=
| M)
=
=
mﬂ

AMBIGUITY

|XSYSU‘

3.4.1 Ambiguous Grammars

= Parse trees and syntax trees uniquely express the
structure of syntax, as do leftmost and rightmost
derivations, but not derivations in general.

= Unfortunately, it is possible for a grammar to permit a
string to have more than one parse tree.

= Consider, for example, the simple integer arithmetic
grammar we have been using as a standard example

Ambiguity - 2

= exp 2expopexp|(exp)|number

= 0p 2+ |[-]*

= eXp

= and consider the string 34-3*42. This string has two

different parse trees

exp op exp e‘xp op /exp\

\ \ e \ \
numb - numb number s number

er er

Ambiguity - 3

B

Al -

SYSU‘
csE

corresponding to the two leftmost derivations

EXp =>exp op exp [exp = exp op exp]
= exp op exp op exp [exp = exp op exp]
= number op exp op exp exp = number]
= number — exp op exp op 2 -]
= number — number op exp exp 2 humber]
= number — number * exp op 2 *]
= number — number * number [exp = humber]

Ambiguity - 4

b ¢ 4 4 U U

AND
exp op exp
number op exp
number - exp
number — exp op exp
number —number op exp
number — number * exp
number —number * number

[exp = exp op exp]
exp = number]
exp 2]

op = exp op exp]
exp = number]
op 27]

exp = number]

Ambiguity - 5

|XS!’SU‘
= Example 4.5.

" = Letus again consider the arithmetic expression
grammar (4.7), with which we have been dealing. The
sentence id + id * id has the two distinct leftmost

derivations :

E = E+E E = E*E
= Id+E = E+E*E
= Id+E*E = Id+E*E
= id+id*E = id+id*E
= id+id*id = id +id *id

with the two corresponding parse trees shown in fig. 4.3.

Ambiguity - 6

E E
E///////I\\\\\\\\\E E | E
id E/ k \E E + E id
id id id id
(a) (b)

Fig.4.3. Two parse trees forid + 1d * id

Ambiguity - 7

= This example shows the two things we must do in order

to prove that a grammar generates a language L. We
must show that every sentence generated by the
grammar is in L, and we must show that every string in L
can be generated by the grammar.

= We have already seen a grammar for arithmetic
expression. the following grammar fragment (4.11)
generates conditional statements.

stat - If cond then stat

| If cond then stat else stat

| other-stat

(4.11)

Ambiguity - 8

|XSYSU‘

= Thus the string
If C,then S;
elseif C, then S, else S,

would have the parse tree shown in Fig. 4.4.

Stat

AN

cond then stat else stat

ANVANRYVANSS

if cond then stat else stat

ANEVA VA

Fig. 4.4. Parse tree Ambiguity - 9

|XSYSU‘

U

= Grammar (4.11) is ambiguous, however, since the string
If C,then if C,then S; else S, (4.12)
has the two parse trees shown in Fig. 4.5.

= In all programming languages with conditional statement
of this form, the first parsing is preferred. The general
rule is “ Each else is to be matched with the closest
previous unmatched then ”.

= We could incorporate this disambiguating rule directly
Into the grammar if we wish. for example, we could
rewrite grammar (4.11) as the following

Ambiguity - 10

Stat

|XSYSU‘

iIf cond then stat

AN S

if cond then stat else stat

Stat A A A

cond then stat else stat

ANy JANNIA

if cond then stat

ZANRRVAN

Fig.4.5. Two parse trees for ambiguous sentengg iy, -

Unambiguous Grammar

stat - matched-stat
| unmatched-stat

matched-stat - If cond then matched-stat else
matched-stat

| other-stat
unmatched-stat - if cond then stat

| If cond then matched-stat else
unmatched-stat

= This grammar generates the same set of strings as
(4.11), but it allows only one parsing for string (4.12),
namely the one stat associates each else with the
previous unmatched then.

Ambiguity - 12

Al -

|XS\'SU‘

CSE
U

The Dangling Else Problem
= Consider the grammar from Example 3.4 (page 103) :

statement -> if-stmt | other
If-stmt - If (exp) statement
| If (exp) statement else statement
exp =2 0|1

= The grammar is ambiguous as a result of the
optional else. To see this, consider the string

If (0) if (1) other else other
This string has the two parse trees :
(show In next page) Ambiguity - 13

|XSYSU‘
statement
If-stmt

statement else Statement

0 If-stmt other

RN

If (exp) statement

1 other

Ambiguity - 14

|XS\'SU‘
=B AND

statement

If-stmt

T

If (exp) statement

If-stmt

//<;;%555%57’\§<iii?\\\\\\\

statement else statement

1 other other

Ambiguity - 15

..-

Which one is correct depends on whether we
want to associate the single else-part with the
first or the second if-statement :

= the first parse tree associates the else-part with the
first if-statement

= the second parse tree associates it with the second if-
statement.

= This ambiguity is called the dangling else
problem.

= [0 see which parse tree is correct, we must
consider the implications for the meaning of the
If-statement. To get a clearer idea of this,

Ambiguity - 16

NSISU . : :
consider the following piece of C code

f(x!=0)
If (y==1/x) ok =TRUE ;
else z=1/x;

= In this code, whenever x is 0, a division by zero error will
occur If the else-part is associated with the first if-
statement.

= Thus, the implication of this code (and indeed the
Implication of the indentation of the else-part) is that an
else-part should always be associated with the nearest
If-statement that does not yet have an associated else-
part.

Ambiguity - 17

= This disambiguating rule is called the most closely
nested rule for the dangling else problem, and it implies
that the second parse tree above is the correct one.

= Note that, if we wanted we could associate the else-part
with the first if-statement by using brackets {...} in C, as
In

if (x1=0)

{if (y==1/x) ok =TRUE ; }
elsez=1/x;

Ambiguity - 18

(@]
Al -

UL =

= A solution to the dangling else ambiguity In
the BNF itself is more difficult than the
previous ambiguities we have seen. A
solution Is as follows :

statement - matched-stmt
| unmatched-stmt
matched-stmt - if (exp) matched-stmt else matched-stmt
| other
unmatched-stmt - if (exp) statement
| If (exp) matched-stmt else unmatched-stmt
exp 2> 0|1

Ambiguity - 19

0.

)
= This works by permitting only a matched-stmt to come
before an else in an if-statement, thus forcing all else-
parts to be matched as soon as possible. For instance,

the associated parse tree for our sample string now
becomes gatement

unmatched-stmt

AT

if (exp) statement

matched-stmt

exp matched-stmt else matched-stmt
1 other other
which indeed associates the else-part with the second if-

Statement.

Ambiguity - 20

3

|XTYSU‘
. if x /= 0 then
If y = 1/x then ok := true,

(wo |

else z := 1/x;
end if;
end If;
If Xx /=0 then
If y = 1/x then ok := true,
end If;
else z := 1/x;
end If;

If-stmt - if condition then statement-sequence end if
| If condition then statement-sequence
else statement-sequence end if

Ambiguity - 21

§

Al -

CSE

10
Precedence and Associativity

= To handle the precedence of operations in the grammatr,
we must group the operators into groups of equal
precedence, and for each precedence we must write a
different rule.

= For example, the precedence of multiplication over
addition and subtraction can be added to our simple
expression grammar as follows :

exp - exp addop exp | term
addop > +|-

term - term mulop term | factor
mulop > *

factor - (exp) | number

Ambiguity - 22

S

",YSU‘

L

(wo |

= In this grammar, multiplication is grouped under the term
rule, while addition and subtraction are grouped under
the exp rule.

= Since the base case for an exp is a term, this means that
addition and subtraction will appear “higher’(that is,
closer to the root) in that parse and syntax trees, and
thus receive lower precedence.

= Such a grouping of operator into different precedence
levels is a standard method in syntactic specification
using BNF.

= We call such a grouping a precedence cascade.

Ambiguity - 23

|XSYSU‘
= This last grammar for simple arithmetic expressions still

does not specify the associativity of the operators and is
still ambiguous.

= The reason is that the recursion on both sides of the
operator allows either side to match repetitions of the
operator in a derivation (and, hence, in the parse and
syntax trees).

= The solution is to replace one of the recursions with the
base case, forcing the repetitive matches on the side
with the remaining recursion.

Ambiguity - 24

|XSYSU‘

= Thus, replacing the rule
exp =2 exp addop exp | term
by
exp =2 exp addop term | term
makes addition and subtraction left associative,

= While writing
exp -> term addop exp | term
makes them right associative.

= In other words, a left recursive rule makes its operators
associate on the left, while a right recursive rule makes
them associate on the right.

Ambiguity - 25

|XSYSU‘

= To complete the removal of ambiguity in the BNF rules
for our simple arithmetic expressions, we write the rules
to make all the operations left associative :

exp
addop
term

mulop
factor

N0 2 2N 2 2

exp addop term | term
+ | -

term mulop factor | factor

*

(exp) | number

Ambiguity - 26

|XSYSU‘

= Now the parse tree for the expression 34-3*42 is

exp
/l\
exp addop term
/\
term - term mulop factor
\ \
factor factor * number
\
number number

Ambiguity - 27

|XSYSU‘

= The parse tree for the expression 34-3-42 is

exp
N T
exp addop term
ex‘jdop\term - factor
te‘rm - fa‘ctor number
factor nu r‘n ber
number

Ambiguity - 28

|XSYSU‘

= Note that the precedence cascades cause the parse
trees to become much more complex.

= The syntax trees, however, are not affected.

Ambiguity - 29

SYSU‘

L
r

©s |

= Example 4.6.

Consider the following grammar for arithmetic
expressions involving +, -, *, /, and T (. exponentiation)

E > E+E|E-E
E*E|E/E
ETE|(E)
-E | id
(4.9)

= This grammar, like (4.7), is ambiguous. However, we can
disambiguate both these grammars by specifying the
associativity and precedence of the arithmetic operators.

Ambiguity - 30

|XSYSU‘

= Suppose we wish to give the operators the following
precedences in decreasing order :

- (unary minus)
0
*

4+ -

Ambiguity - 31

|XSYSU‘

Suppose further we wish T to be right-associative [e.g., a

TbTcistomeana® (b T c)]and the other binary
operators to be left-associative [e.g., a— b — c IS to mean

(a—b)-c].

These precedences and associativities are the ones
customarily used in mathematics and in many, but not all,
programming languages [e.g.,a+-b Tc+d*eis
Interpreted as precedence of operators are sufficient to
disambiguate both grammars (4.7) parse tree that
groups operands of operators according to these
associativity and precedence rules.

For example, Fig. 4.3 (b) would not be a valid parse tree
for id + id * id according to these rules because there +
appears to have higher precedence than *.

Ambiguity - 32

|XSYSU‘

We can also rewrite a grammar to incorporate the
associativity and precedence rules into the grammar
itself.

To illustrate what is involved, let us transform (4.9) into
an equivalent unambiguous grammar that obeys the
associativity and precedence rules given above.

We begin by introducing one nonterminal for each
precedence level.

A subexpression that is essentially indivisible we shall
call an element.

An element is either a single identifier or a parenthesized
expression.

Ambiguity - 33

(@]
wn
Al -
we |2
=

= We therefore have the productions
element - (expression) | id

= Next, we introduce the category of primaries, which are
elements with zero or more of the operator of highest
precedence, the unary minus. The rule for primary is :

primary - - primary | element

Ambiguity - 34

|XSYSU‘

= Then we construct factors as sequences of one or more
primaries connected by exponentiation signs. That is :

factor > primary T factor | primary

= Note that the choice of the right side primary T factor
rather than factor T primary forces expressions like
aTb7Tctogroup fromtherightasaT (b Tc).

Ambiguity - 35

|XSYSU‘

= Then we introduce terms, which are sequences of one or
more factors connected by the multiplicative operators,
namely * and /, and finally expressions, which are
sequences of one or more terms connected by the
additive operators, + and binary -.

= The productions for term are

term - term * factor
| term / factor
| factor

Ambiguity - 36

|XSYSU‘

= These productions cause terms to be grouped from the

left [e.g., a*b*c means (a*b) *c]. The final,

unambiguous grammar is :

expression -

term -

factor -

primary -

element -

expression + term
| expression — term
| term

term * factor

| term / factor

| factor

primary T factor

| primary

- primary

| element

(expression)

| id

Ambiguity - 37

Q

wn
wv [2
=

EXTENDED NOTATIONS :
EBNF AND SYNTAX
DIAGRAMS

|XSYSU‘

- 3.5.1 EBNF Notation

= Repetitive and optional constructs are already common
In programming languages, and thus in BNF grammar
rules as well.

= Therefore, it should not be surprising that the BNF
notation is sometimes extended to include special
notations for these two situations.

= These extensions comprise a notation that is called
extended BNF, or EBNF.

Ambiguity - 39

|XSYSU‘
A

SE| S

= Consider, first, the case of repetition, such as that of
statement sequences. We have seen that repetition is
expressed by recursion in grammar rules and that either
left or right recursion might be used, indicated by the
generic rules

A->Ao|pB (leftrecursive)
and
A-> aoA|B (rightrecursive)

where o and 3 are arbitrary strings of terminals and
nonterminals and where in the first rule f does not begin
with A and in the second 3 does not end with A.

Ambiguity - 40

|XSYSU‘

= |t would be possible to use the same notation for
repetition that regular expressions use, namely, the
asterisk * (also called Kleene closure in regular
expressions). Then these two rules would be written as

the nonrecursive rules

A2>Ba?*
and
A2 a*f

Ambiguity - 41

|XSYSU‘

= Instead, EBNF opts to use curly brackets {...} to express
repetition (thus making clear the extent of the string to

be repeated), and we write
A=2>B{a}

and
A>{a}p

for the rules.

Ambiguity - 42

|XS\'SU‘

= The problem with any repetition notation is that it
obscures how the parse tree is to be constructed, but, as
we have seen, we often do not care. Take for example,
the case of statement sequences (Example 3.9). We
wrote the grammar as follows, in right recursive form :

stmt-sequence - stmt; stmt-sequence | stmt
stmt 2 s

= This rule has the form A 2 o A | B, with A = stmt-
sequence, o = stmt. In EBNF this would appear as

stmt-sequence - { stmt ; } stmt
(right recursive form)

Ambiguity - 43

|XSYSU‘

= We could equally as well have used a left recursive rule
and obtained the EBNF

stmt-sequence - stmt { ; stmt }
(left recursive form)

= In fact, the second form is the one generally used (for
reasons we shall discuss in the next chapter)

Ambiguity - 44

|XSYSU‘

= A more significant problem occurs when the associativity
matters, as it does for binary operations such as
subtraction and division. For example, consider the first
grammar rule in the simple expression grammar of the
previous subsection :

exp -> exp addop term | term

= This has the form A > Aa | B, with A = exp, o = addop
term, and 3 = term. Thus, we write this rule in EBNF as

exp -2 term { addop term }

Ambiguity - 45

|XSYSU‘

= We must now also assume that this implies left
associativity; although the rule itself does not explicitly
state it. We might assume that a right associative rule
would be implied by writing

exp —> {term addop } term
but this is not the case.

» Instead, a right recursive rule such as
stmt-sequence - stmt; stmt-sequence | stmt

IS viewed as being a stmt followed by an optional
semicolon and stmt-seguence.

Ambiguity - 46

|XSYSU‘

= Optional constructs in EBNF are indicated by
surrounding them with square brackets [...].

= This is similar in spirit to the regular expression
convention of putting a question mark after an optional
part, but has the advantage of surrounding the optional
part without requiring parentheses.

Ambiguity - 47

|XSYSU‘
[

Q

wn

=
a

= For example, the grammar rules for if-statement with
optional else-parts (Examples 3.4 and 3.6) would be
written as follows in EBNF :

statement -> if-stmt | other
If-stmt - If (exp) statement [else statement |
exp 2> 0|1

Ambiguity - 48

|XSYSU‘

= Also, a right recursive rule such as
stmt-sequence - stmt ; stmt-sequence | stmt

IS written as
stmt-sequence - stmt [; stmt-sequence |

(contrast this to the use of curly brackets previously to
write this rule in recursive form).

Ambiguity - 49

ﬁ |XSYSU‘
[

Q

wn

=
a

» If we wished to write an arithmetic operation such as
addition in right associative form, we would write

exp => term [addop exp |

Instead of using curly brackets.

Ambiguity - 50

0. Algorlthm to Transform Extended BNF
? Grammars into Standard Form

for (each productionP=A-> a [X; ... X,]B){
Create a new nonterminal, N.
Replace production PwithP'=A-2> a N
Add the productions : N 2> X, ... X, and N 2 A

}

for (each production Q=B 2> y{Y,; ... Y, }9){
Create a new nonterminal, M.
Replace production QwithQ' =B 2> yM 6
Add the productions:M 2> Y, ...Y , Mand M - A

}

Ambiguity - 51

