
<<Associativity.ptt>>

Associativity of Operators

By convention, 9+5+2 is equivalent to (9+5)+2 and 9-5-2

is equivalent to (9-5)-2. When an operand like 5 has

operators to its left and right, conventions are needed for

deciding which operator takes that operand. We say that

the operator + associates to the left because an operand

with plus signs on both sides of it is taken by the operator

to its left. In most programming languages the four

arithmetic operators, addition, subtraction, multiplication,

and division are left associative.

Associativity- 2

Some common operators such as exponentiation are

right associative. As another example, the assignment

operator = in C is right associative; in C, the expression

a=b=c is treated in the same way as the expression

a=(b=c).

Strings like a=b=c with a right-associative

operator are generated by the following grammar:

Associativity- 3

string

stringstring -

string string+9

25

string

string string+

string string- 2

59

Fig 2.3. Two parse trees for 9-5+2.

Associativity- 4

list

list digit-

list digit- 2

5

9

digit

right

rightletter =

letter right=a

c

b letter

Fig 2.4. Parse trees for left- and right- associative operators.

Associativity- 5

Precedence of Operators

Consider the expression 9+5*2. There are two possible

interpretations of this expression: (9+5)*2 or 9+(5*2). The

associativity of + and * do not resolve this ambiguity. For this

reason, we need to know the relative precedence of operators

when more than one kind of operator is present.

expr → expr + term

| expr – term

| term

Associativity- 6

The resulting grammar is therefore

expr → expr + term | expr – term | term

term → term * factor | term / factor |

factor

factor → digit | (expr)

Associativity- 7

Syntax of statements. Keywords allow us to recognize

statements in most languages. All Pascal statements begin

with a keyword except assignments and procedure calls.

Some Pascal statements are defined by the following

(ambiguous) grammar in which the token id represents an

identifier.

stmt → id := expr

| if expr then stmt

| if expr then stmt else stmt

| while expr do stmt

| begin opt_stmts end

Associativity- 8

2.3 SYNTAX-DIRECTED TRANSLATION

To translate a programming language construct, a

compiler may need to keep track of many quantities besides

the code generated for the construct. For example, the

compiler may need to know the type of the construct, or the

location of the first instruction in the target code, or the

number of instructions generated. We therefore talk abstractly

about attributes associated with memory location. An attribute

may represent any quantity, e.g., a type, a string, a memory

location, or whatever.

Associativity- 9

In this section, we present a formalism called a syntax-

directed definition for specifying translations for

programming language constructs. A syntax-directed

definition specifies the translation of a construct in terms of

attributes associated with its syntactic components. In later

chapters, syntax-directed definitions are used to specify

many of the translations that take place in the front of a

compiler.

Associativity- 10

Postfix Notation

The postfix notation for an expression E can be defined
inductively as follows:

1. If E is a variable or constant, then the postfix notation for E is
E itself.

2. If E is an expression of the form E1 op E2, where op is any
binary operator, then the postfix notation for E is E1’ E2’ op,
where E1’ and E2’ the postfix notations for E1 and E2,
respectively.

3. If E is an expression of the form (E1), then the postfix
notation for E1 is also the postfix notation for E.

No parentheses are needed in postfix notation because the position

and arity (number of arguments) of the operators permits only one

decoding of a postfix expression. For example, the postfix notation

for (9-5)+2 is 95-2+ and the postfix notation for 9-(5+2) is 952+ -.

Associativity- 11

Adapting the Translation Scheme

The left-recursion elimination technique sketched in fig.

2.18 can also be applied to productions containing

semantic actions. We extend the transformation in

Section 5.5 to take synthesized attributes into account.

The technique transforms the productions

A→ Aα｜Aβ｜γinto

A→γR

R→αR｜βR｜ε

Associativity- 12

When semantic actions are embedded in the productions,

we carry them along in the transformation. Here, if we let A

= expr, α= + term { print(‘+’) }, β= - term { print(‘-‘) },and

γ= term, the transformation above produces the translation

scheme(2.14). The expr productions in Fig. 2.19 have been

transformed into the productions for expr and the new

nonterminal rest in (2.14). The productions for term are

repeated from Fig. 2.19. Notice that the underlying

grammar is different from the one in Example 2.9 and

difference makes the desired translation possible.

Associativity- 13

expr → term rest

rest → + term { print(‘+’) } rest | - term { print(‘-‘) }

rest |ε

term → 0 { print(‘0’) }

term → 1 { print(‘1’) }

… …

term → 9 { print(‘9’) }

Associativity- 14

expr

restterm

9 { print(‘9’) } - term { print(‘-’) }

5 { print(‘5’) }

rest

+ term { print(‘+’) }

2 { print(‘2’) }

rest

ε

Fig. 2.21 Translation of 9-5+2 into 95-2+.

Associativity- 15

As another example, function rest() uses the first

production for rest in (2.14) if the lookahead symbol is a

plus sign, the second production if the lookahead symbol is

a minus sign, and the production rest →εby default. The

first production for rest is implemented by the first if-

statement in Fig. 2.22. If the lookahead symbol is +, the

plus sign is matched by the call match(‘+’). After the call

term(), the C standard library routine putchar(‘+’)

implements the semantic action by printing a plus character.

Since the third production for rest has ε as its right side,

the last else in rest() does nothing.

Associativity- 16

Arithmetic Instructions

The abstract machine must implement each operator in

the intermediate language. A basic operation, such as

addition or subtraction, is supported directly by the

abstract machine. A more complex operation, however,

may need to be implemented as a sequence of abstract

machine instructions. We simplify the description of the

machine by assuming that there is an instruction for

each arithmetic operator.

Associativity- 17

The abstrct machine code for an arithmetic expression

simulates the evaluation of postfix representation for that

expression using a stack. The evaluation proceeds br

processing the postfix representations from left to right,

pushing each operand onto the stack as it is encountered.

When a k-ary operator is encountered, its leftmost

argument is k-1 positions below the top of the stack and

its rightmost srgument is at the top. The evaluation

applies the operator to the top k values on the stack,

pops the operands, and pushes the result onto the atack.

For example, in the evaluation of the postfix expression 1

3 + 5 ＊, the following actions are performed:

Associativity- 18

1. stack 1

2. stack 3

3. Add the two topmost elements, pop them, and stack the
result 4.

4. stack 5.

5. Multiply the two topmost elements, pop them, and stack the
result 20.

The value on top of the stack at the end (here 20) is the
value of the entire expression.

In the intermediate language, all values will be integers,
with 0 corresponding to false and nonzero integers
corresponding to true. The boolean operators and and or
require both their arguments to be evaluated.

Associativity- 19

INSTRUCTIONS STACK DATA

1 push 5 16 0 1

2 rvalue 2 top→ 7 11 2

3 + 7 3

4 rvalue 3 … 4

5 * ←pc

6 …

Fig. 2.31 Snapshot of the stack machine after

the first four instructions are executed.

Associativity- 20

L-values and R-values

There is a distinction between the meaning of identifiers

on the left and right sides of an assignment. In each of the

assignments

i := 5;

i := i + 1;

the right side specifies an integer value, while the left side

specifies where the value is to be stored. Similarly, if p

and q are pointers to characters, and

Associativity- 21

p↑:= q↑;

the right side q↑specifies a character, while p↑specifies

where the character is to be stored. The terms l-value

and r-value refer to values that are appropriate on the left

and right sides of an assignment, repectively. That is, r-

values are what we usually think of as “values,” while l-

values are locations.

Associativity- 22

Stack Manipulation

Besides the obvious instruction for pushing an

integer constant onto the stack and popping a value

from the top of the stack, there are instructions to

access data memory:

push v push v onto the stack

rvalue l push contents of data location l

lvalue l push address of data location l

pop throw away value on top of the stack

:= the r-value on top is placed in the l-value below it

and both are popped

copy tush a copy of the top value on the stack

Associativity- 23

lvalue day push 2

push 1461 +

rvalue y push 5

* div

push 4 +

div rvalue d

push 153 +

rvalue m :=

*

Fig 2.32 Translation of day := (1461 * y) div 4 +

(153 * m + 2) div 5 + d.

Associativity- 24

These remarks can be expressed formally as follows.

Each nonterminal has an attribute t giving its translation.

Attribute lexeme of id gives the string representation of the

identifier.

stmt→ id := expr

{ stmt.t := ‘lvalue’ || id.lexeme || expr.t || ‘:=’ }

Associativity- 25

Control Flow

The stack machine executes instructions in numerical

sequence unless told to do otherwise by a conditional

or unconditional jump statement. Several options exist

for specifying the targets of jumps:

1. The instruction operand gives the target location.

2. The instruction operand specifies the relative distance,

positive or negative, to be jumped.

3. The target is specified symbolically; i.e., the machine

supports lablels.

Associativity- 26

With the first two options there is the additional

possibility of taking the operand from the top of the

stack.

We choose the third option for the abstract machine

because it is easier to generate such jumps. Morever,

symbolic addresses need not be changed if, after we

generate code for the abstract machine, we make

certain improvements in the code that result in the

insertion or deletion of instructions.

Associativity- 27

The control-flow instructions for the stack machine are:

label / target of jumps to / ; has no other effect

goto / next instruction is taken from statement with label /

gofalse / pop the top value; jump if it is zero

gotrue / pop the top value; jump if it is nonzero

halt stop execution

Associativity- 28

Emitting a Translation

The expression translators in Section 2.5 used print
statements to incrementally generate the translation of an
expression. Similar print statements can be used to emit
the translation of statements. Instead of print statements,
we use a procedure emit to hide printing details. For
example, emit can worry about whether each abstract-
machine instruction needs to be on a separate line. Using
the procedure emit, we can write the following instead of
(2.18):

stmt→ if

expr { out := newlabel; emit(‘gofalse’ , out); }

then

stmt1 { emit(‘label’ , out);}

Associativity- 29

When semantic actions appear within a production, we

consider the elements on the right side of the

production in a left-to-right order. For the above

production, the order of actions is as follows: actions

during the parsing of expr are done, out is set to the

label returned by newlabel and the gofalse instruction is

emitted, actions during the parsing of stmt1 are done,

and, finally, the label instruction is emitted. Assuming

the actions during the parsing of expr and stmt1 emit

the code for these nonterminals, the above production

implements the code layout of Fig. 2.33.

Associativity- 30

stmt → if expr then stmt1 { out := newlabel

stmt.t := expr.t ||

‘gofalse’ out || (2.18)

stmt1.t

‘label’ out }

IF WHILE

code for expr label test

gofalse out code for expr

code for stmt1 gofalse out

label out code for stmt1

goto test

label out

Fig. 2.33. Code layout for conditional and while statements.

Associativity- 31

procedure stmt
var test,out: integer; /* for labels */
begin

if lookahead = id then begin
emit(‘lvalue’,tokenval); match(id); match(‘:=’);

expr
end
else if lookahead = ‘if’ then begin

match(‘if’);
expr;
out := newlabel;
emit(‘gofalse’,out);
match(‘then’);
stmt;
emit(‘label’,out)

end
/* code for remaining statements goes here */

else error;
end

Fig. 2.34 Pseudo-code for translating statements.

Associativity- 32

Example 2.10 The lexical analyzer in Section 2.7 contains a

conditional of the form:

If t = blank or t = tab then …

If t is a blank, then clearly it is not necessary to test if t is a tab,

because the first equality implies that the condition is true. The

expression

expr1 or expr2

can therefore be implemented as

if expr1 then true else expr2

Associativity- 33

The reader can verify that the following code implements the or

operator:

code for expr1

copy /* copy value of expr1 */

gotrue out

pop /* pop value of expr1 */

code for expr2

label out

Associativity- 34

Recall that the gotrue and gofalse instructions pop the

value on top of the stack to simplify code generation for

conditional and while statements. By copying the value of

expr1 we ensure that the value on top of the stack is true if

the gotrue instruction leads to a jump.

