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Chapter 2 A Simple Compiler
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Outlines

• 2.1 The Structure of a Micro Compiler

• 2.2 A Micro Scanner

• 2.3 The Syntax of Micro

• 2.4 Recursive Descent Parsing

• 2.5 Translating Micro
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Micro

• Micro: a very simple language

– Only integers

– No declarations

– Variables consist of A..Z, 0..9, and at most 32 
characters long.

– Comments begin with -- and end with end-of-line. 

– Three kinds of stmts:

• assignments, e.g., a := b + c

• read(list of ids), e.g., read(a, b)

• write(list of exps), e.g., write(a+b)

– Begin, end, read, and write are reserved words.

– Tokens may not extend to the following line.
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The Structure of a Micro compiler

• One-pass type, no explicit intermediate 

representations used

– See P. 9, Fig. 1.3

• The interface

– Parser is the main routine.

– Parser calls scanner to get the next token.

– Parser calls semantic routines at appropriate times.

– Semantic routines produce output in assembly language.

– A simple symbol table is used by the semantic routines.
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A Micro Scanner

• The Micro Scanner will be a function of no 
arguments that returns token values

– There are 14 tokens.

typedef enum token_types {
BEGIN, END, READ, WRITE, ID, INTLITERAL,
LPAREN, RPAREN, SEMICOLON, COMMA, ASSIGNOP,
PLUOP, MINUSOP, SCANEOF

} token;

Extern token scanner(void); 
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A Micro Scanner (Cont’d)

• The scanner returns the longest string 

that constitutes a token, e.g., in

abcdef

ab, abc, abcdef are all valid tokens.  

The scanner will return the 

longest one (i.e., abcdef).
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Continue: skip one iteration

getchar() , isspace(), 

isalpha(), isalnum(),

isdigital()

ungetc(): push back one character
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A Micro Scanner (Cont’d)

• How to handle RESERVED words?

– Reserved words are similar to identifiers.

• Two approaches:

– Use a separate table of reserved words

– Put all reserved words into symbol table 

initially.
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A Micro Scanner (Cont’d)

• Provision for saving the characters of a 

token as they are scanned

– token_buffer, buffer_char(), clear_buffer(), 

check_reserved()

• Handle end of file

– feof(stdin)
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Complete Scanner Function

for Micro
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The Syntax of Micro

• Micro's syntax is defined by a context-free 
grammar (CFG)
– CFG is also called BNF (Backus-Naur Form) 

grammar

• CFG consists of a set of production rules,               

AB C D Z

LHS must be a single nonterminal

RHS consists 0 or more terminals or nonterminals

LHS RHS
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The Syntax of Micro (Cont’d)
• Two kinds of symbols

– Nonterminals

• Delimited by < and >

• Represent syntactic structures

– Terminals

• Represent tokens

• E.g. 

<program>  begin <statement list> end

• Start or goal symbol

•  : empty or null string
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The Syntax of Micro (Cont’d)

• E.g.

<statement list>   <statement><statement tail>

<statement tail>   

<statement tail>   <statement><statement tail>
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The Syntax of Micro (Cont’d)

• Extended BNF: some abbreviations

1.  optional:  [ ] 0 or 1

<stmt>   if <exp> then <stmt>

<stmt>  if <exp> then <stmt> else <stmt>

can be written as

<stmt>  if <exp> then <stmt> [ else <stmt> ]

2.  repetition:   { } 0 or more

<stmt list>  <stmt> <tail>

<tail>  

<tail>  <stmt> <tail>

can be written as

<stmt list>  <stmt> { <stmt> }
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The Syntax of Micro (Cont’d)

• Extended BNF: some abbreviations

3.  alternative:  | or

<stmt>  <assign>

<stmt>  <if stmt>

can be written as

<stmt>  <assign>  |  <if stmt>

• Extended BNF  == BNF

– Either can be transformed to the other.

– Extended BNF is more compact and readable
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The Syntax of Micro (Cont’d)
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• The derivation of 

begin ID:= ID + (INTLITERAL – ID); end
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The Syntax of Micro (Cont’d)

• A CFG defines a language, which is a set of 

sequences of tokens

• Syntax errors & semantic errors

A:=‘X’+True;
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The Syntax of Micro (Cont’d)

• Associativity

A-B-C

• Operator precedence

A+B*C
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• A grammar fragment defines such a precedence 
relationship
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• With parentheses, the desired grouping can be 
forced
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Recursive Descent Parsing
• There are many parsing techniques.

– Recursive descent is one of the simplest parsing 

techniques

• Basic idea

– Each nonterminal has a parsing procedure

– For symbol on the RHS : a sequence of matching

• To Match a nonterminal A

– Call the parsing procedure of A

• To match a terminal symbol t

– Call match(t)

» match(t) calls the scanner to get the next token. If it is, 

everything is correct. If it is not t, we have found a 

syntax error.
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Recursive Descent Parsing
• If a nonterminal has several productions, choose an 

appropriate one based on the next input token.

• Parser is started by invoking system_goal().
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• next_token() : a function that returns the next token. 

It does not call scanner(void).

處理{<statement>}不出
現的情形
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<statement>

必出現一次
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Translating Micro

• Target language: 3-addr code (quadruple)

– OP  A, B, C

• Note that we did not worry about registers 
at this time.

– temporaries: Sometimes we need to hold 
temporary values.

• E.g.  A+B+C

ADD A,B,TEMP&1

ADD TEMP&1,C,TEMP&2
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Translating Micro (Cont’d)

• Action Symbols

– The bulk of a translation is done by semantic routine

– Action symbols can be added to a grammar to specify 

when semantic processing should take place

• Be placed anywhere in the RHS of a production

– translated into procedure call in the parsing procedures

• #add corresponds to a semantic routine named add()

– No impact on the languages recognized by a parser 

driven by a CFG
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Semantic Information
• Semantic routines need certain information to do 

their work. 

– These information is stored in semantic records.

– Each kind of grammar symbol has a semantic record
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Old parsing procedure

P. 37

New parsing procedure 

which involved semantic

routines

<expression>  <primary> 

{<add op> <primary> #gen_infix
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Semantic Information (Cont’d)

• Subroutines for symbol table and temporaries



38

Semantic Information (Cont’d)

• Semantic routines
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