
1

Chapter 1 Introduction



2

Outlines

• 1.1 Overview and History

• 1.2 What Do Compilers Do?

• 1.3 The Structure of a Compiler

• 1.4 The Syntax and Semantics of Programming 
Languages

• 1.5 Compiler Design and Programming Language 
Design

• 1.6 Compiler Classifications

• 1.7 Influences on Computer Design



3

Overview and History

• Compilers are fundamental to modern 

computing.

• They act as translators, transforming 

human-oriented programming languages 

into computer-oriented machine languages.

Programming 

Language

(Source)

Compiler
Machine

Language

(Target)



4

Overview and History (Cont’d)

• The first real compiler

– FORTRAN compilers of the late 1950s

– 18 person-years to build

• Compiler technology is more broadly applicable 
and has been employed in rather unexpected areas.

– Text-formatting languages, like nroff and troff; 
preprocessor packages like eqn, tbl, pic

– Silicon compiler for the creation of VLSI circuits

– Command languages of OS

– Query languages of Database systems



5

What Do Compilers Do?

• Compilers may be distinguished according 

to the kind of target code they generate:

– Pure Machine Code

– Augmented Machine Code

– Virtual Machine Code

• JVM, P-code



6

What Do Compilers Do? (Cont’d)

• Another way that compilers differ from one 

another is in the format of the target 

machine code they generate

– Assembly Language Format

– Relocatable Binary Format

• A linkage step is required

– Memory-Image (Load-and-Go) Format



7

• Another kind of language processor, called an 

interpreter, differs from a compiler in that it executes 

programs without explicitly performing a translation

• Advantages and Disadvantages of an interpreter

– See page 6 & 7

What Do Compilers Do? (Cont’d)

Source 

Program 

Encoding

OutputInterpreter

Data



8

The Structure of a Compiler

• Any compiler must perform two major tasks

– Analysis of the source program

– Synthesis of a machine-language program



9

The Structure of a Compiler (Cont’d)

Scanner Parser
Semantic

Routines

Code

Generator

Optimizer

Source

Program

(Character

Stream)

Tokens Syntactic

Structure

Intermediate

Representation

Target Machine

Code

Symbol and

Attribute

Tables

(Used by all

Phases of 

The Compiler)

The structure of a Syntax-Directed Compiler



10

The Structure of a Compiler (Cont’d)

• Scanner

– The scanner begins the analysis of the source 
program by reading the input, character by 
character, and grouping characters into 
individual words and symbols (tokens)

– The tokens are encoded and then are fed to the 
parser for syntactic analysis

– For details, see the bottom of page 8.

• Scanner generators



11

The Structure of a Compiler (Cont’d)

• Parser

– Given a formal syntax specification (typically as a 

context-free [CFG] grammar), the parse reads tokens 

and groups them into units as specified by the 

productions of the CFG being used.

– While parsing, the parser verifies correct syntax, and if 

a syntax error is found, it issues a suitable diagnostic.

– As syntactic structure is recognized, the parser either 

calls corresponding semantic routines directly or builds 

a syntax tree.



12

The Structure of a Compiler (Cont’d)

• Semantic Routines

– Perform two functions

• Check the static semantics of each construct

• Do the actual translation

– The heart of a compiler

• Optimizer

– The IR code generated by the semantic routines is 
analyzed and transformed into functionally equivalent 
but improved IR code.

– This phase can be very complex and slow

– Peephole optimization



13

The Structure of a Compiler (Cont’d)

• One-pass compiler

– No optimization is required

– To merge code generation with semantic 

routines and eliminate the use of an IR

• Compiler writing tools

– Compiler generators or compiler-compilers

• E.g. scanner and parser generators



14

Compiler Design and 

Programming Language Design

• An interesting aspect is how programming 

language design and compiler design 

influence one another.

• Programming languages that are easy to 

compiler have many advantages

– See the 2nd paragraph of page 16. 



15

Compiler Design and Programming 

Language Design (Cont’d)

• Languages such as Snobol and APL are usually 
considered noncompilable

• What attributes must be found in a programming 
language to allow compilation?

– Can the scope and binding of each identifier reference 
be determined before execution begins

– Can the type of object be determined before execution 
begins?

– Can existing program text be changed or added to 
during execution?



16

Compiler Classifications

• Diagnostic compilers

• Optimizing compilers

• Retargetable compiler


