Q
Al -

Bottom1

<<Bottoml.ppt>>

|XSYSU‘

s I
S S >S5 Follow (S) = Follow (1) =
— ™ S .S e '
S —>.| [@} {8 else}
S — . other
| —.if S | (S —1. }
| >.ifSelse S >
K © 2
if I
other, \
= other [. h [A
S — other. | — if .S | - if Selse.S
@ | - if . SelseS if S — |
S —.l - S — . other
S — . other | - .if S
| —.ifS | -.ifSelseS
_ | —.ifSelse S @ @/
If _ /)
else

S other
Y

| —-if S.
| -if S.else S

5

Y

[| >if S else s@}

S — | | other
| - ifS | if Selse S
(5) Shift / Reduce conflict

Bottom1- 2

Reduce-Reduce conflict

stmt - call-stmt | assign-stmt
call-stmt = identifier
assign-stmt - var ;= exp
var - var [exp] | identifier
exp -2 var | number

V-=>id

Considering
S=2>.S
S->.id
S>.V=E
V->.id
This state has a shift transition on id to the state
S ->id.
V - id. (* Reduce / Reduce conflict *)

Bottom1- 3

|XSYSU‘

Definition of LR(1) transitions (part 1).

Given an LR(1) item [A — a .X y, a], where X is any
symbol (terminal), there is a transition on X to the item [A
— a X .y, al.

Definition of LR(1) transitions (part 2).

Given an LR(1) item [A— a .By, a], where B is a
nonterminal, there are ¢-transitions to items [B — .[3, D]
for every production B — 3 and for every token b in First

(va) .

Bottom1- 4

|XSYSU‘

, A A" A ., §]
—> (A=A, $
EA—».(A$21,$] @}
A—.a,
©_ 4
A—a., $
A>A (A]@}
A—(A)]|a
4
A A —(A.),$) [[A=(A)., 9
[A—=(.A), 9]
[A—.(A),)] @ @}
[A—.a,)] @
a
[A—a.,)]
((6)
a
4
A [A—>(A.),)]) [[A=(A).)]
[A—=(.A),)]
[A—.(A),)] @}
[A—.a,)] @

Bottom1-5

|XSYSU‘

The General LR(1) parsing algorithm
Let s be the current state (at the top of the parsing stack).

Then actions are defined as follows:

1. If state s contains any LR(1) item of the form [A 2 a. X [3, a],
where X is a terminal, and X is the next token in the input string,
then the action is to shift the current input token onto the stack,
and the new state to be pushed on the stack is the state
containing the LR(1) item [A = aX. B,a].

Bottom1- 6

|XSYSU‘

2. If state s contains the complete LR(1) item [A = a., a], and the

next token in the input string is a, then the action is to reduce by
the rule A - a. A reduction by the rule S’ 2 S, where S’ is the
start state, is equivalent to acceptance. (This will happen only if
the next input token is $.) In the other cases, the new state is
computed as follows. Remove the string a and all of its
corresponding states from the parsing stack. Correspondingly,
back up in the DFA to the state from which the construction of

a began. By construction, this state must contain an LR(1) item
of the form [B = a. A3, b]. Push A onto the stack, and push

the state containing the item [B = dA. B,b].

. If the next input token is such that neither of the above two

cases applies, an error is declared.

Bottom1- 7

|XSYSU‘

As with the previous methods, we say that a grammar is an
LR(1) grammar if the application of the above general LR(1)
parsing rules results in no ambiguity. In particular, a grammar

Is LR(1) if and only Iif, for any state s, the following two
conditions are satisfied:

1. For any item [A -2 a. X B, a] in s with X a terminal, there is no item in s
of the form [B = B., X] (otherwise there is a shift-reduce conflict).

2. There are no two items in s of the form [A 2> a.,aland [B =2 B., 3]
(otherwise, there is a reduce-reduce conflict).

Bottom1- 8

|XSYSU‘

, A [A"—=A ., 9$]
™ [A'—=>.A Y]
{A—>.(A$?], 3] @}
A—.a,
©_a
[A—a.,$]
(3)

(

A [[A-(A),S]) | [A-(A). 9]
[A—(.A),$]
A~ (A).)] @] @}
A—.a

) @ .

\[A—>a.,)]
((6)

a

A A—>(A.).)]) | [A=(A).)]
A—(.A))] H
[A—.(A),)] @}
[A—=.a,)] @

Bottom1- 9

|XSYSU‘

(1)A> A
(2)A—>(A)
B)A>a LR(1)
State Input Goto
(a) $ A
0 s2 s3 1
1 accept
2 S5 s6 4
3 R3
4 S/
5 S5 s6 8
6 R3
7 R2
8 s9
9 R2

Bottom1- 10

|XSYSU‘

a N LR()

S 2S

State 2 !

Bottom1- 11

|XSYSU‘

The SLR(1) parsing algorithm.

Let s be the current state (at the top of the parsing
stack). Then actions are defined as follows:

1. If state s contains any item of the form A —a . X 3, where X is a
terminal, and X is the next token in the input string, then the action
IS to shift the current input token onto the stack, and the new state
to be pushed on the stack is the state containing the item
A—aX.B.

Bottom1- 12

|XSYSU‘

2. If state s contains the complete item A — y., and the next token in
the input string is in Follow(A), then the action is to reduce by the
rule A — y. Areduction by the rule S' — S, where S’ is the start
state, is equivalent to acceptance; this will happen only if the next
input token is $. In all other cases, the new state is computed as
follows. Remove the string a and all of its corresponding states
from the parsing stack. Correspondingly, back up in the DFA to the
state from which the construction of a began. By construction, this
state must contain an item of the form B — y . A 3. Push A onto
the stack, and push the state containing the item B — a A .3.

3. If the next input token is such that neither of the above two cases
applies, an error is declared.

Bottom1- 13

|XSYSU‘

We say that a grammar is an SLR(1) grammar if the

application of the above SLR(1) parsing rules results in no
ambiguity. In particular, a grammar is SLR(1) if and only If,
for any states s, the following two conditions are satisfied:

1. For any item A —a . X B in s with X a terminal, there is no
complete item B —y. in s with X in Follow(B).

2. For any two complete items A —a. and B — 3. in s,
Follow(A) N Follow(B) is empty.

Bottom1- 14

|XSYSU‘

A violation of the first of these conditions represents a shift-reduce
conflict. A violation of the second of these conditions represents a
reduce-reduce conflict.

These two conditions are similar in spirit to the two conditions for
LL(1) parsing stated in the previous chapter, except that, as with all
shift-reduce parsing methods, decisions on which grammar rule to use
can be delayed until the last possible moment, resulting in a more
powerful parser.

A parsing table for SLR(1) parsing can also be constructed in a
manner similar to that for LR(0) parsing described in the previous
section. The differences are as follows.

Since a state can have both shifts and reduces in an SLR(1) parser
(depending on the lookahead).

Bottom1- 15

|XSYSU‘

. L E E' —E.
E».EEM {E»Eﬁn@
E—.n @
E—>n. E—-E+.n n E—-E+n.
2) 3 “
Follow (E') ={$}; Follow (E)={$, +}
State Input Goto
n + $ E
0 s2 1
*1 s3 accept
r(E—n) r(E—n)
s4
r(E—E+n) r(E—=E+n)

Bottom1- 16

I| =

GoTo
n
0 2
1
2
3 4
4

Action

+ $
0
*1] S A
2 | R3 R3
3
4 | R2 R2

Bottom1- 17

(@]
wn
Al -
we |E]
=

Parsing stack Input Action
1 1%$0 n+n+n$ shift?2
2 1$0n2 +n+n$|reduce E—n
3 |$0E1 +n+n3|shift3
4 |$0E1+3 n+n$|shift4
5 |[$O0E1+3n4 +n$|reduce E— E +n
6 |$0E1 +n $|shift 3
7 |$0E1+3 n$ | shift4
8 |[$O0E1+3n4 $ reduceE—E+n
9 |[$0E1 $ | accept

Bottom1- 18

|XSYSU‘

n+n+n E
— E+n+n ‘
— E+n

— E

— F’

E
E -+ n
E - n

n

Bottom1- 19

|XSYSU‘

Bottom1- 20

Q
A <

Follow (S')={$}; Follow (S)={$,)}

State Input Goto
() $ S
0 S2 r(S— ¢) r(S— ¢) 1
1 accept
*2 2 r(S— ¢) r(S— ¢) 3
3 s4
*4 S2 r(S— ¢) r(S— ¢) 5
5 r(S—(S)S) [r(S—(S)S)

Bottom1- 21

I| -
=

Goto

a0 NI |O

Action
) $
0 R3 R3
1 A
*2 R3 R3
3 S
*4 R3 R3
5 R2

Bottom1- 22

|XSYSU‘

Parsing stack Input Action
1 |$0 ()()$ | shift2
2 1$0(2)Y()$ | reduceS— ¢
3 |$0(2S3) () $ | shift 4
4 1%$0(2S3)4 ()3 |shift2
5 1$0(2S3)4(2)$ | reduce S— ¢
6 |$0(253)4(2S3) $ | shift 4
7 1%$0(2S3)4(2S3)4 $ | reduce S— ¢
8 |$0(2S3)4(2S3)4S5 $|reduceS— (S)S
9 |$0(2S3)4S5 $ | reduce S— (S)S
10 |$0S1 $ | accept

Bottom1- 23

Q
=
wu 5]
= |

statement — if-stmt | other
If-stmt — If (exp) statement
| If (exp) statement else statement
exp— 0|1
S — /| other
| —-ifS|if Selse S

(1) S— 1

(2) S — other
3)/—ifS

(4)] —if Selse S

Bottom1- 25

Q
wn
Al -
v |5
=1

State Input Goto

if else other $ I

0 s4 s3 2

1 accept

2 rl rl

3 2 2

4 s4 s3 2

5 S6 r3

6 s4 s3 2

{ r4 r4

SLR(1) --

refer page 2 (shift-reduce conflict in state 5 has been resolved)

Bottom1- 26

|XSYSU‘

HOWEVER=> Limits of SLR(1) Parsing Power:

stmt - call-stmt | assign-stmt
call-stmt - identifier
assign-stmt - var ;= exp

var = var [exp] | identifier
exp -2 var | number

This grammar models statements which can be either calls to
parameterless procedures, or assignments of expressions to
variables. Note that both assignments and procedure calls
begin with an identifier. It is not until either the end of the
statement or the token ;= is seen that a parser can decide
whether the statement is an assignment or a call.

Bottom1- 27

|XSYSU‘

S->id|V:=E

V =2 id

E->V]|n

To show how this grammar results in a parsing conflict in

SLR(1) parsing, consider the start state of the DFA of sets of
items:

S>.S5
S->.d
S->.V=E
V->.Id

This state has a shift transition on id to the state

S ->id.
V =2 id. (* Reduce/Reduce conflict *)

Bottom1- 28

Q
A <

Now, Follow(S) = {$} and Follow(V) = {:=, $}

(:= because of the rule V = V := E, and $ because an E can
be a V). Thus, the SLR(1) parsing algorithm calls for a
reduction in this state by both the rule S - id and the rule V
—> id under input symbol $. (This is a reduce-reduce conflict.)
This parsing conflict is actually a “phony” problem caused by
the weakness of the SLR(1) method. Indeed, the reduction by
V - id should never be made in this state when the input is $,
since a variable can never occur at the end of a statement
until after the token :=is seen and shifted.

Bottom1- 29

|XSYSU‘

LALR(L)

FIRST PRINCIPLE OF LALR(1) PARSING
The core of a state of the DFA of LR(1) items is a state of the DFA of
LR(O) items.

SECOND PRINCIPLE OF LALR(1) PARSING

Given two states sl and s2 of the DFA of LR(1) items that have the
same core, suppose there is a transition on the symbol X from sl to a
state t1. Then there is also a transition on X from state s2 to a state t2,
and the states t1 and t2 have the same core.

The algorithm for LALR(1) parsing using the condensed DFA of
LALR(1) items is identical to the general LR(1) parsing algorithm
described in the previous section. As before, we call a grammar an
LALR(1) grammar if no parsing conflicts arise in the LALR(1) parsing
algorithm. It is possible for the LALR(1) construction to create parsing
conflicts that do not exist in general LR(1) parsing, but this rarely

happens in practice.
Bottom1- 30

|XSYSU‘

Indeed, if a grammar is LR(1), then the LALR(1) parsing table cannot
have any shift-reduce conflicts; there may be reduce-reduce conflicts,
however (see the Exercises). Nevertheless, if a grammar is SLR(1),
then it certainly is LALR(1), and LALR(1) parsers often do as well as
general LR(1) parsers in removing typical conflicts that occur in SLR(1)
parsing. For example, the non-SLR(1) grammar of Example 5.16 is
LALR(1): the DFA of LR(1) items of Figure 5.8 is also the DFA of
LALR(1) items. If, as in this example, the grammar is already LALR(1),
the only consequence of using LALR(1) parsing over general LR
parsing is that, in the presence of errors, some spurious reductions
may be made before error is declared. For example, we see from
Figure 5.9 that, given the erroneous input string a), an LALR(1) parser
will perform the reduction A - a before declaring error, while a
general LR(1) parser will declare error immediately after a shift of the
token a.

Bottom1- 31

|XSYSU‘

[A'—>.A,$] [A'=A ., $] }
[A—.(A),$]
[A—.a,$] @ LALR(1)
([A—a.,$/)] }
3

[A—=(.A),$/)]
[A—.(A),)]
[A—.a,)]

[[A—>(A.),$/)]) A—>(A).,$/)] J
@} [(5)

new state 2: merge old states 2 and 5
new state 3: merge old states 3 and 6 (refer page 5)
new state 4: merge old states 4 and 8
new state 5: merge old states 7 and 9

Bottom1- 32

