=
5| @)
=

=

Bottom

Q
7 -
UL =
= |

= Example 5.1
Consider the following augmented grammar for balanced
Parentheses:

S'->S
S->(S)S|¢

Bottom - 2

Q
Al -

= Table 5.1 Parsing action of a bottom-up parser for the

grammar of

Parsing stack Input Action
1 $ ()% shift
2 $ () $ reduce S -> ¢
3 | (S) shift
4 $(S) $ reduce S -> ¢
5 |$(S)S $ reduce S->(S)S
6 | $S $ reduce S’ -> S
7 $S’ $ accept

root

S$'=>8=>(S5)S=>(S)=>()

Bottom - 3

Al -

h Bottom-up

LR(0):R3p #rulez right(+ i#) 7 4

LR(1) add Follow set in CFSM

(powerful, but too many states)

To reduce the large number of states in LR(1):

(1) Simple LR(1) - follow LR(0)+ Follow set

(2) LookAhead LR(1) < follow LR(1)+merge the same core)

S’

(S) S
| |
£ £

Bottom - 4

|XSYSU‘
[

m EX. 2

Consider the following augmented grammar for
rudimentary arithmetic

expressions (no parentheses and one operation):
E’->E
E->E+n|n
= A bottom-up parse of the string n + n using this is given
In table 5.2

Q

wn

=
a

Bottom - 5

|XS!’SU‘
= Table 5.2 Parsing actions of a bottom-up parser for the

grammar of
Parsing stack Input Action
1 | $ n+n $ shift
2 | $n +n $ reduce E -> n
3 | $E +n $ shift
4 | $E+ n $ shift
5 | $E+n $ reduce E -> E +n | root
6 | $E $ reduce E’-> E
7 | $E’ $ accept

example 5.2

Bottom - 6

|NSYSU‘

m EE=>E=>E+n=>n-+n

i« [T

(L1l
!
!
-

Bottom - 7

(@]
Al -

S — S
S —(S)S1l ¢

NN
VR
%
N—"
%

Bottom - 8

Q
wn
Al -
CLN 2
=1

o
SoesS
E

S

8 states
Ex.5.1

Bottom - 9

Q
A <

E'>E
E-2>E+n|n

E — E

E —E.
E—E+n
E—E. +n
E —E+n
—> E +n.

— .1

T ™ ™

— 1.

Bottom - 10

|NSYSU‘

, E
=

e E

EooEen o B oen e B en
(5

E
BB sE Ern) WE Een

8 states
Ex.5H.2

Bottom - 11

|XSYSU‘

= - fclosure’ - f#state.

]

)

|

2' - '_?s)s F[S' S, }
s B
([S > (S.)S

S
S — (.S)S L)
g : :(S)S @\({ S — (S).S
S — (S)S
S —.

@HS I

Bottom - 12

GoTo
0 1 2 4 5
(2 2 2
)
S 1 3 5
sAction
State 0 1 2 4 5
action| S R1 S S R?
R3 R3 R3

Shift/Reduce conflict, 2+

LR(0)

Bottom - 13

|XSYSU‘

4 I
FE' — E E[E'—>E. j
—> E — E+n —_— @
E— E.+n
E — .n
_)
n +

¥

eon] [eeengifeeeeg

Bottom - 14

|NSYSU‘
= GoTo

0 1 2 3 4
n 2 4
+ 3
E 1
= Action
State 0 1 2 3 4
action S S R3 S R2
R1

Shift-Reduce conflict,2: LR(0)

Bottom - 15

|XSYSU‘
A

CSE|MS
D

= The LR(0) parsing algorithm. Let s be the current state
(at the top of the parsing stack).Then actions are defined
as follows:

1. If state s contains any item of the form A 2> a.X[3, where
X Is a terminal, then the action is to shift the current input
token onto the stack. If this token is X, and state s
contains item A->a.Xp, then the new state to be pushed
on the stack is the state containing the item A->aX.[3. If
this token is not X for some item In state s of the form
just described, an error is declared.

Bottom - 16

|XSYSU‘
2. If state s contains any complete item (an item of form

A->q,.), then the action iIs to reduce by the rule A=>q;.
A reduction by the rule S’ S, where S’is the start
state, is equivalent to acceptance, provided the input is
empty, and error if the input is not empty. In all other
cases, the new state is computed as follows. Remove
the string a, and all of its corresponding states form
the parsing stack (the string a must be at the top of the
stack, according to the way the DFA is constructed).
Correspondingly, back up in the DFA to the state from
which the construction of a began (this must be the
state uncovered by the removal of a,). Again, by the
construction of the DFA, this state must contain an
item of the form B 2 a,.A[3. Push A onto the stack, and
push (as the new state) the state containing the item
B> a,A.5. (Note that this corresponds to following the
transition on A in the DFA, which is indeed reasonable,
since we are pushing A onto the stack.)

Bottom - 17

|XSYSU‘

= Agrammar is said to be an LR(0) grammar if the above

rules unambiguous. This means that if a state contains a
complete item A->a. , then it can contain no other items.
Indeed, if such a state also contains a “shift” item
A—->a.XB. (X is a terminal), then an ambiguity arises as to
whether action (1) or action (2) is to be performed. This
situation is call a shift-reduce conflict. Similarly, if such
a state contains another complete item B->3., then an
ambiguity arises as to which production to use for the
reduction (A—->a. or B—>[3.). This situation is called a
reduce-reduce conflict. Thus, a grammar is LR(O) if
and only if each state if a shift state (a state containing
only “shift” items) or a reduce state containing a single
complete item.

Bottom - 18

Bottom - 19

|NSYSU‘

s GoTo
0 2 3 5
(3 3
a 2 2
A 1 4
)
s Action
State | O 2 3 5
action| S R3 S R2

LR(0)

Bottom - 20

B

CSE

SYSU‘
0 = Finite Automata of LR(0) items and LR(0) Parsing

Parsing stack Input Action
1(%0 (@) $ shift
2 10 (3 (@) $ shift
31%0 (3 (3 a))$ shift
41903 (3aZ2)) $ reduce A > a; goto(3,A)=4
5/$0(3(3A4) $ shift
6 |$0(3(3A4)5) $ reduce A-> (A)goto(3,A)=4
7|$0 (3A4)$ shift
8 $0(3A4)5 ¢ reduce A -> (A);goto(0,A)=1
9 [$0Al $ Accept

A2DA
A->(A)
A->a

Bottom - 21

I| =

State |Action |Rule Input Goto
a

0 shift 2

1 accept |A’2A

2 reduce |A->a

3 shift 2

4 shift

5 reduce |A->(A)

Bottom - 22

