
1

Chapter 2 A Simple Compiler

2

Outlines

• 2.1 The Structure of a Micro Compiler

• 2.2 A Micro Scanner

• 2.3 The Syntax of Micro

• 2.4 Recursive Descent Parsing

• 2.5 Translating Micro

3

Micro

• Micro: a very simple language

– Only integers

– No declarations

– Variables consist of A..Z, 0..9, and at most 32
characters long.

– Comments begin with -- and end with end-of-line.

– Three kinds of stmts:

• assignments, e.g., a := b + c

• read(list of ids), e.g., read(a, b)

• write(list of exps), e.g., write(a+b)

– Begin, end, read, and write are reserved words.

– Tokens may not extend to the following line.

4

The Structure of a Micro compiler

• One-pass type, no explicit intermediate

representations used

– See P. 9, Fig. 1.3

• The interface

– Parser is the main routine.

– Parser calls scanner to get the next token.

– Parser calls semantic routines at appropriate times.

– Semantic routines produce output in assembly language.

– A simple symbol table is used by the semantic routines.

5

Scanner Parser
Semantic

Routines

Code

Generator

Optimizer

Source

Program

(Character

Stream)

Tokens Syntactic

Structure

Intermediate

Representation

Target Machine

Code

Symbol and

Attribute

Tables

(Used by all

Phases of

The Compiler)

The structure of a Syntax-Directed Compiler

6

A Micro Scanner

• The Micro Scanner will be a function of no
arguments that returns token values

– There are 14 tokens.

typedef enum token_types {
BEGIN, END, READ, WRITE, ID, INTLITERAL,
LPAREN, RPAREN, SEMICOLON, COMMA, ASSIGNOP,
PLUOP, MINUSOP, SCANEOF

} token;

Extern token scanner(void);

7

A Micro Scanner (Cont’d)

• The scanner returns the longest string

that constitutes a token, e.g., in

abcdef

ab, abc, abcdef are all valid tokens.

The scanner will return the

longest one (i.e., abcdef).

8

Continue: skip one iteration

getchar() , isspace(),

isalpha(), isalnum(),

isdigital()

ungetc(): push back one character

9

10

A Micro Scanner (Cont’d)

• How to handle RESERVED words?

– Reserved words are similar to identifiers.

• Two approaches:

– Use a separate table of reserved words

– Put all reserved words into symbol table

initially.

11

A Micro Scanner (Cont’d)

• Provision for saving the characters of a

token as they are scanned

– token_buffer, buffer_char(), clear_buffer(),

check_reserved()

• Handle end of file

– feof(stdin)

12

Complete Scanner Function

for Micro

13

14

The Syntax of Micro

• Micro's syntax is defined by a context-free
grammar (CFG)
– CFG is also called BNF (Backus-Naur Form)

grammar

• CFG consists of a set of production rules,

AB C D Z

LHS must be a single nonterminal

RHS consists 0 or more terminals or nonterminals

LHS RHS

15

The Syntax of Micro (Cont’d)
• Two kinds of symbols

– Nonterminals

• Delimited by < and >

• Represent syntactic structures

– Terminals

• Represent tokens

• E.g.

<program>  begin <statement list> end

• Start or goal symbol

•  : empty or null string

16

The Syntax of Micro (Cont’d)

• E.g.

<statement list>  <statement><statement tail>

<statement tail>  

<statement tail>  <statement><statement tail>

17

The Syntax of Micro (Cont’d)

• Extended BNF: some abbreviations

1. optional: [] 0 or 1

<stmt>  if <exp> then <stmt>

<stmt>  if <exp> then <stmt> else <stmt>

can be written as

<stmt>  if <exp> then <stmt> [else <stmt>]

2. repetition: { } 0 or more

<stmt list>  <stmt> <tail>

<tail>  

<tail>  <stmt> <tail>

can be written as

<stmt list>  <stmt> { <stmt> }

18

The Syntax of Micro (Cont’d)

• Extended BNF: some abbreviations

3. alternative: | or

<stmt>  <assign>

<stmt>  <if stmt>

can be written as

<stmt>  <assign> | <if stmt>

• Extended BNF == BNF

– Either can be transformed to the other.

– Extended BNF is more compact and readable

19

The Syntax of Micro (Cont’d)

20

• The derivation of

begin ID:= ID + (INTLITERAL – ID); end

21

The Syntax of Micro (Cont’d)

• A CFG defines a language, which is a set of

sequences of tokens

• Syntax errors & semantic errors

A:=‘X’+True;

22

The Syntax of Micro (Cont’d)

• Associativity

A-B-C

• Operator precedence

A+B*C

23

• A grammar fragment defines such a precedence
relationship

24

• With parentheses, the desired grouping can be
forced

25

Recursive Descent Parsing
• There are many parsing techniques.

– Recursive descent is one of the simplest parsing

techniques

• Basic idea

– Each nonterminal has a parsing procedure

– For symbol on the RHS : a sequence of matching

• To Match a nonterminal A

– Call the parsing procedure of A

• To match a terminal symbol t

– Call match(t)

» match(t) calls the scanner to get the next token. If it is,

everything is correct. If it is not t, we have found a

syntax error.

26

Recursive Descent Parsing
• If a nonterminal has several productions, choose an

appropriate one based on the next input token.

• Parser is started by invoking system_goal().

27

• next_token() : a function that returns the next token.

It does not call scanner(void).

處理{<statement>}不出
現的情形

28

<statement>

必出現一次

29

30

31

32

Translating Micro

• Target language: 3-addr code (quadruple)

– OP A, B, C

• Note that we did not worry about registers
at this time.

– temporaries: Sometimes we need to hold
temporary values.

• E.g. A+B+C

ADD A,B,TEMP&1

ADD TEMP&1,C,TEMP&2

33

Translating Micro (Cont’d)

• Action Symbols

– The bulk of a translation is done by semantic routine

– Action symbols can be added to a grammar to specify

when semantic processing should take place

• Be placed anywhere in the RHS of a production

– translated into procedure call in the parsing procedures

• #add corresponds to a semantic routine named add()

– No impact on the languages recognized by a parser

driven by a CFG

34

35

Semantic Information
• Semantic routines need certain information to do

their work.

– These information is stored in semantic records.

– Each kind of grammar symbol has a semantic record

36

Old parsing procedure

P. 37

New parsing procedure

which involved semantic

routines

<expression>  <primary>

{<add op> <primary> #gen_infix

37

Semantic Information (Cont’d)

• Subroutines for symbol table and temporaries

38

Semantic Information (Cont’d)

• Semantic routines

39

40

41

42

43

