
AMBIGUITY

Ambiguity - 2

3.4.1 Ambiguous Grammars

 Parse trees and syntax trees uniquely express the

structure of syntax, as do leftmost and rightmost

derivations, but not derivations in general.

 Unfortunately, it is possible for a grammar to permit a

string to have more than one parse tree.

 Consider, for example, the simple integer arithmetic

grammar we have been using as a standard example

Ambiguity - 3

 exp  exp op exp | (exp) | number

 op  + | - | *

 exp

 and consider the string 34-3*42. This string has two
different parse trees

exp

exp op exp

exp op exp ＊ numb

er

numb

er

numb

er

-

exp

opexp

-number

exp

exp op exp

numbernumber ＊

Ambiguity - 4

corresponding to the two leftmost derivations

exp  exp op exp [exp  exp op exp]

 exp op exp op exp [exp  exp op exp]

 number op exp op exp [exp  number]

 number – exp op exp [op  -]

 number – number op exp [exp  number]

 number – number * exp [op  *]

 number – number * number [exp  number]

Ambiguity - 5

exp  exp op exp [exp  exp op exp]

 number op exp [exp  number]

 number - exp [exp  -]

 number – exp op exp [op  exp op exp]

 number – number op exp [exp  number]

 number – number * exp [op  *]

 number – number * number [exp  number]

AND

Ambiguity - 6

 Example 4.5.

 Let us again consider the arithmetic expression

grammar (4.7), with which we have been dealing. The

sentence id + id * id has the two distinct leftmost

derivations :

E  E + E E  E * E

 id + E  E + E * E

 id + E * E  id + E * E

 id + id * E  id + id * E

 id + id * id  id + id * id

with the two corresponding parse trees shown in fig. 4.3.

Ambiguity - 7

E

+E

id

E

E E

idid

＊

(a)

E

＊ E

id

E

E E

idid

+

(b)

Fig.4.3. Two parse trees for id + id * id

Ambiguity - 8

 This example shows the two things we must do in order
to prove that a grammar generates a language L. We
must show that every sentence generated by the
grammar is in L, and we must show that every string in L
can be generated by the grammar.

 We have already seen a grammar for arithmetic
expression. the following grammar fragment (4.11)
generates conditional statements.

stat  if cond then stat

| if cond then stat else stat

| other-stat

(4.11)

Ambiguity - 9

 Thus the string

if C1 then S1

else if C2 then S2 else S3

would have the parse tree shown in Fig. 4.4.

stat

condif statthen else

C1

stat

C2

S1

S2 S3

condif statthen else stat

Fig. 4.4. Parse tree

Ambiguity - 10

 Grammar (4.11) is ambiguous, however, since the string

if C1 then if C2 then S1 else S2 (4.12)

has the two parse trees shown in Fig. 4.5.

 In all programming languages with conditional statement

of this form, the first parsing is preferred. The general

rule is “ Each else is to be matched with the closest

previous unmatched then ”.

 We could incorporate this disambiguating rule directly

into the grammar if we wish. for example, we could

rewrite grammar (4.11) as the following

Ambiguity - 11

stat

condif then

C1

stat

C2 S1 S2

condif statthen else stat

stat

condif statthen else

C1

stat

C2 S1

S2
condif statthen

Fig.4.5. Two parse trees for ambiguous sentence.

Ambiguity - 12

Unambiguous Grammar

 This grammar generates the same set of strings as
(4.11), but it allows only one parsing for string (4.12),
namely the one stat associates each else with the
previous unmatched then.

stat  matched-stat

| unmatched-stat

matched-stat  if cond then matched-stat else

matched-stat

| other-stat

unmatched-stat  if cond then stat

| if cond then matched-stat else

unmatched-stat

Ambiguity - 13

The Dangling Else Problem

 Consider the grammar from Example 3.4 (page 103) :

statement  if-stmt | other

if-stmt  if (exp) statement

| if (exp) statement else statement

exp  0 | 1

 The grammar is ambiguous as a result of the

optional else. To see this, consider the string

if (0) if (1) other else other

This string has the two parse trees :

(show in next page)

Ambiguity - 14

if-stmt

expif statement

statement

else

(if)exp statement

other

() statement

if-stmt0

1 other

Ambiguity - 15

if-stmt

expif statement

statement

else

(if)exp statement

other

() statement

if-stmt

1

0

other

AND

Ambiguity - 16

 Which one is correct depends on whether we

want to associate the single else-part with the

first or the second if-statement :

 the first parse tree associates the else-part with the

first if-statement

 the second parse tree associates it with the second if-

statement.

 This ambiguity is called the dangling else

problem.

 To see which parse tree is correct, we must

consider the implications for the meaning of the

if-statement. To get a clearer idea of this,

Ambiguity - 17

 consider the following piece of C code

if (x != 0)

if (y == 1/x) ok = TRUE ;

else z = 1/x ;

In this code, whenever x is 0, a division by zero error will
occur if the else-part is associated with the first if-
statement.

Thus, the implication of this code (and indeed the
implication of the indentation of the else-part) is that an
else-part should always be associated with the nearest
if-statement that does not yet have an associated else-
part.

Ambiguity - 18

This disambiguating rule is called the most closely
nested rule for the dangling else problem, and it implies
that the second parse tree above is the correct one.

Note that, if we wanted we could associate the else-part
with the first if-statement by using brackets {…} in C, as
in

if (x != 0)

{ if (y== 1/x) ok = TRUE ; }

else z = 1/x ;

Ambiguity - 19

 A solution to the dangling else ambiguity in
the BNF itself is more difficult than the
previous ambiguities we have seen. A
solution is as follows :

statement  matched-stmt

| unmatched-stmt

matched-stmt  if (exp) matched-stmt else matched-stmt

| other

unmatched-stmt  if (exp) statement

| if (exp) matched-stmt else unmatched-stmt

exp  0 | 1

Ambiguity - 20

 This works by permitting only a matched-stmt to come
before an else in an if-statement, thus forcing all else-
parts to be matched as soon as possible. For instance,
the associated parse tree for our sample string now
becomes

matched-stmt

expif matched-stmt

statement

else

(if)exp statement

other

() matched-stmt

unmatched-stmt

1

0

other

which indeed associates the else-part with the second if-
statement.

Ambiguity - 21

if x /= 0 then

if y = 1/x then ok := true;

else z := 1/x;

end if;

end if;

if x /= 0 then

if y = 1/x then ok := true;

end if;

else z := 1/x;

end if;

if-stmt  if condition then statement-sequence end if

| if condition then statement-sequence

else statement-sequence end if

Ambiguity - 22

Precedence and Associativity
 To handle the precedence of operations in the grammar,

we must group the operators into groups of equal

precedence, and for each precedence we must write a

different rule.

 For example, the precedence of multiplication over

addition and subtraction can be added to our simple

expression grammar as follows :

exp  exp addop exp | term

addop  + | -

term  term mulop term | factor

mulop  *

factor  (exp) | number

Ambiguity - 23

 In this grammar, multiplication is grouped under the term

rule, while addition and subtraction are grouped under

the exp rule.

 Since the base case for an exp is a term, this means that

addition and subtraction will appear “higher”(that is,

closer to the root) in that parse and syntax trees, and

thus receive lower precedence.

 Such a grouping of operator into different precedence

levels is a standard method in syntactic specification

using BNF.

 We call such a grouping a precedence cascade.

Ambiguity - 24

 This last grammar for simple arithmetic expressions still
does not specify the associativity of the operators and is
still ambiguous.

 The reason is that the recursion on both sides of the
operator allows either side to match repetitions of the
operator in a derivation (and, hence, in the parse and
syntax trees).

 The solution is to replace one of the recursions with the
base case, forcing the repetitive matches on the side
with the remaining recursion.

Ambiguity - 25

 Thus, replacing the rule

exp  exp addop exp | term

by

exp  exp addop term | term

makes addition and subtraction left associative,

while writing

exp  term addop exp | term

makes them right associative.

In other words, a left recursive rule makes its operators

associate on the left, while a right recursive rule makes

them associate on the right.

Ambiguity - 26

 To complete the removal of ambiguity in the BNF rules
for our simple arithmetic expressions, we write the rules
to make all the operations left associative :

exp  exp addop term | term

addop  + | -

term  term mulop factor | factor

mulop  *

factor  (exp) | number

Ambiguity - 27

 Now the parse tree for the expression 34-3*42 is

exp addop term

term

factor factor

factorterm mulop

number number

number

-

*

exp

Ambiguity - 28

 The parse tree for the expression 34-3-42 is

factor

factorterm

addop

number

number

-

exp

exp addop term

factor

number

-termexp

Ambiguity - 29

 Note that the precedence cascades cause the parse

trees to become much more complex.

 The syntax trees, however, are not affected.

Ambiguity - 30

 Example 4.6.

Consider the following grammar for arithmetic
expressions involving +, -, *, /, and  (exponentiation)

(4.9)

E  E + E | E – E

| E * E | E / E

| E  E | (E)

| -E | id

 This grammar, like (4.7), is ambiguous. However, we can
disambiguate both these grammars by specifying the
associativity and precedence of the arithmetic operators.

Ambiguity - 31

 Suppose we wish to give the operators the following

precedences in decreasing order :

- (unary minus)



* /

+ -

Ambiguity - 32

 Suppose further we wish  to be right-associative [e.g., a
 b  c is to mean a  (b  c)] and the other binary
operators to be left-associative [e.g., a – b – c is to mean
(a – b) – c].

 These precedences and associativities are the ones
customarily used in mathematics and in many, but not all,
programming languages [e.g., a + - b  c + d * e is
interpreted as precedence of operators are sufficient to
disambiguate both grammars (4.7) parse tree that
groups operands of operators according to these
associativity and precedence rules.

 For example, Fig. 4.3 (b) would not be a valid parse tree
for id + id * id according to these rules because there +
appears to have higher precedence than *.

Ambiguity - 33

 We can also rewrite a grammar to incorporate the
associativity and precedence rules into the grammar
itself.

 To illustrate what is involved, let us transform (4.9) into
an equivalent unambiguous grammar that obeys the
associativity and precedence rules given above.

 We begin by introducing one nonterminal for each
precedence level.

 A subexpression that is essentially indivisible we shall
call an element.

 An element is either a single identifier or a parenthesized
expression.

Ambiguity - 34

 We therefore have the productions

element  (expression) | id

 Next, we introduce the category of primaries, which are

elements with zero or more of the operator of highest

precedence, the unary minus. The rule for primary is :

primary  - primary | element

Ambiguity - 35

 Then we construct factors as sequences of one or more
primaries connected by exponentiation signs. That is :

factor  primary  factor | primary

Note that the choice of the right side primary  factor
rather than factor  primary forces expressions like
a  b  c to group from the right as a  (b  c).

Ambiguity - 36

 Then we introduce terms, which are sequences of one or

more factors connected by the multiplicative operators,

namely * and /, and finally expressions, which are

sequences of one or more terms connected by the

additive operators, + and binary -.

 The productions for term are

term  term * factor

| term / factor

| factor

Ambiguity - 37

 These productions cause terms to be grouped from the
left [e.g., a * b * c means (a * b) * c]. The final,
unambiguous grammar is :

expression  expression + term

| expression – term

| term

term  term * factor

| term / factor

| factor

factor  primary  factor

| primary

primary  - primary

| element

element  (expression)

| id

EXTENDED NOTATIONS :

EBNF AND SYNTAX

DIAGRAMS

Ambiguity - 39

3.5.1 EBNF Notation

 Repetitive and optional constructs are already common

in programming languages, and thus in BNF grammar

rules as well.

 Therefore, it should not be surprising that the BNF

notation is sometimes extended to include special

notations for these two situations.

 These extensions comprise a notation that is called

extended BNF, or EBNF.

Ambiguity - 40

 Consider, first, the case of repetition, such as that of
statement sequences. We have seen that repetition is
expressed by recursion in grammar rules and that either
left or right recursion might be used, indicated by the
generic rules

A  A  |  (left recursive)

and

A   A |  (right recursive)

where  and  are arbitrary strings of terminals and
nonterminals and where in the first rule  does not begin
with A and in the second  does not end with A.

Ambiguity - 41

 It would be possible to use the same notation for
repetition that regular expressions use, namely, the
asterisk * (also called Kleene closure in regular
expressions). Then these two rules would be written as
the nonrecursive rules

A    *

and

A   * 

Ambiguity - 42

 Instead, EBNF opts to use curly brackets {…} to express

repetition (thus making clear the extent of the string to

be repeated), and we write

A   {  }

and

A  {  } 

for the rules.

Ambiguity - 43

 The problem with any repetition notation is that it
obscures how the parse tree is to be constructed, but, as
we have seen, we often do not care. Take for example,
the case of statement sequences (Example 3.9). We
wrote the grammar as follows, in right recursive form :

stmt-sequence  stmt; stmt-sequence | stmt

stmt  s

 This rule has the form A   A | , with A = stmt-
sequence,  = stmt. In EBNF this would appear as

stmt-sequence  { stmt ; } stmt
(right recursive form)

Ambiguity - 44

 We could equally as well have used a left recursive rule

and obtained the EBNF

stmt-sequence  stmt { ; stmt }

(left recursive form)

 In fact, the second form is the one generally used (for

reasons we shall discuss in the next chapter)

Ambiguity - 45

 A more significant problem occurs when the associativity
matters, as it does for binary operations such as
subtraction and division. For example, consider the first
grammar rule in the simple expression grammar of the
previous subsection :

exp  exp addop term | term

 This has the form A  A  | , with A = exp,  = addop
term, and  = term. Thus, we write this rule in EBNF as

exp  term { addop term }

Ambiguity - 46

We must now also assume that this implies left

associativity; although the rule itself does not explicitly

state it. We might assume that a right associative rule

would be implied by writing

exp  { term addop } term

but this is not the case.

Instead, a right recursive rule such as

stmt-sequence  stmt; stmt-sequence | stmt

is viewed as being a stmt followed by an optional

semicolon and stmt-sequence.

Ambiguity - 47

 Optional constructs in EBNF are indicated by

surrounding them with square brackets […].

 This is similar in spirit to the regular expression

convention of putting a question mark after an optional

part, but has the advantage of surrounding the optional

part without requiring parentheses.

Ambiguity - 48

 For example, the grammar rules for if-statement with
optional else-parts (Examples 3.4 and 3.6) would be
written as follows in EBNF :

statement  if-stmt | other

if-stmt  if (exp) statement [else statement]

exp  0 | 1

Ambiguity - 49

 Also, a right recursive rule such as

stmt-sequence  stmt ; stmt-sequence | stmt

is written as

stmt-sequence  stmt [; stmt-sequence]

(contrast this to the use of curly brackets previously to

write this rule in recursive form).

Ambiguity - 50

If we wished to write an arithmetic operation such as

addition in right associative form, we would write

exp  term [addop exp]

instead of using curly brackets.

Ambiguity - 51

Algorithm to Transform Extended BNF

Grammars into Standard Form

for (each production P = A   [X1 … Xn] ) {

Create a new nonterminal, N.

Replace production P with P’ = A   N 

Add the productions : N  X1 … Xn and N  

}

for (each production Q = B   {Y1 … Ym } ) {

Create a new nonterminal, M.

Replace production Q with Q’ = B   M 

Add the productions : M  Y1 … Ym M and M  

}

