NSTSU

(we

Associativity of Operators

By convention, 9+5+2 is equivalent to (9+5)+2 and 9-5-2
IS equivalent to (9-5)-2. When an operand like 5 has
operators to its left and right, conventions are needed for
deciding which operator takes that operand. We say that
the operator + associates to the left because an operand
with plus signs on both sides of it is taken by the operator
to its left. In most programming languages the four
arithmetic operators, addition, subtraction, multiplication,

and division are left associative.

<<Associativity.ptt>>

NSTSU

(wo

Some common operators such as exponentiation are
right associative. As another example, the assignment
operator = in C is right associative; in C, the expression
a=b=c is treated in the same way as the expression
a=(b=c).

Strings like a=b=c with a right-associative

operator are generated by the following grammar:

Associativity- 2

.
string string
string + string string - string
string - string 2 9 string + string
9 5 5 2

Fig 2.3. Two parse trees for 9-5+2.

Associativity- 3

|csa\
list right
Iist/ - \digit letter = right
AN A N
list - digit 2 a letter = right
\
digit 5 b letter
9 C

Fig 2.4. Parse trees for left- and right- associative operators.

Associativity- 4

“® Precedence of Operators

Consider the expression 9+5*2. There are two possible
Interpretations of this expression: (9+5)*2 or 9+(5*2). The
associativity of + and * do not resolve this ambiguity. For this
reason, we need to know the relative precedence of operators

when more than one kind of operator is present.
expr — expr + term
| expr —term

| term

Associativity- 5

.
The resulting grammar is therefore
expr — expr + term | expr — term | term
term — term * factor | term / factor |
factor

factor — digit | (expr)

Associativity- 6

=B Syntax of statements. Keywords allow us to recognize

statements in most languages. All Pascal statements begin
with a keyword except assignments and procedure calls.
Some Pascal statements are defined by the following
(ambiguous) grammar in which the token 1d represents an
Identifier.

stmt — id = expr
If expr then stmt
If expr then stmt else stmt

while expr do stmt

begin opt_stmts end

Associativity- 7

NSTSU

(wo

2.3 SYNTAX-DIRECTED TRANSLATION

To translate a programming language construct, a
compiler may need to keep track of many quantities besides
the code generated for the construct. For example, the
compiler may need to know the type of the construct, or the
location of the first instruction in the target code, or the
number of instructions generated. \We therefore talk abstractly
about attributes associated with memory location. An attribute
may represent any gquantity, e.g., a type, a string, a memory

location, or whatever.

Associativity- 8

In this section, we present a formalism called a syntax-
directed definition for specifying translations for
programming language constructs. A syntax-directed
definition specifies the translation of a construct in terms of
attributes associated with its syntactic components. In later
chapters, syntax-directed definitions are used to specify

many of the translations that take place in the front of a

compiler.

Associativity- 9

|Lah‘ B - -
Postflx Notation

The ostfix notation for an expression E can be defined
uctively as follows:

1. IIEf E |s|fa variable or constant, then the postfix notation for E is
Itse

2. If E Is an expression of the form E, op E,, where op IS any
binary operator, then the postfix notation for E is E’
where E,” and E,’ the postfix notations for E, anél EZ,

respectlvely

3. If E Is an expression of the form (E,), then the postfix
notation for E, Is also the postfix notation for E.

No parentheses are needed in postfix notation because the position
and arity (number of arguments) of the operators permits only one
decoding of a postfix expression. For example, the postfix notation
for (9-5)+2 Is 95-2+ and the postfix notation for 9-(5+2) is 952+ -.

Associativity- 10

NSTSU

(wo

Adapting the Translation Scheme

The left-recursion elimination technique sketched in fig.
2.18 can also be applied to productions containing
semantic actions. We extend the transformation in
Section 5.5 to take synthesized attributes into account.
The technigue transforms the productions

A—Aa | AB | vinto
A— 7 R

R-aR | SR | ¢

Associativity- 11

NSTSU

(wo

When semantic actions are embedded in the productions,
we carry them along in the transformation. Here, if we let A
= expr, a=+ term { print(+) }, 8= - term { print(-9 },and
2= term, the transformation above produces the translation
scheme(2.14). The expr productions in Fig. 2.19 have been
transformed into the productions for expr and the new
nonterminal rest in (2.14). The productions for term are
repeated from Fig. 2.19. Notice that the underlying
grammar is different from the one in Example 2.9 and
difference makes the desired translation possible.

Associativity- 12

T
o2
=

3

expr — term rest

rest — + term { print(*+’) } rest | - term { print(-") }
rest |e

term — 0 { print(‘0’) }

term — 1 { print(‘1’) }

term — 9 { print(‘9) }

Associativity- 13

|CSE\

EX

o N
i

{prlnt(9)} -7 term {prlnt(")}

/{pnnt<5)} +/

term { orint(‘+) }

/

2/ {print(2) }

Fig. 2.21 Translation of 9-5+2 into 95-2+.

Associativity- 14

As another example, function rest() uses the first
production for rest in (2.14) if the lookahead symbol is a
plus sign, the second production if the lookahead symbol is
a minus sign, and the production rest — & by default. The
first production for rest is implemented by the first if-
statement in Fig. 2.22. If the lookahead symbol is +, the
plus sign is matched by the call match('+’). After the call
term(), the C standard library routine putchar(‘+’)
Implements the semantic action by printing a plus character.
Since the third production for rest has ¢ as its right side,
the last else in rest() does nothing.

Associativity- 15

NSTSU

(wo

Arithmetic Instructions

The abstract machine must implement each operator in
the intermediate language. A basic operation, such as
addition or subtraction, is supported directly by the
abstract machine. A more complex operation, however,
may need to be implemented as a sequence of abstract
machine instructions. We simplify the description of the
machine by assuming that there is an instruction for
each arithmetic operator.

Associativity- 16

|th.‘ B

The abstrct machine code for an arithmetic expression
simulates the evaluation of postfix representation for that
expression using a stack. The evaluation proceeds br
processing the postfix representations from left to right,
pushing each operand onto the stack as it is encountered.
When a k-ary operator is encountered, its leftmost
argument is k-1 positions below the top of the stack and
Its rightmost srgument is at the top. The evaluation
applies the operator to the top k values on the stack,
pops the operands, and pushes the result onto the atack.
For example, in the evaluation of the postfix expression 1
3 +5 %k, the following actions are performed:

Associativity- 17

w N P di

. Stack 1
. stack 3

. Add the two topmost elements, pop them, and stack the

result 4.

4. stack 5.

5. Multiply the two topmost elements, pop them, and stack the

result 20.

The value on top of the stack at the end (here 20) is the
value of the entire expression.

In the intermediate language, all values will be integers,
with O corresponding to false and nonzero integers
corresponding to true. The boolean operators and and or
require both their arguments to be evaluated.

Associativity- 18

INSTRUCTIONS STACK DATA
1| push 5 16 01
2| rvalue 2 top— 7 112
3|+ 713
4| rvalue 3 |4
o|* <pC
6| ..

Fig. 2.31 Snapshot of the stack machine after

the first four instructions are executed.

Associativity- 19

|Lm:.‘ ®
L-values and R-values

There Is a distinction between the meaning of identifiers
on the left and right sides of an assignment. In each of the
assignments

| . =5;
1:=1+1;

the right side specifies an integer value, while the left side
specifies where the value is to be stored. Similarly, if p
and ¢ are pointers to characters, and

Associativity- 20

NSTSU

(wo

pt=qt?t,;

the right side g 1 specifies a character, while p 1 specifies
where the character is to be stored. The terms I-value
and r-value refer to values that are appropriate on the left
and right sides of an assignment, repectively. That is, r-
values are what we usually think of as “values,” while I-
values are locations.

Associativity- 21

“B Stack Manipulation

Besides the obvious instruction for pushing an
Integer constant onto the stack and popping a value
from the top of the stack, there are instructions to
access data memory:

push v push v onto the stack

rvalue | push contents of data location |

Ivalue | push address of data location |

pop throw away value on top of the stack

= the r-value on top is placed in the I-value below it
and both are popped

copy tush a copy of the top value on the stack

Associativity- 22

(wo

lvalue day push 2
push 1461 +
rvalue y push 5
* div
push 4 +

div rvalue d
push 153 +
rvalue m =

Fig 2.32 Translation of day := (1461 *y) div 4 +

(153*m + 2) div5 + d.

Associativity- 23

These remarks can be expressed formally as follows.
Each nonterminal has an attribute t giving its translation.
Attribute lexeme of id gives the string representation of the
identifier.

stmt — id := expr

{ stmt.t :=‘lvalue’ || id.lexeme || expr.t || ="}

Associativity- 24

|Lm:.‘ B

Control Flow

The stack machine executes instructions in numerical
sequence unless told to do otherwise by a conditional
or unconditional jump statement. Several options exist
for specifying the targets of jumps:

1. The instruction operand gives the target location.

2. The instruction operand specifies the relative distance,
positive or negative, to be jumped.

3. The target Is specified symbolically; i.e., the machine
supports lablels.

Associativity- 25

NSTSU

(wo

With the first two options there is the additional
possibility of taking the operand from the top of the
stack.

We choose the third option for the abstract machine
because it is easier to generate such jumps. Morever,
symbolic addresses need not be changed If, after we
generate code for the abstract machine, we make
certain improvements in the code that result in the
Insertion or deletion of instructions.

Associativity- 26

NSTSU

(wo

The control-flow instructions for the stack machine are:

label / |target of jumps to / ; has no other effect

goto / next instruction is taken from statement with label /
gofalse / | pop the top value; jump if it is zero

gotrue / | pop the top value; jump if it is nonzero

halt stop execution

Associativity- 27

=B Emitting a Translation

The expression translators in Section 2.5 used print
statements to incrementally generate the translation of an
expression. Similar print statements can be used to emit
the translation of statements. Instead of print statements,
we use a procedure emit to hide printing details. For
example, emit can worry about whether each abstract-
machine instruction needs to be on a separate line. Using
the procedure emit, we can write the following instead of

(2.18):
stmt — | if
expr |{ out :=newlabel; emit(‘gofalse’, out); }
then

stmt,

{ emit(‘label’ , out);}

Associativity- 28

NSTSU

(we

When semantic actions appear within a production, we
consider the elements on the right side of the
production in a left-to-right order. For the above
production, the order of actions is as follows: actions
during the parsing of expr are done, out is set to the
label returned by newlabel and the gofalse instruction is
emitted, actions during the parsing of stmt, are done,
and, finally, the label instruction is emitted. Assuming
the actions during the parsing of expr and stmt, emit
the code for these nonterminals, the above production
Implements the code layout of Fig. 2.33.

Associativity- 29

B [stmt— if expr then stmt, { out := | newlabel
stmt.t ;= | expr.t||
‘gofalse’ out || (2.18)
stmt, .t
‘label’ out }
IF WHILE
code for expr label test
gofalse out code for expr
code for stmt, gofalse out
label out code for stmt,
goto test
label out

Fig. 2.33. Code layout for conditional and while statements.

Associativity- 30

U procedure stmt
“Bvar test,out: integer; /* for labels */
begin

If lookahead = id then begin
emit(‘lvalue’,tokenval); match(id); match(:=’);
expr
end
else if lookahead = ‘if’ then begin
match(‘if’);
expr;
out := newlabel,;
emit(‘gofalse’,out);
match(‘then’);
stmt;
emit(‘label’,out)
end
/[* code for remaining statements goes here */
. else error,
en

Fig. 2.34 Pseudo-code for translating statements

Associativity- 31

|Lm:.‘ B

Example 2.10 The lexical analyzer in Section 2.7 contains a
conditional of the form:

If t = blank or t = tab then ...

If t is a blank, then clearly it Is not necessary to test if t is a tab,
because the first equality implies that the condition is true. The

expression
expr, or expr,
can therefore be implemented as

If expr, then true else expr,

Associativity- 32

The reader can verify that the following code implements the or
operator:

code for expr,

copy /* copy value of expr, */
gotrue out
pop /* pop value of expr, */

code for expr,

label out

Associativity- 33

Recall that the gotrue and gofalse instructions pop the
value on top of the stack to simplify code generation for
conditional and while statements. By copying the value of
expr, we ensure that the value on top of the stack is true if
the gotrue instruction leads to a jump.

Associativity- 34

