Compiler

Lex Tutorial

TA| Xiang, Long, Ding

Division of Work for the Compiler

Source Program Generated Compiler Compiled
Files Generators Output Files P Program

Lexical lex
Rules

a.out
Grammar
Rules yacc y.tab.c

Lex work

Lex treats input as a sequence of characters.

A sequence of consecutive characters forms a
token.

- Lex's purpose 1s to check the validity of token
Purpose o
such as invalid variable names (1dentifiers).

Lex requires predefined rules:
Regular Expressions which 1s can be used
identify tokens.

Lex Input

int c;
int a = 5;
int 5a;

void main() {

c = add(a, 10);
if (c > 10)
print("c = " + -c);
else
print(c);
print("Hello World");

Lex Format

Divided into three parts,
each separated by %%.

Definition

Lex Rules

User code

Definition

%
#include <stdio.h>
charCount=1, i1dCount=0, lineCount=1;

%}

operator [\+\-*\/]
space [\t]

eol \n

reserved_wonrd
symbol
id

7676

Ru Ies demo.l

7676

{operator} {
printf("Line: %d, 1st char: %d, \"%s\" is an

\"operator\".\n", 1ineCount, charCount, yytext);
charCount += yyleng;

}

ispace} {1
charCount++;

}

{eol} {
lineCount++;
charCount = 1;

}

{reserved_word} {

}

7676

Rules

m The priority order of the rules matched
by the Scanner:

e It will scan the longest token for matching.

o If the matching lengths are the same,
it will consider the order in which they
were defined (from top to bottom).

User Code demol

%76
main(){

yylex(Q);
return 0;

Let's take a
look at the
Test Cases

TESt File testl.java

Testl {
int add(int a, int b) A{
return a + b;

Output

$./demo
Line: 1,
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line:
Line: 5,

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

DNOWWWOW WNPNPNDNNDNDNNNNDNNNNDE R RE

~ ~ ~ ~ ~

Testl
add

a

b

< testl.java

1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st
1st

char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
char:
: char:
The symbol table contains:

1,

8,

14,
20,
5,

12,
19,
23,
26,
27,
31,
32,
34,
38,
39,
41,
9,

16,
18,
20,
21,
51

1,

~/compiler/labl/LexDemo

"public" is a "ReservedWord".
"class" is a "ReservedWord".
"Testl" is an "ID".

"{" is a "symbol".

"public" is a "ReservedWord".
"static" is a "ReservedWord".
"int" is a "ReservedWord".
"add" is an "ID".

"(" is a "symbol".

"int" is a "ReservedWord".
Ilall is an IIIDIl .

"," is a "symbol".

"int" is a "ReservedWord".
Ilbll is an IIIDH .

")" is a "symbol".

"{" is a "symbol".
"return" is a "ReservedWord".
Ilall is an IIIDIl .

"+" is an "operator".
Ilbll is an IIIDIl .

";" is a "symbol".
"}" is a "symbol".
"}" is a "symbol".

Test File & Output testl.java

Testl {
int add(int a, int b) A
return a + b;

$./demo < testl.java

~/compiler/labl/LexDemo

Line: 1, 1st char: 1, "public" is a "ReservedWord".
Line: 1, 1st char: 8, "class" 1s a "ReservedWord".
Line: 1, 1st char: 14, "Testl" is an "ID".

Line: 1, 1st char: 20, "{" is a "symbol".

Lex special characters

m These characters have special meanings in regular
expressions. If you want to treat them as ordinary
characters, please add a backslash (\) before them
(escape character).

AR IOEE I SN

= Digit (0-9]
m Letter [a-zA-Z]
m Operator [\H+\-*]

Using Lex

How to use Lex File

m Our goal 1s to compile "demo.l" into an executable
scanner.

m First, we need to install the "flex” program to compile our lex file.

e sudo apt-get install flex (using Ubuntu as an example)

m The demo.l file is compiled into a C source file by using Flex.
In which C source file 1s our scanner.

e flex demo.l

m The default C source file name is lex.yy.c.
Finally, we can use gcc to compile it into an executable file:

e gcc lex.yy.c —o demo -Ifl

m The executable file 1s named demo. Let's assume the file which we
want to scan is testl.java.

e ./demo < testl.java

Reqgular
Expression

Commonly used character symbo

\d
\D
\w
\W
\s

\S

\n
\t
\r
\0O

Any character (excluding line breaks)

Any digit

Any non-digit

Any text, numbers, or underscores

Any non-letter, non-number, non-baseline

Any blank character (blank, positioned, line break)

Any non-whitespace character (whitespace,
positioning, line break)

Newline character
Positioning character (Tab)
Carriage return character

Null character

Special character symb

\.
\?

\II

. character

N

$

character

character

character

character

character

character

“character

\ (
\)
\[
\]
\{
\}
\\
\/

(character
) character
[character
] character
{character
} character
\ character

/ character

Common enum rules

[12abc] A single character of 1, 2, a, b,
1,2,a,b, c

[712abc] A single character except 3.4, d, e,
1,2,a,b,c

[0-9A-7] A character in the range of 9, 1, A, B,
0-9 or A-Z

[ab]|[0-9] A single character of a, b, 0, 1,

a, b, orin the range of 0-9

Commonly used frequency symbol

(added at the end)

*

|

{n}

{n,}

{n, m}

Repeat O ~ oo times

Repeat 1 ~ oo times

Repeat O ~ 1 times

Repeat n times

Repeat n ~ oo times

Repeat n ~ m times

Reqular Expression

m If you are not familiar with standard languages,
there are abundant resources available online,

such as...
https://www.vixual.net/blog/archives/211

m Online Regular Expression Tester

e https://regex101.com
e https://regexr.com

regexr.com

= regular expressions 1o1

REGULAR EXPRESSION
\/\x (. [\n)*\x\/
TEST STRING

/*-0MG!

BRE~

& —ESERNEREE
*/

~BREERE - FHBRKS~

W @regex101 $ donate sponsor

1 match (143 steps, 0.1ms)

contact bug reports & feedback wiki what's new?

EXPLANATION v
/ N*C[\n)*x*\/ /
\ / matches the character / with index
(or) literally (case sensitive)

* matches the character * with index

MATCH INFORMATION o
Match 1 0-32 /*-OMG! th
BRE-
BE—EGAREREE
5/
QUICK REFERENCE v
Asingle c...
a All Tokens A chara...
% Common Tokens A charact...

A A rhara

regexr.com

Untitled Pattern Save (ctrls) New gskinner GitHub & Sign In

Expression <> JavaScripty = W Flags v

\/\x (. [\n) x\x\/
Text = Tests 1 match (0.1ms)

/% OMG!
BRE~
Br—EEERERE
-

--BEEMTE

Tools Replace List Details Explain

About
Homework |

Recommended env

= Install Ubuntu on a virtual machine
e Ubuntu 22

Homework Submission Instructions

= DUE DATE: [Date] 23:59

» The program demo environment is Ubuntu 22.04.2 LTS, so
please ensure your code can compile and execute.

= Pleaserefer to the test files on the course webpage to verify
your program.

m The teaching assistant will design additional test files, so
please ensure your Regular Expressions match most cases.

= For example, complex variable names, floating-point
numbers must be negative, etc.

» Please submit your assignment on time. A 30% discount will
be applied for each day late.

= Please compress your assignment into a single file and
upload it to the online university. Name the file "Student
ID_hwi.zip". Incorrect student ID will result in a -10 grad
no student ID will result in a -50 grade.

= A demo session will be scheduled after the submission
deadline. Please arrive at the EC5023 Database System
on time to find the teaching assistant for the demo.

Contact Information

Feel free to ask the teaching assistant
questions.

TERE

clovedragonl2@gmail.com
EC5023 DBSL

	Slide 1
	Slide 2: Division of Work for the Compiler
	Slide 3: Lex work
	Slide 4: Lex Input
	Slide 5: Lex Format
	Slide 6
	Slide 7
	Slide 8: Rules
	Slide 9
	Slide 10: Let's take a look at the Test Cases
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Lex special characters
	Slide 15: Using Lex
	Slide 16: How to use Lex File
	Slide 17: Regular Expression
	Slide 18: Commonly used character symbols
	Slide 19: Special character symbols
	Slide 20: Common enum rules
	Slide 21: Commonly used frequency symbols (added at the end)
	Slide 22: Regular Expression
	Slide 23
	Slide 24
	Slide 25: About Homework I
	Slide 26: Recommended env
	Slide 27: Homework Submission Instructions
	Slide 28: Contact Information
	Slide 29

