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Chapter 1 Introduction
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Overview and History

• Compilers are fundamental to modern 

computing.

• They act as translators, transforming 

human-oriented programming languages 

into computer-oriented machine languages.
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Overview and History (Cont’d)

• The first real compiler

– FORTRAN compilers of the late 1950s

– 18 person-years to build

• Compiler technology is more broadly applicable 
and has been employed in rather unexpected areas.

– Text-formatting languages, like nroff and troff; 
preprocessor packages like eqn, tbl, pic

– Silicon compiler for the creation of VLSI circuits

– Command languages of OS

– Query languages of Database systems
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What Do Compilers Do?

• Compilers may be distinguished according 

to the kind of target code they generate:

– Pure Machine Code

– Augmented Machine Code

– Virtual Machine Code

• JVM, P-code
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What Do Compilers Do? (Cont’d)

• Another way that compilers differ from one 

another is in the format of the target 

machine code they generate

– Assembly Language Format

– Relocatable Binary Format

• A linkage step is required

– Memory-Image (Load-and-Go) Format
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• Another kind of language processor, called an 

interpreter, differs from a compiler in that it executes 

programs without explicitly performing a translation

• Advantages and Disadvantages of an interpreter

– See page 6 & 7

What Do Compilers Do? (Cont’d)
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The Structure of a Compiler

• Any compiler must perform two major tasks

– Analysis of the source program

– Synthesis of a machine-language program



9

The Structure of a Compiler (Cont’d)
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The Structure of a Compiler (Cont’d)

• Scanner

– The scanner begins the analysis of the source 
program by reading the input, character by 
character, and grouping characters into 
individual words and symbols (tokens)

– The tokens are encoded and then are fed to the 
parser for syntactic analysis

– For details, see the bottom of page 8.

• Scanner generators
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The Structure of a Compiler (Cont’d)

• Parser

– Given a formal syntax specification (typically as a 

context-free [CFG] grammar), the parse reads tokens 

and groups them into units as specified by the 

productions of the CFG being used.

– While parsing, the parser verifies correct syntax, and if 

a syntax error is found, it issues a suitable diagnostic.

– As syntactic structure is recognized, the parser either 

calls corresponding semantic routines directly or builds 

a syntax tree.
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The Structure of a Compiler (Cont’d)

• Semantic Routines

– Perform two functions

• Check the static semantics of each construct

• Do the actual translation

– The heart of a compiler

• Optimizer

– The IR code generated by the semantic routines is 
analyzed and transformed into functionally equivalent 
but improved IR code.

– This phase can be very complex and slow

– Peephole optimization
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The Structure of a Compiler (Cont’d)

• One-pass compiler

– No optimization is required

– To merge code generation with semantic 

routines and eliminate the use of an IR

• Compiler writing tools

– Compiler generators or compiler-compilers

• E.g. scanner and parser generators
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Compiler Design and 

Programming Language Design

• An interesting aspect is how programming 

language design and compiler design 

influence one another.

• Programming languages that are easy to 

compiler have many advantages

– See the 2nd paragraph of page 16. 
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Compiler Design and Programming 

Language Design (Cont’d)

• Languages such as Snobol and APL are usually 
considered noncompilable

• What attributes must be found in a programming 
language to allow compilation?

– Can the scope and binding of each identifier reference 
be determined before execution begins

– Can the type of object be determined before execution 
begins?

– Can existing program text be changed or added to 
during execution?
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Compiler Classifications

• Diagnostic compilers

• Optimizing compilers

• Retargetable compiler


