Compiler

Yacc Parser

TA| Xiang, Long, Ding

The Structure of a Compiler

character stre§m
Lexical Analyzer (scanner)
token stream :

Syntax Analyzer (parser)
abstract-synta:x tree
Semantic Analyzer
annotated absztract-syntax tree
Intermediate Code Generator
intermediate r:epresentation (IR)
optimized inte;rmediate representation
relocatable m%chine code
ependent Code Optimizer
target‘program

Lex & Yacc

Source Program Generated Compiler Compiled
Files Generators Output Files P Program

Lexical
Rules

Lex.yy.c

a.out

Grammar
y.tab.c

Lex & Yacc

Lex

Lexical Yet Another
Analyzer Compiler Compiler
Compare the strings Determine if a
described in the sentence is

standard language. grammatically correct.

Cut the input data
into smaller units:
Tokens

Organize the tokens
logically.

Yacc work

» The purpose of Yacc is to "check if the syntax
valid".

= Yacc will treat the Input as a Sequence of
Tokens

o A sequence of more than one consecutive tokens
form a Grammar.

= Lex is just a routine of Yacc.

o Responsible for sending the token back to Yacc

Yacc grammar

= Suppose we want to design a simple computer parser
grammar, where NUMBER is the token captured by Lex.

expression — NUMBER

expression — expression + NUMBER
expression — expression - NUMBER

= The same LHS can be combined together, and each RHS is
separated by |. In Yacc, this syntax will be represented as:

expression : NUMBER
| expression + NUMBER

| expression - NUMBER

Situations that Yacc cannot handle

= Yacc cannot handle the syntax for Ambiguous.

= Yacc cannot handle syntax that requires referencing
more than one token.

= Please rewrite the syntax, or ensure the precedence
order (%left).

Phrase — cart_animal AND CART
| work_animal AND PLOW

cart_animal — HORSE | GOAT
work_animal — HORSE | 0X

Yacc
program

Yacc Format

Divided into three parts, each separated by %

Definition

Grammars —

User Code

Definition

%
#include <stdio.h>
yylex();
ans = 0;
yyerror(message) A
printf("Invaild format\n");

floatVal;
intVal;

<floatVal> NUMBER
<floatVal> expression term factor group
PLUS MINUS MUL DIV

LP RP

NUMBER NEWLINE

Definition

%1
#include <stdio.h>
yylex();
ans = 0;
vyerror(message) 1

printf("Invaild format\n");
IP
%}

Definition

floatVal;

intVal; %»type usually
} declares

Non-Terminals

<floatVal> NUMBER
<floatVal> expression term
factor group

_US MINUS MUL DIV
D RP
NUMBER NEWLINE %token usually

— U

declares
Terminals

Definition

Although NUMBER 1s a
terminal, we still need to
know its actual value!

<floatVal> NUMBER
<floatVal> expression term
factor group

Purpose of %type

Besides passing the token's "type" to Yacc,

we may need to know its "actual value" (usually non-terminals).

Therefore, we need to define the token's value type here so
that Lex can pass the actual value to Yacc by storing yylval.

Grammars calcy

lines :

| 1ines expression NEWLINE {printf("%lf\n",

/
expression : term { = -}

| expression PLUS term { = -+ s}
| expression MINUS term { .

I
|
—

term : factor { = :}

| term MUL factor { = * - 1
| term DIV factor { - . 1

factor : NUMBER { = $1;}
| group {$$ = $1; }
group : LP expression RP { = $2; }

4

);}

Grammars calcy

expression : term { = $1; }
$$ $1
| expression PLUS term { = + $3; }
$1 $2 $3

1
I
—

| expression MINUS term A{

$1 $2 $3

User Code calc.y

main() A{

yyparse();
return 0;

Modify
Lex program

%4
#include "y.tab.h"
#include <stdio.h>

%}
Digit [0-9]+

7676

Grammars calc|

{Digit} { sscanf(yytext, "%f",
&yylval.floatVal); return NUMBER;}

\+ {return PLUS;}

\ - {return MINUS;}

* {return MUL;}

\V/ {return DIV;}

\ ({return LP;}

\) {return RP;}

\n {return NEWLINE;}

{return yytext[0];}

Using Yacc

How to use Lex File

m First, you must install the flex program to compile
your lex file.

e ‘sudo apt-get install bison™ (using Ubuntu as an example)
s Compile cau.y (generating y.tab.c and y.tab.h)
e 'bison—y —d cau.y’
m Compile cau.lex (generating lex.yy.c)

e flex cau.l’

m Generate the executable file by using gcc
(generating the calc executable)

e gcc lex.yy.c y.tab.c -ly —Ifl -o calc’

m Execution method

e ./calc < testfile’

Compilation process

m The example includes a pre-written makefile for your
reference.

all: clean y.tab.c lex.yy.c
gcc lex.yy.c y.tab.c -ly -1lfl -0 calc

y.tab.c:
bison -y -d cau.y

lex.yy.c:
flex cau.l

clean:
rm -f calc lex.yy.c y.tab.c y.tab.h

= Running "make all" will compile and generate "ce

22

Error Handling testL.java

INPUT OUTPUT
3+9 ** Syntax Error at Line 1 %%
5/2 Line 2: 5 / 2
%3 Line 3: 9 x* 3
3+5 Line 4: 3 + 5
4kk6 ** Syntax Error at Line 5 %%
D+**%k6+%6 ** Syntax Error at Line 6 **

4+3%9-10*8 Line 7: 4 + 3 * 9 - 10 * 8

Result— Test1l test1 java

INPUT OUTPUT
line 1: /* Test file: Perfect test file
line 2: *x Compute sum = 1 + 2 + ... +n
line 3 */
sigma { line 4: class sigma {
line 5: // "final" should have const_expr
_ line 6: final int n = 10 ;
J int n = 10; line 7: int sum , index ;
int sum, 1index; line 8
i line 9: main ()
main() line 10: {
1 . AL line 11: index = 0 ;
gggeé 6.0’ line 12: sum = 0 ;
while (index = o line 13: while (index < n)
{ line 14: A
sum = sum + index; line 15: sum = sum + index ;
index = index + 1; line 16: index = index + 1 ;
} line 17: }
print(sum); line 18: print (sum) ;
L line 19: }

} line 20: }

Result — Test2 test2.java

INPUT OUTPUT
line 1: /* Test file: ... %/
Point line 2: class Point
{ line 3: {
int counter ; line 4: static int counter ;
int x, vy ; line 5: int x , vy ;
line 6: /*Duplicate declare x%/
. . line 7: int x ;
int x ;

. > 'x' 1s a duplicate identifier.
void clear() _ .
line 8: void clear ()

! line 9: {
X =0 ; .
0 line 10: x = ;
- line 11: y = 0 ;
; line 12: }
r line 13: }

Result — Test3

test3.java

INPUT

Point {
int z;
int x y ;

float w;
Test {
int d;

Point p = new Point()

int w,q;

line
line
line
Line
line
line
line
line
line
line
line
Line
line
line
line

OUTPUT

1: /* Test file of ... %/

2: class Point {

3: int z ;

4, char: 12, a syntax error at "y"
4: int x y ;

5: /*Need ',' before yx/

6. float w ;

7: }

8: class Test {

9: int d ;

10: Point p = new Point ()

10, char: 17, statement without semicolon
11: /*Need ';' at EOLx%/

12: intw , q ;

13: }

About
Homework Il

Recommended env

= Install Ubuntu on a virtual machine
e Ubuntu 22

Homework Submission

DUE DATE: x/xx 23:59

The design of Yacc is much more complex than that of
Lex, so please start writing it immediately.

The program demo environment is Ubuntu 22.04.2 LTS.

Please refer to the test files on the course webpage to
verify your program.

Please submit your assignment on time; late submissions
will receive a 30% reduction in grade.

Please compress your assignment into a single
compressed file and upload it to the online university,
naming the file "student id__hwz2.zip".

A demo session will be scheduled after the submission
deadline. Please arrive at the EC5023 Database Syste
Lab on time to find the teaching assistant for the de

lssues

= Your parser should be able to generate
proper error messages, when it encounters
an error.

o For example: the line number where the error
occurred, the position of the character, and an
explanation of the reason for the error.

= When the parser encounters an error, it
should process as much input as possible.

o In other words, the parser should perform
recovery, when it encounters an error.

Scoring method

Three of the six publicly available test data sets
20% of the will bg randomly selected. These three must .
contain the same error message as the question
(the error message can be represented in
different ways).

test data

G Two hidden test data points, randomly
b @i iz combined from publicly available test data

test data points.

59, Note: Explains how to process each Statement.

Readme.pdf
5% (Please refer to the first page of the
assignment instructions for the content).

5% + 59% Oral Q&A *2

~% Bonus

Contact Information

Feel free to ask the teaching assistant
questions.

TERE

clovedragonl2@gmail.com
EC5023 DBSL

	Slide 1
	Slide 2
	Slide 3: Lex & Yacc
	Slide 4: Lex & Yacc
	Slide 5: Yacc work
	Slide 6: Yacc grammar
	Slide 7: Situations that Yacc cannot handle
	Slide 8: Yacc program
	Slide 9: Yacc Format
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Modify Lex program
	Slide 18
	Slide 19
	Slide 20: Using Yacc
	Slide 21: How to use Lex File
	Slide 22: Compilation process
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: About Homework II
	Slide 28: Recommended env
	Slide 29: Homework Submission
	Slide 30: Issues
	Slide 31: Scoring method
	Slide 32: Contact Information

