Chapter 3 Scanning – Theory and Practice

Overview

- Formal notations for specifying the precise structure of tokens are necessary
 - Quoted string in Pascal
 - Can a string split across a line?
 - Is a null string allowed?
 - Is .1 or 10. ok?
 - the 1..10 problem
- Scanner generators
 - tables
 - Programs
- What formal notations to use?

Regular Expressions

- Tokens are built from symbols of a finite vocabulary.
- We use regular expressions to define structures of tokens.

Regular Expressions

- The sets of strings defined by regular expressions are termed *regular sets*
- Definition of regular expressions
 - \emptyset is a regular expression denoting the empty set
 - λ is a regular expression denoting the set that contains only the empty string
 - A string s is a regular expression denoting a set containing only s
 - if A and B are regular expressions, so are
 - A | B (alternation)
 - AB (concatenation)
 - A* (Kleene closure)

Regular Expressions (Cont'd)

some notational convenience

```
P+ == PP*
Not(A) == V - A
Not(S) == V* - S
A^{K} == AA ... A (k copies)
```

Regular Expressions (Cont'd)

Some examples

```
Let D = (0 | 1 | 2 | 3 | 4 | \dots | 9)
    L = (A | B | ... | Z)
comment = -- not(EOL)* EOL
decimal = D + \cdot D +
ident = L (L | D)^* (_ (L | D)^+)^*
comments = \#\#((\#|\lambda) not(\#))^* \#\#
```

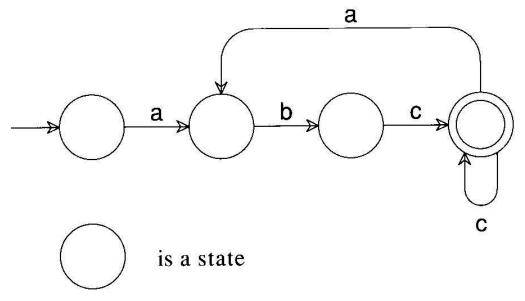
Regular Expressions (Cont'd)

Is regular expression as power as CFG?
 { [i]i | i≥1}

Finite Automata and Scanners

- A *finite automaton (FA)* can be used to recognize the tokens specified by a *regular expression*
- A FA consists of
 - A finite set of states
 - A set of transitions (or moves) from one state to another,
 labeled with characters in V
 - A special start state
 - A set of *final*, or *accepting*, states

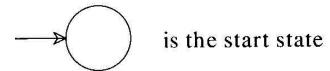
A transition diagram

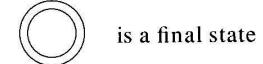


→ is a transition

This machine accepts abccabc, but it rejects abcab.

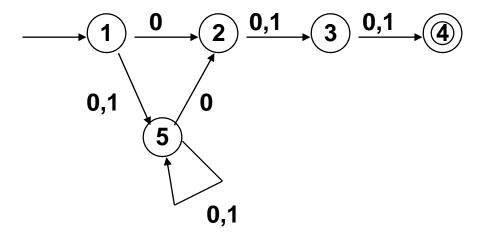
This machine accepts (abc+)+.





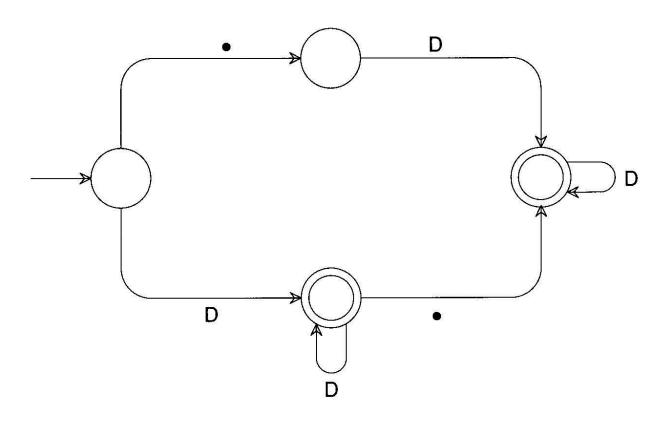
Example

(0|1)*0(0|1)(0|1)



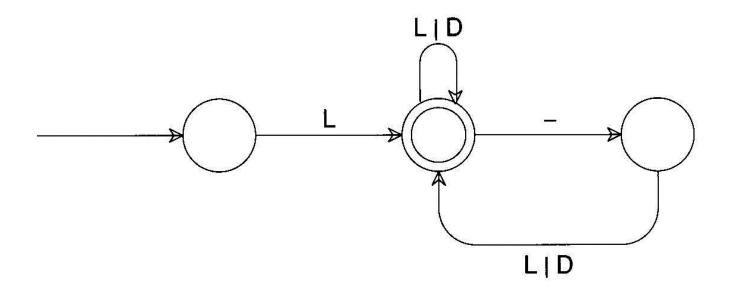
Example

RealLit = $(D^+(\lambda|.))|(D^*.D^+)$



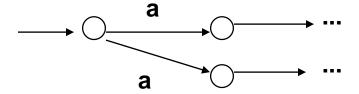
Example

$$ID = L(L|D)^*(_(L|D)^+)^*$$

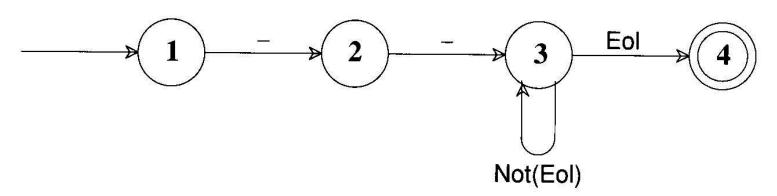


Finite Automata and Scanners

- Two kinds of FA:
 - Deterministic: next transition is unique
 - Non-deterministic: otherwise



A transition table of a DFA



The corresponding transition table is

State	Character				
	1000000-	Eol	а	b	
1	2		•	(a) (b) (c)	244
2	3	C- Table	4004	erak di	
3	3	4	3	3	3
4					100

14

Finite Automata and Scanners

- Any regular expression can be translated into a DFA that accepts the set of strings denoted by the regular expression
- The transition can be done
 - Automatically by a scanner generator
 - Manually by a programmer

```
/*
 * Note: current char is already set to
 * the current input character.
 */
state = initial state;
while (TRUE) {
    next state = T[state][current char];
    if (nextstate == ERROR)
        break:
    state = next state;
    if (current char == EOF)
        break:
    current char = getchar();
if (is final state(state))
    /* Return or process valid token. */
else
    lexical error(current char);
```

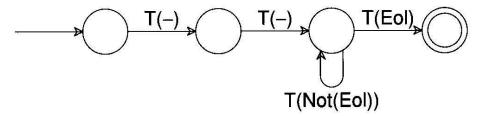
Figure 3.1 Scanner Driver Interpreting a Transition Table

```
if (current char == '-') {
    current char = getchar();
    if (current char == '-') {
        do
            current char = getchar();
        while (current char != '\n');
    } else {
        ungetc(current char, stdin);
        lexical error(current char);
else
    lexical error(current char);
/* Return or process valid token. */
```

Figure 3.2 Scanner with Fixed Token Definition

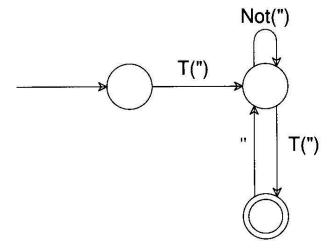
Finite Automata and Scanners

- Transducer
 - We may perform some actions during state transition.



A more interesting example is given by quoted strings, according to the regular expression

A corresponding transducer might be



The input """Hi""" would produce output "Hi".

Practical Consideration

- Reserved Words
 - Usually, all keywords are reserved in order to simplify parsing.
 - In Pascal, we could even write

```
begin
  begin; end; end; begin;
end
if else then if = else;
```

- The problem with reserved words is that they are too numerous.
 - COBOL has several hundrens of reserved words!

- Compiler Directives and Listing Source Lines
 - Compiler options e.g. optimization, profiling, etc.
 - handled by scanner or semantic routines
 - Complex pragmas are treated like other statements.
 - Source inclusion
 - e.g. #include in C
 - handled by preprocessor or scanner
 - Conditional compilation
 - e.g. #if, #endif in C
 - useful for creating program versions

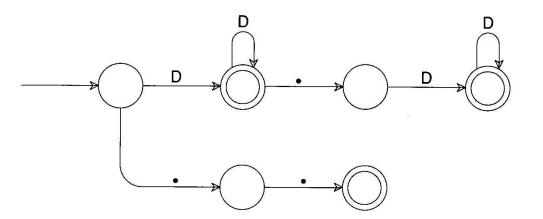
- Entry of Identifiers into the Symbol Table
- Who is responsible for entering symbols into symbol table?

```
Scanner?
Consider this example:
{ int abc;
{ int abc; }
```

- How to handle end-of-file?
 - Create a special EOF token.
 - EOF token is useful in a CFG
- Multicharacter Lookahead
 - Blanks are not significant in Fortran
 - DO 10 I = 1,100
 - Beginning of a loop
 - DO 10 I = 1.100
 - An assignment statement DO10I=1.100
 - A Fortran scanner can determine whether the O is the last character of a DO token only after reading as far as the comma

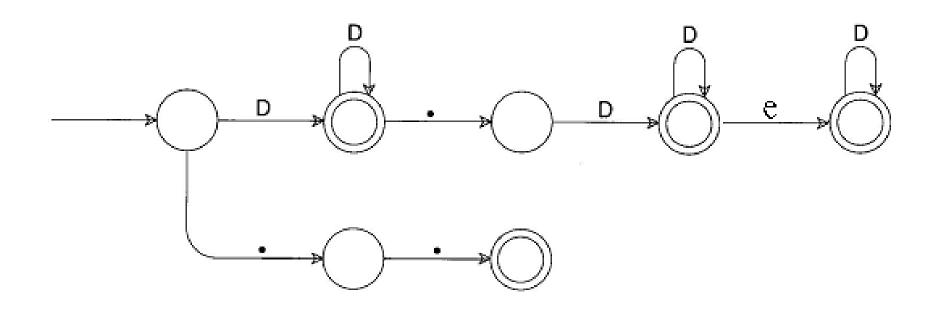
- Multicharacter Lookahead (Cont'd)
 - In Ada and Pascal
 - To scan 1..100
 - There are three token
 - » 1
 - » ..
 - » 100
 - Two-character lookahead after the 10

- Multicharacter Lookahead (Cont'd)
 - It is easy to build a scanner that can perform general backup.
 - If we reach a situation in which we are not in final state and <u>cannot scan any more characters</u>, backup is invoked.
 - Until we reach a prefix of the scanned characters flagged as a valid token



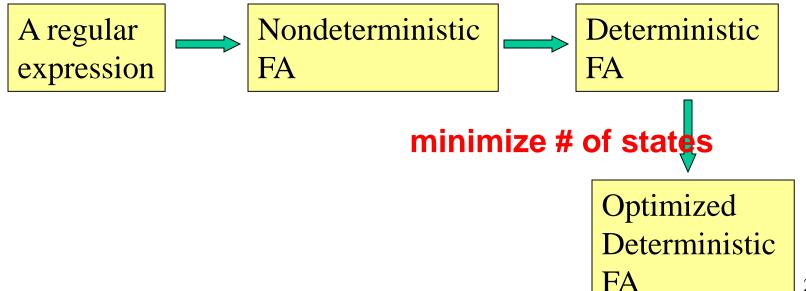
Buffered Token	Token Flag		
1	Integer Literal		
12	Integer Literal		
12.	Invalid		
12.3	Real Literal		
12.3e	Invalid		
12.3e+	Invalid		

Figure 3.6 An FA That Scans Integer and Real Literals and the Subrange Operator



Buffered Token	Token Flag		
1	Integer Literal		
12	Integer Literal		
12.	Invalid		
12.3	Real Literal		
12.3e	Invalid		
12.3e+	Invalid		

- Regular expressions are equivalent to FAs
- The main job of a scanner generator
 - To transform a regular expression definition into an equivalent FA



• A FA is nondeterministic:

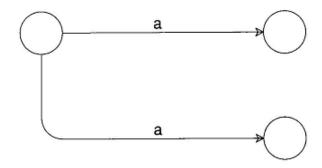


Figure 3.7 An NFA with Two a Transitions

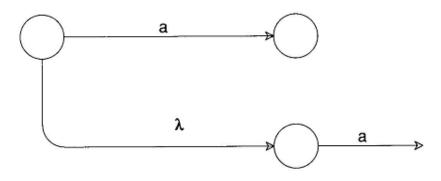


Figure 3.8 An NFA with a λ Transition

- We can transform any regular expression into an NFA with the following properties:
 - There is an unique final state
 - The final state has no successors
 - Every other state has either one or two successors

- We need to review the definition of regular expression
 - 1. λ (null string)
 - 2. a (a char of the vocabulary)
 - 3. A|B (or)
 - 4. AB (cancatenation)
 - 5. A* (repetition)

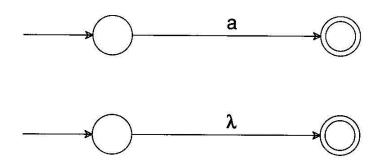


Figure 3.9 NFAs for a and λ

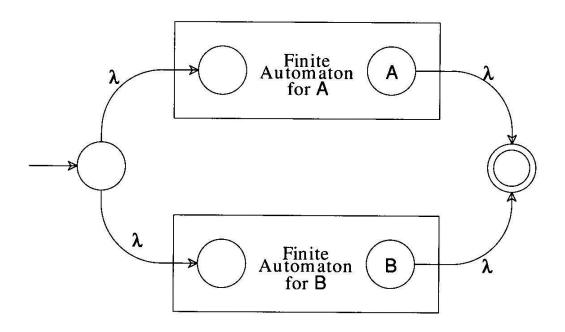


Figure 3.10 An NFA for A | B

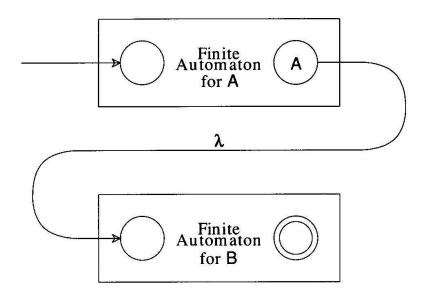


Figure 3.11 An NFA for A B

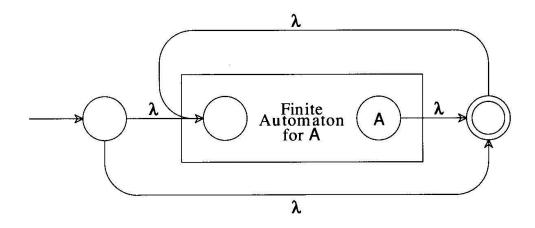
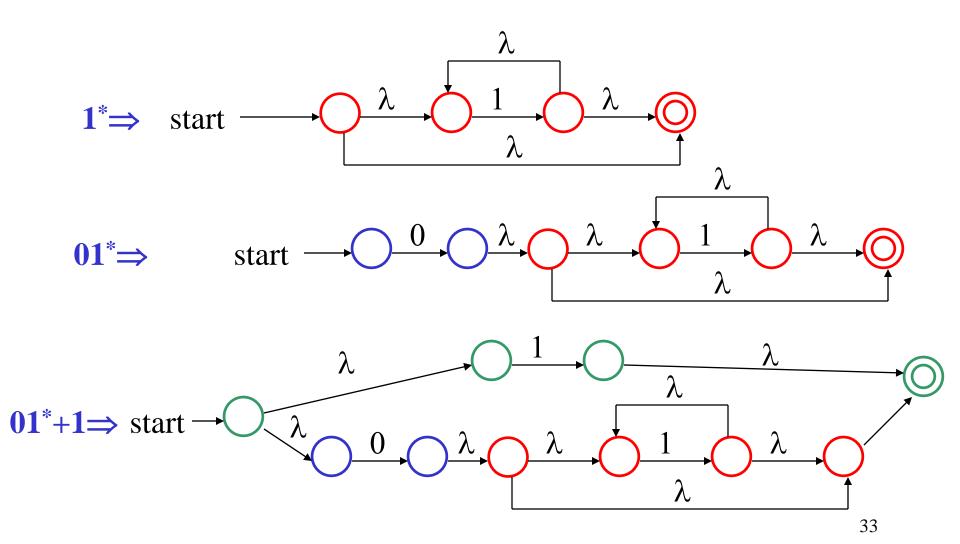


Figure 3.12 An NFA for **A***

Construct an NFA for Regular Expression 01*+1

$$01^*+1 \Rightarrow (0(1^*))+1$$



Creating Deterministic Automata

- The transformation from an NFA N to an equivalent DFA M works by what is sometimes called the *subset construction*
 - Step 1: The initial state of M is the set of states reachable from the initial state of N by λ -transitions

```
/*
 * Add to S all states reachable from it
 * using only λ transitions of N
 */
void close(set_of_fa_states *S)
{
    while (there is a state x in S
        and a state y not in S such that
        x→y using a λ transition)
        add y to S
}
```

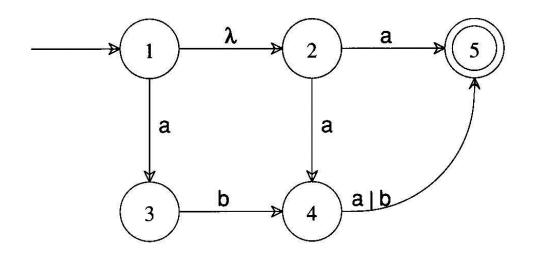
Creating Deterministic Automata

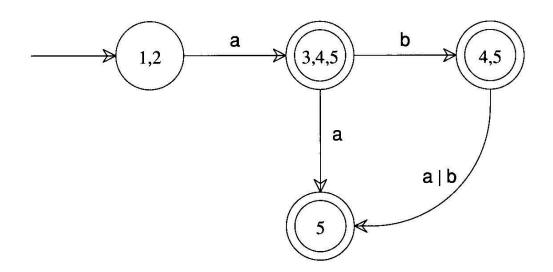
- Step 2: To create the successor states
 - Take any state S of M and any character c, and compute S's successor under c
 - S is identified with some set of N's states, $\{n_1, n_2, ...\}$
 - Find all possible successor states to {n₁, n₂,...} under c
 Obtain a set {m₁, m₂,...}
 - $\text{T=close}(\{m_1, m_2, ...\})$

```
\begin{array}{cccc}
\hline
S & \hline
\hline
T \\
\{n_1, n_2, ...\} & close(\{m_1, m_2, ...\})
\end{array}
```

Creating Deterministic Automata

```
void make deterministic (nondeterministic fa N,
                          deterministic fa *M)
    set of fa states T;
    M->initial_state = SET OF(N.initial_state) ;
    close(& M->initial_state);
    Add M->initial_state to M->states;
    while (states or transitions can be added)
         choose S in M->states and c in Alphabet;
         T = SET OF (y in N. states
              SUCH THAT x \xrightarrow{C} y for some x in S);
          close (& T);
          if (T not in M->states)
              add T to M->states:
         Add the transition to M->transitions: S \xrightarrow{C} T:
    M->final states =
       SET OF (S in M->states SUCH THAT
               N.final_state in S);
```



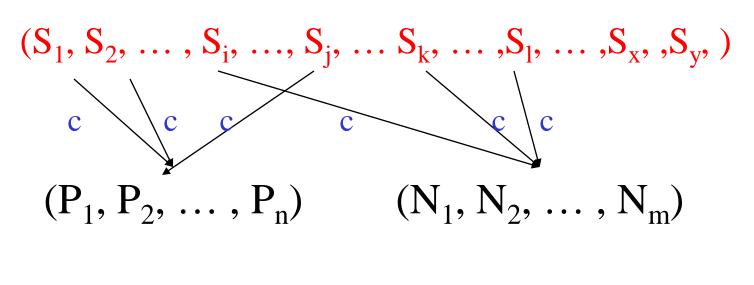


Optimizing Finite Automata

minimize number of states

- Every DFA has a unique smallest equivalent DFA
- Given a DFA M, we use splitting to construct the equivalent minimal DFA.
- Initially, there are two sets, one consisting all accepting states of M,
 the other the remaining states.

$$(S_1, S_2, ..., S_i, ..., S_j, ..., S_k, ..., S_l, ...)$$
 $(P_1, P_2, ..., P_n)$
 $(N_1, N_2, ..., N_m)$

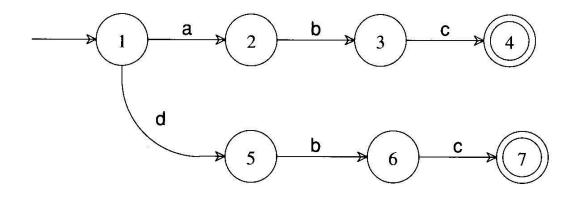


$$(S_1, S_2, S_i, ...)$$
 $(S_i, S_k, S_l, ...)$ $(S_x, S_y, ...)$

Note that S_x and S_y no transaction on c

```
void split(set of fa states *ss)
    do {
         Let S be any merged state corresponding to
             \{s_1, \ldots, s_n\} and
             let c be any character;
         Let t_1,..., t_n be the successor states to
             \{s_1, \ldots, s_n\} under c;
         if (t_1, \ldots, t_n \text{ do not all belong to the})
             same merged state)
             Split S into new states so that si and
             s; remain in the same merged state if
             and only if t<sub>i</sub> and t<sub>i</sub> are in
             the same merged state;
    } while (more splits are possible);
```

Figure 3.13 An Algorithm to Split FA States



- Initially, two sets {1, 2, 3, 5, 6}, {4, 7}.
- {1, 2, 3, 5, 6} splits {1, 2, 5}, {3, 6} on c.
- {1, 2, 5} splits {1}, {2, 5} on b.

