[image: image1.png]=
=l M@
=

· Regular expressions are defined as follows. Each regular expression denotes a set of strings (a regular set).

· ψ is a regular expression denoting the empty set (the set containing no strings).

· λ is a regular expression denoting the set that contains only the empty string. Note that this set is not the same as the empty set, because it contains one element.

· A string S is a regular expression denoting a set containing only S. If S contains meta-characters, S can be quoted to avoid ambiguity.

· If A and B are regular expressions, then A|B, AB, A* are also regular expressions, denoting the alternation, catenation, and Kleene closure of the corresponding regular sets.

Any finite set of strings can be represented by a regular expression of the form (s1|s2|…sk).

We often utilize the following operations as a notational convenience. They are not strictly necessary, because their effect can be obtained (albeit somewhat clumsily) using the three standard regular operators (alternation, catenation, Kleene closure) :

· P+ denotes all strings consisting of one or more strings in P catenated together : P* = (P+|λ) and P+ = PP*.

· If A is a set of characters, Not(A) denotes (V - A); that is, all characters in V not included in A. Since Not(A) is finite, it is trivially regular. It is possible to extend Not to strings, rather than just V. That is, if S is a set of strings, we can define Not(S) to be (V* - S). Although it may be infinite, this set is also regular (see Exercise 20).

Finite automaton (FA) can be used to recognize the tokens specified by a regular expression. An FA is a simple, idealized computer that recognizes strings belonging to regular sets. It consists of :

· A finite set of states

· A set of transitions (or moves) from one state to another, labeled with characters in V

· A special start state

· A set of final, or accepting, states

Finite automata can be represented graphically using transition diagrams :

[image: image1.png]

L = abc(c|abc)*

 is a state

 is a translation

 is the start state

 is a final state

Figure 3.7 An NFA with Two a Transitions

Figure 3.8 An NFA with a λ Transitions

The algorithm to make an FA from a regular expression proceeds in two steps : First, it transforms the regular expression into an NFA, and then it transforms the NFA into a deterministic one. This first step is very easy. In fact, we can transform any regular expression into an NFA with the following properties :

· There is a unique final state.

· The final state has no successors.

· Every other state has rather one or two successors.

/ *

*Add to S all states reachable from it

*Using only λ transitions of N

*/

void close (set_of_fa_states *S)

{

 while (there is a state x in S and a state y not in S such that x(y using a λ transition)

 add y to S

}

using this procedure, we can define the construction of M :

 void make_deterministic (nondeterministic_fa N, deterministic_fa *M)

{

 set_of_fa_states T;

 M->initial_state = SET_OF(N.initial_state);

 Close(& M->initial_state);

 Add M->initial_state to M->states;

 While (states or transitions can be added)

 {

 choose S in M->states and c in Alphabet;

 T = SET_OF(y in N.states

SUCH_THAT x→y for some x in S);

 close(& T);

 if (T not in M->states)

 add T to M->states;

 Add the transition to M->transitions: S→T;

 }

 M->final_states =

 SET_OF(S in M->states SUCH_THAT N.final_state in S);

}

NFA :

We start with state 1, the start state of N, and add state 2, its λ-successor. Hence M’s start state is {1,2}. Neither state 1 nor state 2 has a successor under b. Under a, {1,2}’s successor is {3,4,5}. {3,4,5}’s successors under a and b are {5} and {4,5}. {4,5}’s successor under b is {5}. Final states of M are those state sets that contain N’s final state (5). The resulting DFA is :

void split (set_of_fa_states *ss)

{

 do {

 Let S be any merged state corresponding to {s1, … ,sn} and let c be any character;

 Let t1, … , tn be the successor states to {s1, … ,sn}

under c;

 if (t1 , … , tn do not all belong to the same merged state)

 {

 Split S into new states so that si and sj remain in the same merged state if and only if ti and tj are in the same merged state;

 }

 } while (more splits are possible);

}

1

2

3

4

a

b

c

c

a

Transition table

State�
a�
b�
c�
�
1�
2�
�
�
�
2�
�
3�
�
�
3�
�
�
4�
�
4�
1�
�
4�
�

a

a

λ

a

a

c

c

5

b

a

λ

3

2

1

4

a

a

a|b

1,2

3,4,5

a

4,5

b

5

a

a|b

a

4

b

2

1

c

3

c

6

7

b

5

d

State�
a�
b�
�
{1,2}�
{ 3,4,5 }�
(�
�
{ 3,4,5 }�
{ 5 }�
{ 4,5 }�
�
{ 5 }�
(�
(�
�
{ 4,5 }�
{ 5 }�
{ 5 }�
�

減少DFA state數！

c

3,6

a|d

4,7

b

2,5

1

final

12356

47

125

36

47

1

25

36

47

{ 1,2,3,5,6 }

{4,7}

initial state

State�
a�
b�
c�
d�
�
1�
2�
(�
(�
5�
�
2�
(�
3�
(�
(�
�
3�
(�
(�
4*�
(�
�
5�
(�
6�
(�
(�
�
6�
(�
(�
7*�
(�
�

merge

Automation2-4

