
1

Chapter 3 Scanning – Theory and

Practice

2

Overview

• Formal notations for specifying the precise
structure of tokens are necessary

– Quoted string in Pascal

– Can a string split across a line?

– Is a null string allowed?

– Is .1 or 10. ok?

– the 1..10 problem

• Scanner generators

– tables

– Programs

• What formal notations to use?

3

Regular Expressions

• Tokens are built from symbols of a finite

vocabulary.

• We use regular expressions to define

structures of tokens.

4

Regular Expressions

• The sets of strings defined by regular expressions

are termed regular sets

• Definition of regular expressions

–  is a regular expression denoting the empty set

–  is a regular expression denoting the set that contains only the

empty string

– A string s is a regular expression denoting a set containing only s

– if A and B are regular expressions, so are

• A | B (alternation)

• AB (concatenation)

• A* (Kleene closure)

5

Regular Expressions (Cont’d)

some notational convenience

P+ == PP*

Not(A) == V - A

Not(S) == V* - S

AK == AA …A (k copies)

6

Regular Expressions (Cont’d)

• Some examples

Let D = (0 | 1 | 2 | 3 | 4 | ... | 9)

L = (A | B | ... | Z)

comment = -- not(EOL)* EOL

decimal = D+ · D+

ident = L (L | D)* (_ (L | D)+)*

comments = ##((#| )not(#))* ##

7

Regular Expressions (Cont’d)

• Is regular expression as power as CFG?

{ [i]i | i1}

8

Finite Automata and Scanners

• A finite automaton (FA) can be used to recognize

the tokens specified by a regular expression

• A FA consists of

– A finite set of states

– A set of transitions (or moves) from one state to another,

labeled with characters in V

– A special start state

– A set of final, or accepting, states

9

A transition diagram

This machine accepts abccabc,

but it rejects abcab.

This machine accepts (abc+)+.

10

• Example

(0|1)*0(0|1)(0|1)

1 2 3

5

40 0,1 0,1

0,1 0

0,1

11

• Example

RealLit = (D+(|.))|(D*.D+)

12

• Example

ID = L(L|D)*(_(L|D)+)*

13

Finite Automata and Scanners

• Two kinds of FA:

– Deterministic: next transition is unique

– Non-deterministic: otherwise

...

...

a

a

14

A transition table of a DFA

15

Finite Automata and Scanners

• Any regular expression can be translated

into a DFA that accepts the set of strings

denoted by the regular expression

• The transition can be done

– Automatically by a scanner generator

– Manually by a programmer

16

17

18

Finite Automata and Scanners

• Transducer
– We may perform some actions during state transition.

19

20

Practical Consideration

• Reserved Words

– Usually, all keywords are reserved in order to simplify
parsing.

– In Pascal, we could even write

begin

begin; end; end; begin;

end

if else then if = else;

• The problem with reserved words is that they are
too numerous.

– COBOL has several hundrens of reserved words!

21

Practical Consideration (Cont’d)

• Compiler Directives and Listing Source

Lines
– Compiler options e.g. optimization, profiling, etc.

• handled by scanner or semantic routines

• Complex pragmas are treated like other statements.

– Source inclusion
• e.g. #include in C

• handled by preprocessor or scanner

– Conditional compilation
• e.g. #if, #endif in C

• useful for creating program versions

22

Practical Consideration (Cont’d)

• Entry of Identifiers into the Symbol Table

• Who is responsible for entering symbols

into symbol table?

– Scanner?

– Consider this example:

{ int abc;

…

{ int abc; }

}

23

Practical Consideration (Cont’d)

• How to handle end-of-file?

– Create a special EOF token.

• EOF token is useful in a CFG

• Multicharacter Lookahead

– Blanks are not significant in Fortran

• DO 10 I = 1,100

– Beginning of a loop

• DO 10 I = 1.100

– An assignment statement DO10I=1.100

• A Fortran scanner can determine whether the O is the last
character of a DO token only after reading as far as the
comma

24

Practical Consideration (Cont’d)

• Multicharacter Lookahead (Cont’d)

– In Ada and Pascal

• To scan 1..100

– There are three token

» 1

» ..

» 100

– Two-character lookahead after the 10

25

Practical Consideration (Cont’d)
• Multicharacter Lookahead (Cont’d)

– It is easy to build a scanner that can perform general
backup.

– If we reach a situation in which we are not in final
state and cannot scan any more characters, backup is
invoked.

• Until we reach a prefix of the scanned characters flagged as a
valid token

26

27

Translating Regular Expressions

into Finite Automata
• Regular expressions are equivalent to FAs

• The main job of a scanner generator

– To transform a regular expression definition into an
equivalent FA

A regular

expression

Nondeterministic

FA

Deterministic

FA

Optimized

Deterministic

FA

minimize # of states

28

Translating Regular Expressions

into Finite Automata
• A FA is nondeterministic:

29

Translating Regular Expressions

into Finite Automata
• We can transform any regular expression

into an NFA with the following properties:

– There is an unique final state

– The final state has no successors

– Every other state has either one or two

successors

30

Translating Regular Expressions

into Finite Automata
• We need to review the definition of

regular expression

1.  (null string)

2. a (a char of the vocabulary)

3. A|B (or)

4. AB (cancatenation)

5. A* (repetition)

31

32

33



Construct an NFA for Regular Expression 01*+1

01*+1  (0(1*))+1

1 




start1*

0
start01*

 1 





0  1 





1






start01*+1





34

Creating Deterministic Automata

• The transformation from an NFA N to an

equivalent DFA M works by what is sometimes

called the subset construction

– Step 1: The initial state of M is the set of states

reachable from the initial state of N by -transitions

35

Creating Deterministic Automata

– Step 2: To create the successor states

• Take any state S of M and any character c, and

compute S’s successor under c

– S is identified with some set of N’s states, {n1, n2,…}

– Find all possible successor states to {n1, n2,…} under c

» Obtain a set {m1, m2,…}

– T=close({m1, m2,…})

S T

{n1, n2,…} close({m1, m2,…})

36

Creating Deterministic Automata

37

38

Optimizing Finite Automata

• minimize number of states
– Every DFA has a unique smallest equivalent DFA

– Given a DFA M, we use splitting to construct the equivalent

minimal DFA.

– Initially, there are two sets, one consisting all accepting states of M,

the other the remaining states.

(S1, S2,  , Si, , Sj,  Sk,  ,Sl, )

(P1, P2,  , Pn) (N1, N2,  , Nm)

c c c c c c

39

(S1, S2,  , Si, , Sj,  Sk,  ,Sl,  ,Sx, ,Sy,)

(P1, P2,  , Pn) (N1, N2,  , Nm)

c c c c c c

(S1, S2, Sj, ) (Si, Sk, Sl, ) (Sx, Sy, )

Note that Sx and Sy no transaction on c

40

41

• Initially, two sets {1, 2, 3, 5, 6}, {4, 7}.

• {1, 2, 3, 5, 6} splits {1, 2, 5}, {3, 6} on c.

• {1, 2, 5} splits {1}, {2, 5} on b.

