Q
A =

>
2
s

Automata

<<Automata2.ppt>>

= Regular expressions are defined as
follows. Each regular expression denotes
a set of strings (a regular set).

= Y IS a regular expression denoting the empty
set (the set containing no strings).

= A Is a regular expression denoting the set that
contains only the empty string. Note that this
set is not the same as the empty set, because
it contains one element.

Autometia2 - 2

= Astring S is a regular expression denoting a
set containing only S. If S contains meta-
characters, S can be quoted to avoid
ambiguity.

= If Aand B are regular expressions, then A|B,
AB, A* are also regular expressions, denoting
the alternation, catenation, and Kleene
closure of the corresponding regular sets.

Autometia2 - 3

Q
n),
: B
Z
CLA 2

= Any finite set of strings can be represented
by a regular expression of the form

(S4l85]...S,).

= We often utilize the following operations as
a notational convenience. They are not
strictly necessary, because their effect can
be obtained (albeit somewhat clumsily)

using the three standard regular operators
(alternation, catenation, Kleene closure) :

Autometia2 - 4

Q
n),
: B
Z
CLA =

= P* denotes all strings consisting of one or
more strings in P catenated together : P* =
(P*|A) and P* = PP*.

= IfAis a set of characters, Not(A) denotes (V -
A); that is, all characters in V not included in A.
Since Not(A) is finite, it is trivially regular. It is
possible to extend Not to strings, rather than
just V. That is, if S is a set of strings, we can
define Not(S) to be (V* - S). Although it may
be infinite, this set is also reqgular (see

Exercise 20).

Autometia2 - 5

= Finite automaton (FA) can be used to
recognize the tokens specified by a
regular expression. An FA is a simple,
idealized computer that recognizes strings
belonging to regular sets. It consists of :
= Afinite set of states

= A set of transitions (or moves) from one state
to another, labeled with characters in V

= A special start state
= A set of final, or accepting, states

Autometia2 - 6

= Finite automata can be represented

graphically using transition diagrams

R ORORd]

Transition table

Q is a state
State a b

L = abc(c|abc)*

— s a translation 1 2

3

A’O is the start state

4

B LM

1
© is a final state

4

Autometia2 - 7

5
==
s

Q
=

—(
? —(
Figure 3.7 An NFA with Two a Transitions

—(
9.

Figure 3.8 An NFA witha A Transitions

Autometia2 - 8

A -
wo [
[| =

csE i
-

The algorithm to make an FA from a
regular expression proceeds in two steps :
First, it transforms the regular expression
into an NFA, and then it transforms the
NFA into a deterministic one. This first step
IS very easy. In fact, we can transform any
regular expression into an NFA with the
following properties :

= [here is a unique final state.
= | he final state has no successors.

= Every other state has rather one or two
SuUCCessors.

Autometia2 - 9

] *

*Add to S all states reachable from it
*Using only A transitions of N

*/

void close (set of fa states *S)

{

while (there is a state x in S and a state y
not in S such that x2y using a A transition)

add y to S
}

usin% this procedure, we can define the
cons ructlon of M :

void make deterministic (nondeterministic fa N,
determinisTic fa *M)

{
//next page..

Autometia2 - 10

w set of fa states T;
g M->initial state = SET OF(N.initial state);
Close (& M->initial state);
Add M->initial state to M->states;
While (states or transitions can be added)
{
choose S in M->states and c in Alphabet;
T = SET OF(y in N.states
SUCH THAT x>y for some x in S);
close(& T) ;
1f (T not in M->states)
add T to M->states;
Add the transition to M->transitions: S5T;
}
M->final states =
SET OF(S in M->states SUCH THAT N.final state in S);

} Autometia2 - 11

NFA :

A a
D—(2—(5)
a a
s (4 ek

We start with state 1, the start state of N, and add state 2, its
A-successor. Hence M'’s start state is {1,2}. Neither state 1 nor
state 2 has a successor under b. Under a, {1,2}'s successor is
{3,4,5}. {3,4,5}'s successors under a and b are {5} and {4,5}.
{4,5}’s successor under b is {5}. Final states of M are those
state sets that contain N's final state (5). The resulting DFA s :

Autometia2 - 12

Q
)
A =

il |

Y) %J

State b
{1,2} {3,4,5} %
{3,4,5} {5} {4,5}
{5} %, %
{45} {5} {5}

Autometia2 - 13

2D
= [

51> DFA state & !

Autometia2 - 14

)
= &

initial state

{1,2,3,56} {4,7}

12356 47
125 36 47
1 25 36 47

@

ate

-y final

] merge

M| M |w| | o

DN WM -
QRIS E o e

JeR@Q|e

ORI IO IE=2

Autometia2 - 15

void split (set of fa states *ss)
{
do {

Let S be any merged state corresponding to
{s,, .. ,s,} and let c be any character;

Let t,, .. ,t, be the successor states to
{s;, .. ,s,}

under c;

if(t,, .. ,£, do not all belong to the same
merged state)

{

Split S into new states so that s. and S
remain in the same merged state if and
only if t. and t, are in the same merged
state;

}

}while (more splits are possible) ;
} Autometia2 - 16

	Automata
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16

