont’d)

To parse 

begin SimpleStmt; SimpleStmt; end $



18



19



20

Parsers and Recognizers (Cont’d)

• Naming of parsing techniques

The way to parse 

token sequence

L: Leftmost 

R: Righmost 

• Top-down
LL

• Bottom-up
LR



21

Grammar Analysis Algorithms

• Goal of this section:

– Discuss a number of important analysis 

algorithms for Grammars



22

Grammar Analysis Algorithms (Cont’d)

• The data structure of a grammar G



23

Grammar Analysis Algorithms (Cont’d)

• What nonterminals can derive ?

A  BCD  BC  B  

– An iterative marking algorithm



24



25

Grammar Analysis Algorithms (Cont’d)

• Follow(A)

– A is any nonterminal

– Follow(A) is the set of terminals that my follow A in 
some sentential form

Follow(A)={aVt|S
* Aa  }

{if S + A then {} else }

• First()

– The set of all the terminal symbols that can begin a 
sentential form derivable from 

– If  is the right-hand side of a production, then First() 
contains terminal symbols that begin strings derivable 
from 

First()={aVt|  
* a}

{if  *  then {} else }



26

Grammar Analysis Algorithms (Cont’d)

• Definition of C data structures and 

subroutines

– first_set[X]

• contains terminal symbols and 

• X is any single vocabulary symbol

– follow_set[A]

• contains terminal symbols and 

• A is a nonterminal symbol



27

It is a subroutine of 

fill_first_set()



28



29



30

EPrefix(E)

EV Tail

PrefixF

Prefix

Tail+E

Tail 

G0

The execution of fill_first_set() using grammar G0



31



32

EPrefix(E)

EV Tail

PrefixF

Prefix

Tail+E

Tail 

G0

The execution of fill_follow_set() using grammar G0



33

More examplesS  aSe

S  B

B  bBe

B  C

C  cCe

C  d

The execution of fill_follow_set()

The execution of fill_first_set()



34

More examplesS  ABc

A  a

A  

B  b

B  

The execution of fill_follow_set()

The execution of fill_first_set()


