
<<Automata2.ppt>>

Automata

Autometia2 - 2

 Regular expressions are defined as
follows. Each regular expression denotes
a set of strings (a regular set).
 ψ is a regular expression denoting the empty

set (the set containing no strings).
 λ is a regular expression denoting the set that

contains only the empty string. Note that this
set is not the same as the empty set, because
it contains one element.

Autometia2 - 3

 A string S is a regular expression denoting a
set containing only S. If S contains meta-
characters, S can be quoted to avoid
ambiguity.

 If A and B are regular expressions, then A|B,
AB, A* are also regular expressions, denoting
the alternation, catenation, and Kleene
closure of the corresponding regular sets.

Autometia2 - 4

 Any finite set of strings can be represented
by a regular expression of the form
(s1|s2|…sk).

 We often utilize the following operations as
a notational convenience. They are not
strictly necessary, because their effect can
be obtained (albeit somewhat clumsily)
using the three standard regular operators
(alternation, catenation, Kleene closure) :

Autometia2 - 5

 P+ denotes all strings consisting of one or
more strings in P catenated together : P* =
(P+|λ) and P+ = PP*.

 If A is a set of characters, Not(A) denotes (V -
A); that is, all characters in V not included in A.
Since Not(A) is finite, it is trivially regular. It is
possible to extend Not to strings, rather than
just V. That is, if S is a set of strings, we can
define Not(S) to be (V* - S). Although it may
be infinite, this set is also regular (see
Exercise 20).

Autometia2 - 6

 Finite automaton (FA) can be used to
recognize the tokens specified by a
regular expression. An FA is a simple,
idealized computer that recognizes strings
belonging to regular sets. It consists of :
 A finite set of states
 A set of transitions (or moves) from one state

to another, labeled with characters in V
 A special start state
 A set of final, or accepting, states

Autometia2 - 7

 Finite automata can be represented
graphically using transition diagrams :

Autometia2 - 8

Autometia2 - 9

 The algorithm to make an FA from a
regular expression proceeds in two steps :
First, it transforms the regular expression
into an NFA, and then it transforms the
NFA into a deterministic one. This first step
is very easy. In fact, we can transform any
regular expression into an NFA with the
following properties :
 There is a unique final state.
 The final state has no successors.
 Every other state has rather one or two

successors.

Autometia2 - 10

/ *
*Add to S all states reachable from it
*Using only λ transitions of N
*/
void close (set_of_fa_states *S)
{

while (there is a state x in S and a state y
not in S such that xy using a λ transition)

add y to S
}
using this procedure, we can define the
construction of M :
void make_deterministic (nondeterministic_fa N,
deterministic_fa *M)
{
//next page…

Autometia2 - 11

set_of_fa_states T;
M->initial_state = SET_OF(N.initial_state);
Close(& M->initial_state);
Add M->initial_state to M->states;
While(states or transitions can be added)
{

choose S in M->states and c in Alphabet;
T = SET_OF(y in N.states

SUCH_THAT x→y for some x in S);
close(& T);
if(T not in M->states)

add T to M->states;
Add the transition to M->transitions: S→T;

}
M->final_states =
SET_OF(S in M->states SUCH_THAT N.final_state in S);

}

c

c

Autometia2 - 12

We start with state 1, the start state of N, and add state 2, its
λ-successor. Hence M’s start state is {1,2}. Neither state 1 nor
state 2 has a successor under b. Under a, {1,2}’s successor is
{3,4,5}. {3,4,5}’s successors under a and b are {5} and {4,5}.
{4,5}’s successor under b is {5}. Final states of M are those
state sets that contain N’s final state (5). The resulting DFA is :

Autometia2 - 13

State a b
{1,2} { 3,4,5 } ∅

{ 3,4,5 } { 5 } { 4,5 }
{ 5 } ∅ ∅

{ 4,5 } { 5 } { 5 }

Autometia2 - 14

Autometia2 - 15

Autometia2 - 16

void split (set_of_fa_states *ss)
{

do {
Let S be any merged state corresponding to
{s1, … ,sn} and let c be any character;
Let t1, … ,tn be the successor states to
{s1, … ,sn}

under c;
if(t1, … ,tn do not all belong to the same

merged state)
{

Split S into new states so that si and sjremain in the same merged state if and
only if ti and tj are in the same merged
state;

}
}while(more splits are possible);

}

	Automata
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16

