Chapter 3 Scanning — Theory and
Practice

Overview

 Formal notations for specifying the precise
structure of tokens are necessary

— Quoted string in Pascal

— Can astring split across a line?
— Is a null string allowed?

— Is .1 or 10. ok?

— the 1..10 problem

e Scanner generators
— tables
— Programs

« What formal notations to use?

Regular Expressions

* Tokens are built from symbols of a finite
vocabulary.

* We use regular expressions to define
structures of tokens.

Regular Expressions

» The sets of strings defined by regular expressions

are termed regular sets
 Definition of regular expressions

— @ isaregular expression denoting the empty set

— Aldsaregular expression denoting the set that contains only the
empty string

— Asstring s is a regular expression denoting a set containing only s
— If Aand B are regular expressions, so are

« A| B (alternation)

« AB (concatenation)

« A* (Kleene closure)

Regular Expressions (Cont’d)

some notational convenience
P+ ==PpP*
Not(A) ==V -A
Not(S) == V*-S
AK == AA ...A (k copies)

Regular Expressions (Cont’d)

* Some examples
LetD=(0|1]2]|3|4]...|9)
L=(A|B]...|2)
comment = -- not(EOL)* EOL

decimal = D+ - D+
ident=L(L|D)*(_(L|D)")*
comments = ##((#| A)not(#))* ##

Regular Expressions (Cont’d)

* Is reqular expression as power as CFG?

{[T] =1}

Finite Automata and Scanners

A finite automaton (FA) can be used to recognize
the tokens specified by a regular expression

« A FA consists of

— A finite set of states

— Aset of transitions (or moves) from one state to another,
labeled with characters in V

— Aspecial start state
— Aset of final, or accepting, states

A transition diagram

1S a state

This machine accepts abccabc,
is a transition but it rejects abcab.

—>
This machine accepts (abc*)*.
—PQ is the start state

is a final state

« Example

(0]11)*0(0]1)(011)

Do @),

0,1 0

0,1

0,1

10

« Example

RealLit = (D*(A[.))|(D*.D*)

11

 Example

ID = L(L|D)*(_(L|D)")*

OB
TR Y

L|D

12

Finite Automata and Scanners

 Two kinds of FA:

— Deterministic: next transition is unigue
— Non-deterministic: otherwise

13

A transition table of a DFA

The corresponding transition table is

State Character
Eol [a | b

= G N =
W W N

%\

Not(Eol)

Eol @

14

Finite Automata and Scanners

« Any regular expression can be translated
Into a DFA that accepts the set of strings
denoted by the regular expression

 The transition can be done
— Automatically by a scanner generator
— Manually by a programmer

15

/*

* Note: current char is already set to
* the current input character.

*/

state = initial_ state;

while (TRUE) {
next state = T[state] [current_char];

if (nextstate == ERROR)
break;

state = next_state;

if (current char == EOF)
break;

current char = getchar();

}
if (is_final state(state))

/* Return or process valid token. */

else
lexical error (current_char);

Figure 3.1 Scanner Driver Interpreting a Transition Table

16

if (current char == '-') {
current_char = getchar();

if (current_char == '-") {
do
current char = getchar();
while (current_ char != \n’);
} else {

ungetc (current_char, stdin);
lexical error (current_char);

}

else
lexical error(current char);

/* Return or process valid token. */

Figure 3.2 Scanner with Fixed Token Definition

17

Finite Automata and Scanners

e Transducer

— We may perform some actions during state transition.

d

> means save a in a token buffer

T(a)

h

> means don’t save a (Toss it away)

18

T(Not(Eol))

A more interesting example is given by quoted strings, according to the
regular expression

(" (Not()"")" ")

A corresponding transducer might be

The input """Hi""" would produce output "Hi".

19

Practical Consideration

* Reserved Words
— Usually, all keywords are reserved in order to simplify
parsing.
— In Pascal, we could even write

begin
begin; end; end; begin;
end
iIf else then if = else;

* The problem with reserved words is that they are
too numerous.

— COBOL has several hundrens of reserved words!

20

Practical Consideration (Cont’d)

Compiler Directives and Listing Source

L Ines

— Compiler options e.g. optimization, profiling, etc.
handled by scanner or semantic routines
Complex pragmas are treated like other statements.

— Source inclusion
e.g. #include in C
handled by preprocessor or scanner

— Conditional compilation
e.g. #if, #endif in C
useful for creating program versions

21

Practical Consideration (Cont’d)

Entry of Identifiers into the Symbol Table

Who Is responsible for entering symbols
Into symbol table?

— Scanner?

— Consider this example:

{ int abc;

{intabc; }

22

Practical Consideration (Cont’d)

How to handle end-of-file?

— Create a special EOF token.
« EOF token is useful ina CFG

Multicharacter Lookahead

— Blanks are not significant in Fortran
« DO 101=1,100
— Beginning of a loop
« DO 101=1.100
— An assignment statement DO101=1.100

« AFortran scanner can determine whether the O is the last
character of a DO token only after reading as far as the
comma

23

Practical Consideration (Cont’d)

Multicharacter Lookahead (Cont’d)

— In Ada and Pascal

e Toscan1..100

— There are three token
» 1

»

» 100
— Two-character lookahead after the 10

24

Practical Consideration (Cont’d)

e Multicharacter Lookahead (Cont’d)

— It is easy to build a scanner that can perform general

backup.

— If we reach a situation in which we are not in final
state and cannot scan any more characters, backup is

Invoked.
« Until we reach a prefix of the scanned characters flagged as a
valid token
Buffered Token

Token Flag

1

Integer Literal

12

Integer Literal

12.

Invalid

12.3

Real Literal

12.3e

Invalid

12.3e+

Invalid

Figure 3.6 An FA That Scans Integer and Real Literals and the
Subrange Operator

25

O

N D
"/

Buffered Token | Token Flag

1 Integer Literal
12 Integer Literal
12. Invalid

12.3 Real Literal
12.3e Invalid
12.3e+ Invalid

O

26

Translating Regular Expressions
Into Finite Automata

» Regular expressions are equivalent to FAS

« The main job of a scanner generator

— To transform a regular expression definition into an
equivalent FA

A regular
expression

Nondeterministic
FA

——

Deterministic
FA

minimize # of statgs

Optimized
Deterministic
FA

27

Translating Regular Expressions

Into Finite Automata
« A FA Is nondeterministic:

O———0

N a ;;O

Figure 3.7 An NFA with Two a Transitions
O———0
N

l A

- (O

Figure 3.8 An NFA with a A Transition

28

Translating Regular Expressions

Into Finite Automata

« We can transform any regular expression
Into an NFA with the following properties:
— There Is an unique final state
— The final state has no successors

— Every other state has either one or two
successors

29

Translating Regular Expressions

Into Finite Automata

* \We need to review the definition of
regular expression

1. A (null string)

2. a (achar of the vocabulary)
3. A|B (or)

4. AB (cancatenation)

5. A* (repetition)

30

—O
() A

Figure 3.9 NFAs for aand A

Finite
A @ Automaton
for A

A Finite
‘PO Automaton
for B

Figure3.10 AnNFAforA|B

31

O Finite @
Automaton
for A

@ Finite @
Automaton
for B

Figure 3.1 AnNFAfor A B

A __PQ Finite
Automaton
for A

@

Figure 3.12 An NFA for A’

32

Construct an NFA for Regular Expression 01°+1

01+1 = (0(1))+1

A
1= start x 1xk @

T
A

01'> start ‘ 0 K A ‘ lk ‘ A

1
{)K/O ® — ~O)
01"+1= start N 0 \ \ | \ /
i A]

33

Creating Deterministic Automata

The transformation from an NFA N to an
equivalent DFA M works by what Is sometimes
called the subset construction

— Step 1: The initial state of M is the set of states
reachable from the initial state of N by A-transitions

J*

* Add to 5 all states reachable from it
* using only A transitions of W

®f

void close(set_of fa states *s5)

{

while (there is a state x in 8
and a state v not in 8§ such that
x—y using a A transition)
add y to S

34

Creating Deterministic Automata

— Step 2: To create the successor states

 Take any state S of M and any character c, and
compute S’s successor under ¢
— S is identified with some set of N’s states, {n;, n,,...}
— Find all possible successor states to {n,, n,,...} under c
» Obtain a set {m;, m,,...}
— T=close({m;, m,,...})

@

{n, n,,...} close({m,;, m,,...})

35

Creating Deterministic Automata

void make deterministic(nondeterministic fa N,
detarministic_fa *M)

{
set of fa states T;

M->initial state = SET OF (N.initial state) ;
closa (& M->initial state);

Add M->initial _state to M->states;
while (states or transitions can be added)

{
choose 8 in M->states and ¢ in Alphabet;

T = SET OF (y in N.states
SUCH_THAT :r.E;ry for somea x in 38) ;
closa (& T):;
if (T not in M->states)
add T to M->states;

Add the transition to M->transitions: EEﬂI;

}
M->final states =
SET OF (5 in M->states SUCH THAT

MN.final_state in 35);

36

37

Optimizing Finite Automata

e minimize number of states

— Every DFA has a unigue smallest equivalent DFA

— Given a DFA M, we use splitting to construct the equivalent
minimal DFA.

— Initially, there are two sets, one consisting all accepting states of M,
the other the remaining states.

38

(515, S) (SiSwSh--) (SeSy-..)

Note that S, and S, no transaction on c
39

void split (set_of fa states *ss)

{
do {
Let S be any merged state corresponding to

{sl I oE Ry sn} and
let ¢ be any character;

Let t; ,..., t, be the successor states to
{s;y ,..., s,} under c;

if (¢4 ,..., t, do not all belong to the
same merged state)

{

Split S into new states so that s; and
s; remain in the same merged state if
and only if t; and t; are in
the same merged state;
} .
} while (more splits are possible);

}
Figure 3.13 An Algorithm to Split FA States

40

« [nitially, two sets {1, 2, 3, 5, 6}, {4, 7}.
« {1,2,3,5,6}splits {1, 2,5}, {3, 6} onc.
« {1, 2,5} splits {1}, {2, 5} on D.

41

