
111 學年度
編譯器製作

TA| Xiang, Long, Ding

Yacc Parser
Compiler

22

The Structure of a Compiler

33

Lex & Yacc

Lexical
Rules

Grammar
Rules

Lex

Yacc

Lex.yy.c

y.tab.c

c a.out

Source
Files

Program
Generators

Generated
Output Files

Compiler
Compiled
Program

44

Lex & Yacc

Lex Yacc

Lexical
Analyzer

Yet Another
Compiler Compiler

Compare the strings
described in the

standard language.

Determine if a
sentence is

grammatically correct.

Cut the input data
into smaller units:

Tokens

Organize the tokens
logically.

55

Yacc work

◼ The purpose of Yacc is to "check if the syntax is
valid".

◼ Yacc will treat the Input as a Sequence of
Tokens

⚫ A sequence of more than one consecutive tokens will
form a Grammar.

◼ Lex is just a routine of Yacc.

⚫ Responsible for sending the token back to Yacc

Purpose

Operation

66

Yacc grammar

◼ Suppose we want to design a simple computer parser
grammar, where NUMBER is the token captured by Lex.

◼ The same LHS can be combined together, and each RHS is
separated by |. In Yacc, this syntax will be represented as:

expression > NUMBER
expression > expression + NUMBER
expression > expression – NUMBER

expression : NUMBER
 | expression + NUMBER
 | expression – NUMBER

77

Situations that Yacc cannot handle

◼ Yacc cannot handle the syntax for Ambiguous.

◼ Yacc cannot handle syntax that requires referencing
more than one token.

◼ Please rewrite the syntax, or ensure the precedence
order (%left).

Phrase > cart_animal AND CART
 | work_animal AND PLOW

cart_animal > HORSE | GOAT
work_animal > HORSE | OX

8

Yacc
program

99

Yacc Format

Definition

%%

Grammars

%%

User Code

Divided into three parts, each separated by %%.

Definition

%{
#include <stdio.h>
int yylex();
double ans = 0;
void yyerror(const char* message) {
 printf("Invaild format\n");
};
%}

%union {
 float floatVal;
 int intVal;
}
%type <floatVal> NUMBER
%type <floatVal> expression term factor group
%token PLUS MINUS MUL DIV
%token LP RP
%token NUMBER NEWLINE

%%

calc.y

Definition

%{

#include <stdio.h>

int yylex();

double ans = 0;

void yyerror(const char* message) {

 printf("Invaild format\n");

};

%}

calc.y

Definition

%union {
 float floatVal;
 int intVal;
}

%type <floatVal> NUMBER
%type <floatVal> expression term
 factor group

%token PLUS MINUS MUL DIV
%token LP RP
%token NUMBER NEWLINE

%%

calc.y

%type usually
declares

Non-Terminals

%token usually
declares
Terminals

Definition

%type <floatVal> NUMBER
%type <floatVal> expression term
 factor group

calc.y

Although NUMBER is a
terminal, we still need to
know its actual value!

Purpose of %type

Besides passing the token's "type" to Yacc,
we may need to know its "actual value" (usually non-terminals).

Therefore, we need to define the token's value type here so
that Lex can pass the actual value to Yacc by storing yylval.

Grammars
%%

lines :/* empty //
 | lines expression NEWLINE {printf("%lf\n", $2);}
 ;

expression : term { $$ = $1; }
 | expression PLUS term { $$ = $1 + $3; }
 | expression MINUS term { $$ = $1 - $3; }
 ;

term : factor { $$ = $1; }
 | term MUL factor { $$ = $1 * $3; }
 | term DIV factor { $$ = $1 / $3; }
 ;

factor : NUMBER { $$ = $1;}
 | group {$$ = $1; }
 ;

group : LP expression RP { $$ = $2; }
 ;

%%

calc.y

Grammars

expression : term { $$ = $1; }

 | expression PLUS term { $$ = $1 + $3; }

 | expression MINUS term { $$ = $1 - $3; }

 ;

calc.y

$$ $1

$1

$1

$2

$2

$3

$3

User Code

%%

int main() {
 yyparse();
 return 0;

}

calc.y

17

Modify
Lex program

Definition

%{
#include "y.tab.h"
#include <stdio.h>
%}

Digit [0-9]+

%%

calc.l

Grammars

%%

{Digit} { sscanf(yytext, "%f",
 &yylval.floatVal); return NUMBER;}
\+ {return PLUS;}
\- {return MINUS;}
* {return MUL;}
\/ {return DIV;}
\({return LP;}
\) {return RP;}
\n {return NEWLINE;}
. {return yytext[0];}

%%

calc.l

20

Using Yacc

2121

How to use Lex File
◼ First, you must install the flex program to compile

your lex file.

⚫ `sudo apt-get install bison` (using Ubuntu as an example)

◼ Compile cau.y (generating y.tab.c and y.tab.h)

⚫ `bison –y –d cau.y`

◼ Compile cau.lex (generating lex.yy.c)

⚫ `flex cau.l`

◼ Generate the executable file by using gcc

(generating the calc executable)

⚫ `gcc lex.yy.c y.tab.c -ly –lfl -o calc`

◼ Execution method

⚫ `./calc < testfile`

2222

Compilation process
◼ The example includes a pre-written makefile for your

reference.

all: clean y.tab.c lex.yy.c
gcc lex.yy.c y.tab.c -ly –lfl –o calc

y.tab.c:
bison -y -d cau.y

lex.yy.c:
flex cau.l

clean:
rm -f calc lex.yy.c y.tab.c y.tab.h

◼ Running "make all" will compile and generate "calc".

Error Handling

3/+9

5/2

9*3

3+5

4**6

5+//*6+*6

4+3*9-10*8

test1.java

** Syntax Error at Line 1 **

Line 2: 5 / 2

Line 3: 9 * 3

Line 4: 3 + 5

** Syntax Error at Line 5 **

** Syntax Error at Line 6 **

Line 7: 4 + 3 * 9 - 10 * 8

INPUT OUTPUT

Result– Test1

/* Test file: Perfect test file
* Compute sum = 1 + 2 + //. + n
//
class sigma {
 // "final" should have
const_expr
 final int n = 10;
 int sum, index;

 main()
 {
 index = 0;
 sum = 0;
 while (index /= n)
 {
 sum = sum + index;
 index = index + 1;
 }
 print(sum);
 }
}

test1.java

line 1: /* Test file: Perfect test file
line 2: * Compute sum = 1 + 2 + //. + n
line 3: //
line 4: class sigma {
line 5: // "final" should have const_expr
line 6: final int n = 10 ;
line 7: int sum , index ;
line 8:
line 9: main ()
line 10: {
line 11: index = 0 ;
line 12: sum = 0 ;
line 13: while (index /= n)
line 14: {
line 15: sum = sum + index ;
line 16: index = index + 1 ;
line 17: }
line 18: print (sum) ;
line 19: }
line 20: }

INPUT OUTPUT

Result – Test2

/* Test file: //. //
class Point
{
 static int counter ;
 int x, y ;
 /*Duplicate declare x//
 int x ;
 void clear()
 {
 x = 0 ;
 y = 0 ;
 }
}

test2.java

line 1: /* Test file: //. //

line 2: class Point

line 3: {
line 4: static int counter ;

line 5: int x , y ;

line 6: /*Duplicate declare x//

line 7: int x ;

> 'x' is a duplicate identifier.
line 8: void clear ()

line 9: {

line 10: x = 0 ;

line 11: y = 0 ;

line 12: }
line 13: }

INPUT OUTPUT

Result – Test3

/* Test file of //. //
class Point {
 int z;
 int x y ;
 /*Need ',' before y//
 float w;
}
class Test {
 int d;
 Point p = new Point()
 /*Need ';' at EOL//
 int w,q;
}

test3.java

line 1: /* Test file of //. //

line 2: class Point {

line 3: int z ;
Line 4, char: 12, a syntax error at "y"

line 4: int x y ;

line 5: /*Need ',' before y//

line 6: float w ;

line 7: }
line 8: class Test {

line 9: int d ;

line 10: Point p = new Point ()

Line 10, char: 17, statement without semicolon

line 11: /*Need ';' at EOL//
line 12: int w , q ;

line 13: }

INPUT OUTPUT

27

About
Homework II

2828

Recommended env

◼ Install Ubuntu on a virtual machine

⚫ Ubuntu 22

2929

Homework Submission
◼ DUE DATE: x/xx 23:59

◼ The design of Yacc is much more complex than that of
Lex, so please start writing it immediately.

◼ The program demo environment is Ubuntu 22.04.2 LTS.

◼ Please refer to the test files on the course webpage to
verify your program.

◼ Please submit your assignment on time; late submissions
will receive a 30% reduction in grade.

◼ Please compress your assignment into a single
compressed file and upload it to the online university,
naming the file "student id_hw2.zip".

◼ A demo session will be scheduled after the submission
deadline. Please arrive at the EC5023 Database Systems
Lab on time to find the teaching assistant for the demo.

3030

Issues

◼ Your parser should be able to generate

proper error messages, when it encounters
an error.

⚫ For example: the line number where the error
occurred, the position of the character, and an

explanation of the reason for the error.

◼ When the parser encounters an error, it
should process as much input as possible.

⚫ In other words, the parser should perform
recovery, when it encounters an error.

3131

Scoring method

20% of the
test data

Three of the six publicly available test data sets

will be randomly selected. These three must
contain the same error message as the question

(the error message can be represented in

different ways).

10% of the
test data

Two hidden test data points, randomly

combined from publicly available test data
points.

5% Note: Explains how to process each Statement.

5%
Readme.pdf
(Please refer to the first page of the
assignment instructions for the content).

5% + 5% Oral Q&A *2

~% Bonus

3232

Feel free to ask the teaching assistant
questions.

丁襄龍
clovedragon12@gmail.com
EC5023 DBSL

Contact Information

	Slide 1
	Slide 2
	Slide 3: Lex & Yacc
	Slide 4: Lex & Yacc
	Slide 5: Yacc work
	Slide 6: Yacc grammar
	Slide 7: Situations that Yacc cannot handle
	Slide 8: Yacc program
	Slide 9: Yacc Format
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Modify Lex program
	Slide 18
	Slide 19
	Slide 20: Using Yacc
	Slide 21: How to use Lex File
	Slide 22: Compilation process
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: About Homework II
	Slide 28: Recommended env
	Slide 29: Homework Submission
	Slide 30: Issues
	Slide 31: Scoring method
	Slide 32: Contact Information

