Chapter 1 Introduction

Outlines

1.1 Overview and History
1.2 What Do Compilers Do?
1.3 The Structure of a Compiler

1.4 The Syntax and Semantics of Programming
Languages

1.5 Compiler Design and Programming Language
Design

1.6 Compiler Classifications
1.7 Influences on Computer Design

Overview and History

« Compilers are fundamental to modern
computing.
* They act as translators, transforming

human-oriented programming languages
Into computer-oriented machine languages.

Programming Machine
(Source) (Target)

3

Overview and History (Cont’d)

» The first real compiler
— FORTRAN compilers of the late 1950s
— 18 person-years to build

« Compiler technology is more broadly applicable
and has been employed in rather unexpected areas.

— Text-formatting languages, like nroff and troff;
preprocessor packages like egn, tbl, pic

— Silicon compiler for the creation of VVLSI circuits
— Command languages of OS
— Query languages of Database systems

What Do Compilers Do?

« Compilers may be distinguished according
to the kind of target code they generate:
— Pure Machine Code
— Augmented Machine Code

— Virtual Machine Code
 JVM, P-code

What Do Compilers Do? (Cont’d)

 Another way that compilers differ from one
another Is In the format of the target
machine code they generate
— Assembly Language Format
— Relocatable Binary Format
A linkage step Is required
— Memory-Image (Load-and-Go) Format

What Do Compilers Do? (Cont’d)

« Another kind of language processor, called an
Interpreter, differs from a compiler in that it executes

programs without explicitly

Interpreter

performing a translation

» Output

Source
Program
Encoding

Data

« Advantages and Disadvantages of an interpreter

— Seepage6 & 7

The Structure of a Compiler

« Any compiler must perform two major tasks
— Analysis of the source program
— Synthesis of a machine-language program

The Structure of a Compiler (Cont’d)

Source
Program Tokens
» Scanner >

(Character
Stream)

Symbol and

Attribute
Tables
(Used by all
Phases of

The Compiler)

Parser

Syntactic‘ Semantic

Structure| Routines

Intermediate
Representation

A 4

A 4

Code
Generator

l

The structure of a Syntax-Directed Compiler

Target Machine
Code 9

The Structure of a Compiler (Cont’d)

e Scanner

— The scanner begins the analysis of the source
program by reading the input, character by
character, and grouping characters into
Individual words and symbols (tokens)

— The tokens are encoded and then are fed to the
parser for syntactic analysis

— For detalls, see the bottom of page 8.
» Scanner generators

10

The Structure of a Compiler (Cont’d)

 Parser

— Given a formal syntax specification (typically as a
context-free [CFG] grammar), the parse reads tokens
and groups them into units as specified by the
productions of the CFG being used.

— While parsing, the parser verifies correct syntax, and if
a syntax error is found, it issues a suitable diagnostic.

— As syntactic structure is recognized, the parser either
calls corresponding semantic routines directly or builds
a syntax tree.

11

The Structure of a Compiler (Cont’d)

« Semantic Routines

— Perform two functions
» Check the static semantics of each construct
e Do the actual translation

— The heart of a compiler
« Optimizer
— The IR code generated by the semantic routines is

analyzed and transformed into functionally equivalent
but improved IR code.

— This phase can be very complex and slow

— Peephole optimization
12

The Structure of a Compiler (Cont’d)

» One-pass compiler
— No optimization is required

— To merge code generation with semantic
routines and eliminate the use of an IR

« Compiler writing tools

— Compiler generators or compiler-compilers
 E.g. scanner and parser generators

13

Compiler Design and
Programming Language Design

 An Interesting aspect Is how programming
language design and compiler design
Influence one another.

* Programming languages that are easy to
compiler have many advantages

— See the 2" paragraph of page 16.

14

Compiler Design and Programming
Language Design (Cont’d)

 Languages such as Snobol and APL are usually
considered noncompilable

« What attributes must be found in a programming
language to allow compilation?

— Can the scope and binding of each identifier reference
be determined before execution begins

— Can the type of object be determined before execution
begins?

— Can existing program text be changed or added to
during execution?

15

Compiler Classifications

 Diagnostic compilers
« Optimizing compilers
 Retargetable compiler

16

