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Lex work
Lex treats input as a sequence of characters.

A sequence of consecutive characters forms a 

token.

Lex's purpose is to check the validity of tokens, 

such as invalid variable names (identifiers).

Lex requires predefined rules: 

Regular Expressions which is can be used to 

identify tokens.

Operation

Purpose

Condition
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Lex Input
Taking Java as an 

example

public static void main() {
  int c;
  int a = 5;
  int 5a;      //Invalid identifier

  c = add(a, 10);
  if (c > 10)
    print("c = " + -c);
  else
    print(c);
  print("Hello World");
}
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Lex Format

Definition

%%

Lex Rules

%%

User code

Divided into three parts, 
each separated by %%.



Definition

%{
#include <stdio.h>
unsigned charCount=1, idCount=0, lineCount=1;
%}
operator [\+\-\*\/]
space [ \t]
eol \n

/* You should write your own regular expression. //
reserved_word
symbol
id

%%

demo.l



Rules

%%

{operator} {
  printf("Line: %d, 1st char: %d, \"%s\" is an
     \"operator\".\n", lineCount, charCount, yytext);
  charCount += yyleng;
}
{space} {
  charCount/+;
}
{eol} {
  lineCount/+;
  charCount = 1;
}
{reserved_word} {
  /* You should write your own code //
}

%%

demo.l
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Rules
◼ The priority order of the rules matched 

by the Scanner:

⚫ It will scan the longest token for matching.

⚫ If the matching lengths are the same, 
it will consider the order in which they 
were defined (from top to bottom).



User Code

%%
int main(){
  yylex();
  return 0;
}

demo.l
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Let's take a 
look at the 
Test Cases



Test File

public class Test1 {
  public static int add(int a, int b) {
    return a + b;
  }
}

test1.java



Output

bot@Pc-Nsysu-Lab-Curtis ~/compiler/lab1/LexDemo
$ ./demo < test1.java
Line: 1, 1st char: 1,  "public" is a "ReservedWord".
Line: 1, 1st char: 8,  "class" is a "ReservedWord".
Line: 1, 1st char: 14, "Test1" is an "ID".
Line: 1, 1st char: 20, "{" is a "symbol".
Line: 2, 1st char: 5,  "public" is a "ReservedWord".
Line: 2, 1st char: 12, "static" is a "ReservedWord".
Line: 2, 1st char: 19, "int" is a "ReservedWord".
Line: 2, 1st char: 23, "add" is an "ID".
Line: 2, 1st char: 26, "(" is a "symbol".
Line: 2, 1st char: 27, "int" is a "ReservedWord".
Line: 2, 1st char: 31, "a" is an "ID".
Line: 2, 1st char: 32, "," is a "symbol".
Line: 2, 1st char: 34, "int" is a "ReservedWord".
Line: 2, 1st char: 38, "b" is an "ID".
Line: 2, 1st char: 39, ")" is a "symbol".
Line: 2, 1st char: 41, "{" is a "symbol".
Line: 3, 1st char: 9,  "return" is a "ReservedWord".
Line: 3, 1st char: 16, "a" is an "ID".
Line: 3, 1st char: 18, "+" is an "operator".
Line: 3, 1st char: 20, "b" is an "ID".
Line: 3, 1st char: 21, ";" is a "symbol".
Line: 4, 1st char: 5,  "}" is a "symbol".
Line: 5, 1st char: 1,  "}" is a "symbol".
The symbol table contains:
Test1
add
a
b



Test File & Output

bot@Pc-Nsysu-Lab-Curtis ~/compiler/lab1/LexDemo
$ ./demo < test1.java

Line: 1, 1st char: 1,  "public" is a "ReservedWord".
Line: 1, 1st char: 8,  "class" is a "ReservedWord".
Line: 1, 1st char: 14, "Test1" is an "ID".
Line: 1, 1st char: 20, "{" is a "symbol".

public class Test1 {
  public static int add(int a, int b) {
    return a + b;
  }
}

Test File

Output

test1.java
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Lex special characters
◼ These characters have special meanings in regular 

expressions. If you want to treat them as ordinary 

characters, please add a backslash (\) before them 

(escape character).

⚫ ?  *  +  |  (  )  ^  $  .  [  ]  {  }  "  \

◼ Digit [0-9]

◼ Letter [a-zA-Z]

◼ Operator [\+\-\*]
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Using Lex
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◼ Our goal is to compile `demo.l` into an executable 

scanner.

◼ First, we need to install the `flex` program to compile our lex file.

⚫ sudo apt-get install flex  (using Ubuntu as an example)

◼ The demo.l file is compiled into a C source file by using Flex.

In which C source file is our scanner.

⚫ flex demo.l 

◼ The default C source file name is lex.yy.c. 

Finally, we can use gcc to compile it into an executable file:

⚫ gcc lex.yy.c –o demo -lfl 

◼ The executable file is named demo. Let's assume the file which we 

want to scan is test1.java.

⚫ ./demo < test1.java

How to use Lex File
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Regular
Expression
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Commonly used character symbols

. Any character (excluding line breaks)

\d Any digit

\D Any non-digit

\w Any text, numbers, or underscores

\W Any non-letter, non-number, non-baseline

\s Any blank character (blank, positioned, line break)

\S Any non-whitespace character (whitespace, 
positioning, line break)

\n Newline character

\t Positioning character (Tab)

\r Carriage return character

\0 Null character



1919

Special character symbols
\. . character

\? ? character

\* * character

\+ + character

\| | character

\^ ^ character

\$ $ character

\” “character

\( (character

\) ) character

\[ [character

\] ] character

\{ {character

\} } character

\\ \ character

\/ / character
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Common enum rules
Rule Explain Example

[12abc] A single character of 

1, 2, a, b, c
1, 2, a, b, c

[^12abc] A single character except 

1, 2, a, b, c
3, 4, d, e, f

[0-9A-Z] A character in the range of

0-9 or A-Z
0, 1, A, B, C

[ab]|[0-9] A single character of

a, b, or in the range of 0-9
a, b, 0, 1, 2
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Commonly used frequency symbols 
(added at the end)

symbol Explain

＊ Repeat 0 ~ ∞ times

＋ Repeat 1 ~ ∞ times

？ Repeat 0 ~ 1 times

{n} Repeat n times

{n,} Repeat n ~ ∞ times

{n,m} Repeat n ~ m times
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Regular Expression

◼ If you are not familiar with standard languages, 

there are abundant resources available online, 

such as...
https://www.vixual.net/blog/archives/211

◼ Online Regular Expression Tester

⚫ https://regex101.com

⚫ https://regexr.com
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regexr.com

There are quite a few Regular Expression Rules 
here for your reference.
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regexr.com
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About 
Homework I
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Recommended env

◼ Install Ubuntu on a virtual machine

⚫ Ubuntu 22
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Homework Submission Instructions

◼ DUE DATE: [Date] 23:59

◼ The program demo environment is Ubuntu 22.04.2 LTS, so 
please ensure your code can compile and execute.

◼ Please refer to the test files on the course webpage to verify 
your program.

◼ The teaching assistant will design additional test files, so 
please ensure your Regular Expressions match most cases.

◼ For example, complex variable names, floating-point 
numbers must be negative, etc.

◼ Please submit your assignment on time. A 30% discount will 
be applied for each day late.

◼ Please compress your assignment into a single file and 
upload it to the online university. Name the file "Student 
ID_hw1.zip". Incorrect student ID will result in a -10 grade; 
no student ID will result in a -50 grade.

◼ A demo session will be scheduled after the submission 
deadline. Please arrive at the EC5023 Database Systems Lab 
on time to find the teaching assistant for the demo.
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Feel free to ask the teaching assistant 
questions. 

丁襄龍
clovedragon12@gmail.com
EC5023 DBSL

Contact Information
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