

Automata

- Regular expressions are defined as follows. Each regular expression denotes a set of strings (a regular set).
 - ψ is a regular expression denoting the empty set (the set containing no strings).
 - λ is a regular expression denoting the set that contains only the empty string. Note that this set is not the same as the empty set, because it contains one element.

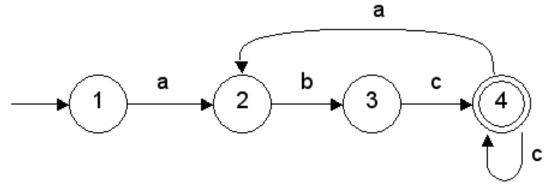
- A string S is a regular expression denoting a set containing only S. If S contains metacharacters, S can be quoted to avoid ambiguity.
- If A and B are regular expressions, then A|B, AB, A* are also regular expressions, denoting the alternation, catenation, and Kleene closure of the corresponding regular sets.

- Any finite set of strings can be represented by a regular expression of the form (s₁|s₂|...s_k).
- We often utilize the following operations as a notational convenience. They are not strictly necessary, because their effect can be obtained (albeit somewhat clumsily) using the three standard regular operators (alternation, catenation, Kleene closure) :

- P⁺ denotes all strings consisting of one or more strings in P catenated together : P* = (P⁺|λ) and P⁺ = PP*.
- If A is a set of characters, Not(A) denotes (V A); that is, all characters in V not included in A. Since Not(A) is finite, it is trivially regular. It is possible to extend Not to strings, rather than just V. That is, if S is a set of strings, we can define Not(S) to be (V* S). Although it may be infinite, this set is also regular (see Exercise 20).

- Finite automaton (FA) can be used to recognize the tokens specified by a regular expression. An FA is a simple, idealized computer that recognizes strings belonging to regular sets. It consists of:
 - A finite set of states
 - A set of transitions (or moves) from one state to another, labeled with characters in V
 - A special start state
 - A set of final, or accepting, states

Finite automata can be represented graphically using transition diagrams:



 $L = abc(c|abc)^*$

is a state

is a translation

is the start state

is a final state

Transition table

State	а	b	С
1	2		
2		3	
3			4
4	1		4

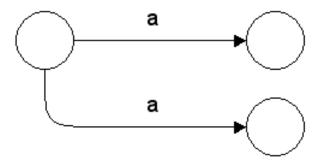


Figure 3.7 An NFA with Two a Transitions

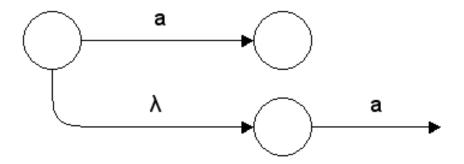


Figure 3.8 An NFA with a $\,\lambda\,$ Transitions

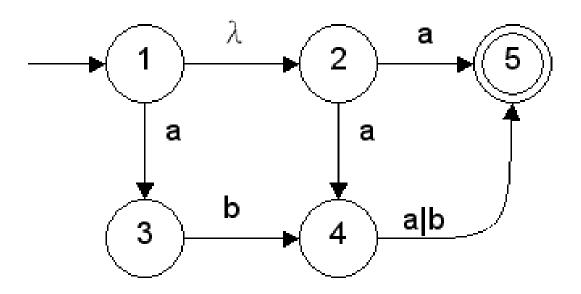
- The algorithm to make an FA from a regular expression proceeds in two steps: First, it transforms the regular expression into an NFA, and then it transforms the NFA into a deterministic one. This first step is very easy. In fact, we can transform any regular expression into an NFA with the following properties:
 - There is a unique final state.
 - The final state has no successors.
 - Every other state has rather one or two successors.

```
*Add to S all states reachable from it
*Using only \lambda transitions of N
*/
void close ( set of fa states *S)
   while ( there is a state x in S and a state y
not in S such that x \rightarrow y using a \lambda transition )
      add y to S
using this procedure, we can define the
construction of M:
 void make deterministic ( nondeterministic fa N,
deterministic fa *M )
//next page...
```

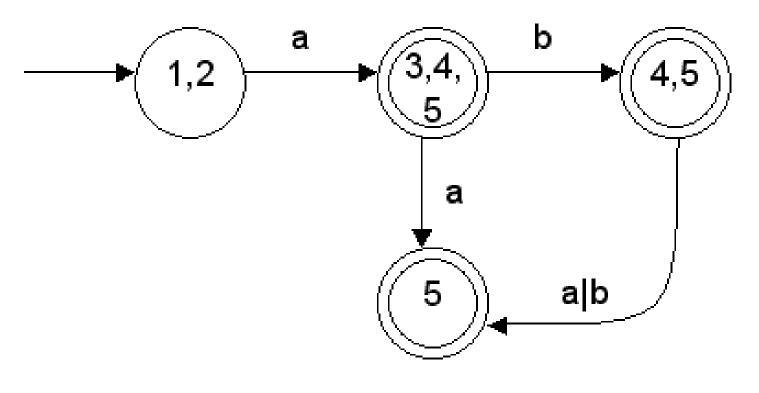
```
NSYSU
CSE B
```

```
set of fa states T;
M->initial state = SET OF(N.initial state);
Close(& M->initial state);
Add M->initial state to M->states;
While (states or transitions can be added)
    choose S in M->states and c in Alphabet;
    T = SET OF(y in N.states)
               SUCH THAT x \to y for some x in S);
    close(& T);
    if(T not in M->states)
       add T to M->states;
    Add the transition to M->transitions: S_{\rightarrow}^{c}T;
M->final states =
SET OF (S in M->states SUCH THAT N.final state in S);
                                              Autometia2 - 11
```

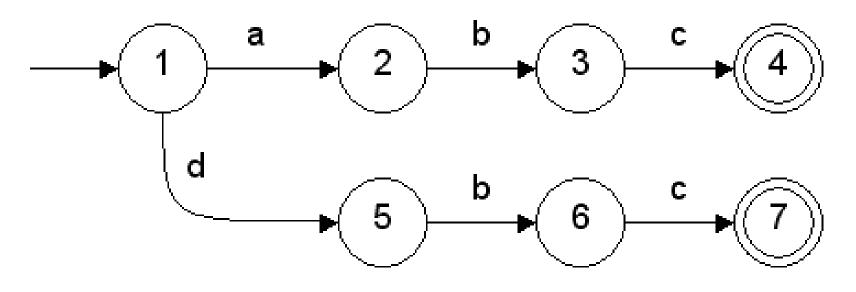

NFA:



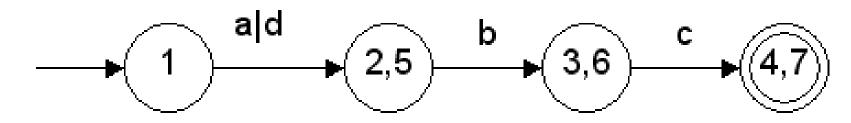
We start with state 1, the start state of N, and add state 2, its λ -successor. Hence M's start state is $\{1,2\}$. Neither state 1 nor state 2 has a successor under b. Under a, $\{1,2\}$'s successor is $\{3,4,5\}$. $\{3,4,5\}$'s successors under a and b are $\{5\}$ and $\{4,5\}$. $\{4,5\}$'s successor under b is $\{5\}$. Final states of M are those state sets that contain N's final state (5). The resulting DFA is :



State	а	b	
{1,2}	{ 3,4,5 }	Ø	
{ 3,4,5 }	{ 5 } { 4,5 }		
{ 5 }	Ø	Ø	
{ 4,5 }	{ 5 }	{ 5 }	



減少 DFA state 數!



	State	а	b	С	d	
	1	2	Ø	Ø	5	
	2	Ø	3	Ø	Ø	
	3	Ø	Ø	4*	Ø -	
(5	Ø	6	Ø	Ø	m
_	6	Ø	Ø	7*	Ø	

merge

```
void split ( set of fa states *ss )
     do {
          Let S be any merged state corresponding to
          \{s_1, ..., s_n\} and let c be any character;
          Let t_1, ..., t_n be the successor states to
          \{s_1, \bar{s}_n\}
              under c;
          if (t_1, ..., t_n \text{ do not all belong to the same})
              merged state)
              Split S into new states so that s, and s remain in the same merged state if and
              only if t, and t, are in the same merged
              state;
     }while(more splits are possible);
                                                        Autometia2 - 16
```