
111 學年度
編譯器製作

TA| Xiang, Long, Ding

Lex Tutorial
Compiler

22

Division of Work for the Compiler

Lexical
Rules

Grammar
Rules

lex

yacc

Lex.yy.c

y.tab.c

c a.out

Source
Files

Program
Generators

Generated
Output Files

Compiler
Compiled
Program

33

Lex work
Lex treats input as a sequence of characters.

A sequence of consecutive characters forms a

token.

Lex's purpose is to check the validity of tokens,

such as invalid variable names (identifiers).

Lex requires predefined rules:

Regular Expressions which is can be used to

identify tokens.

Operation

Purpose

Condition

44

Lex Input
Taking Java as an

example

public static void main() {
 int c;
 int a = 5;
 int 5a; //Invalid identifier

 c = add(a, 10);
 if (c > 10)
 print("c = " + -c);
 else
 print(c);
 print("Hello World");
}

55

Lex Format

Definition

%%

Lex Rules

%%

User code

Divided into three parts,
each separated by %%.

Definition

%{
#include <stdio.h>
unsigned charCount=1, idCount=0, lineCount=1;
%}
operator [\+\-*\/]
space [\t]
eol \n

/* You should write your own regular expression. //
reserved_word
symbol
id

%%

demo.l

Rules

%%

{operator} {
 printf("Line: %d, 1st char: %d, \"%s\" is an
 \"operator\".\n", lineCount, charCount, yytext);
 charCount += yyleng;
}
{space} {
 charCount/+;
}
{eol} {
 lineCount/+;
 charCount = 1;
}
{reserved_word} {
 /* You should write your own code //
}

%%

demo.l

88

Rules
◼ The priority order of the rules matched

by the Scanner:

⚫ It will scan the longest token for matching.

⚫ If the matching lengths are the same,
it will consider the order in which they
were defined (from top to bottom).

User Code

%%
int main(){
 yylex();
 return 0;
}

demo.l

10

Let's take a
look at the
Test Cases

Test File

public class Test1 {
 public static int add(int a, int b) {
 return a + b;
 }
}

test1.java

Output

bot@Pc-Nsysu-Lab-Curtis ~/compiler/lab1/LexDemo
$./demo < test1.java
Line: 1, 1st char: 1, "public" is a "ReservedWord".
Line: 1, 1st char: 8, "class" is a "ReservedWord".
Line: 1, 1st char: 14, "Test1" is an "ID".
Line: 1, 1st char: 20, "{" is a "symbol".
Line: 2, 1st char: 5, "public" is a "ReservedWord".
Line: 2, 1st char: 12, "static" is a "ReservedWord".
Line: 2, 1st char: 19, "int" is a "ReservedWord".
Line: 2, 1st char: 23, "add" is an "ID".
Line: 2, 1st char: 26, "(" is a "symbol".
Line: 2, 1st char: 27, "int" is a "ReservedWord".
Line: 2, 1st char: 31, "a" is an "ID".
Line: 2, 1st char: 32, "," is a "symbol".
Line: 2, 1st char: 34, "int" is a "ReservedWord".
Line: 2, 1st char: 38, "b" is an "ID".
Line: 2, 1st char: 39, ")" is a "symbol".
Line: 2, 1st char: 41, "{" is a "symbol".
Line: 3, 1st char: 9, "return" is a "ReservedWord".
Line: 3, 1st char: 16, "a" is an "ID".
Line: 3, 1st char: 18, "+" is an "operator".
Line: 3, 1st char: 20, "b" is an "ID".
Line: 3, 1st char: 21, ";" is a "symbol".
Line: 4, 1st char: 5, "}" is a "symbol".
Line: 5, 1st char: 1, "}" is a "symbol".
The symbol table contains:
Test1
add
a
b

Test File & Output

bot@Pc-Nsysu-Lab-Curtis ~/compiler/lab1/LexDemo
$./demo < test1.java

Line: 1, 1st char: 1, "public" is a "ReservedWord".
Line: 1, 1st char: 8, "class" is a "ReservedWord".
Line: 1, 1st char: 14, "Test1" is an "ID".
Line: 1, 1st char: 20, "{" is a "symbol".

public class Test1 {
 public static int add(int a, int b) {
 return a + b;
 }
}

Test File

Output

test1.java

1414

Lex special characters
◼ These characters have special meanings in regular

expressions. If you want to treat them as ordinary

characters, please add a backslash (\) before them

(escape character).

⚫ ? * + | () ^ $. [] { } " \

◼ Digit [0-9]

◼ Letter [a-zA-Z]

◼ Operator [\+\-*]

15

Using Lex

1616

◼ Our goal is to compile `demo.l` into an executable

scanner.

◼ First, we need to install the `flex` program to compile our lex file.

⚫ sudo apt-get install flex (using Ubuntu as an example)

◼ The demo.l file is compiled into a C source file by using Flex.

In which C source file is our scanner.

⚫ flex demo.l

◼ The default C source file name is lex.yy.c.

Finally, we can use gcc to compile it into an executable file:

⚫ gcc lex.yy.c –o demo -lfl

◼ The executable file is named demo. Let's assume the file which we

want to scan is test1.java.

⚫ ./demo < test1.java

How to use Lex File

17

Regular
Expression

1818

Commonly used character symbols

. Any character (excluding line breaks)

\d Any digit

\D Any non-digit

\w Any text, numbers, or underscores

\W Any non-letter, non-number, non-baseline

\s Any blank character (blank, positioned, line break)

\S Any non-whitespace character (whitespace,
positioning, line break)

\n Newline character

\t Positioning character (Tab)

\r Carriage return character

\0 Null character

1919

Special character symbols
\. . character

\? ? character

* * character

\+ + character

\| | character

\^ ^ character

\$ $ character

\” “character

\((character

\)) character

\[[character

\]] character

\{ {character

\} } character

\\ \ character

\/ / character

2020

Common enum rules
Rule Explain Example

[12abc] A single character of

1, 2, a, b, c
1, 2, a, b, c

[^12abc] A single character except

1, 2, a, b, c
3, 4, d, e, f

[0-9A-Z] A character in the range of

0-9 or A-Z
0, 1, A, B, C

[ab]|[0-9] A single character of

a, b, or in the range of 0-9
a, b, 0, 1, 2

2121

Commonly used frequency symbols
(added at the end)

symbol Explain

＊ Repeat 0 ~ ∞ times

＋ Repeat 1 ~ ∞ times

？ Repeat 0 ~ 1 times

{n} Repeat n times

{n,} Repeat n ~ ∞ times

{n,m} Repeat n ~ m times

2222

Regular Expression

◼ If you are not familiar with standard languages,

there are abundant resources available online,

such as...
https://www.vixual.net/blog/archives/211

◼ Online Regular Expression Tester

⚫ https://regex101.com

⚫ https://regexr.com

2323

regexr.com

There are quite a few Regular Expression Rules
here for your reference.

2424

regexr.com

25

About
Homework I

2626

Recommended env

◼ Install Ubuntu on a virtual machine

⚫ Ubuntu 22

2727

Homework Submission Instructions

◼ DUE DATE: [Date] 23:59

◼ The program demo environment is Ubuntu 22.04.2 LTS, so
please ensure your code can compile and execute.

◼ Please refer to the test files on the course webpage to verify
your program.

◼ The teaching assistant will design additional test files, so
please ensure your Regular Expressions match most cases.

◼ For example, complex variable names, floating-point
numbers must be negative, etc.

◼ Please submit your assignment on time. A 30% discount will
be applied for each day late.

◼ Please compress your assignment into a single file and
upload it to the online university. Name the file "Student
ID_hw1.zip". Incorrect student ID will result in a -10 grade;
no student ID will result in a -50 grade.

◼ A demo session will be scheduled after the submission
deadline. Please arrive at the EC5023 Database Systems Lab
on time to find the teaching assistant for the demo.

2828

Feel free to ask the teaching assistant
questions.

丁襄龍
clovedragon12@gmail.com
EC5023 DBSL

Contact Information

111 學年度
編譯器製作

	Slide 1
	Slide 2: Division of Work for the Compiler
	Slide 3: Lex work
	Slide 4: Lex Input
	Slide 5: Lex Format
	Slide 6
	Slide 7
	Slide 8: Rules
	Slide 9
	Slide 10: Let's take a look at the Test Cases
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Lex special characters
	Slide 15: Using Lex
	Slide 16: How to use Lex File
	Slide 17: Regular Expression
	Slide 18: Commonly used character symbols
	Slide 19: Special character symbols
	Slide 20: Common enum rules
	Slide 21: Commonly used frequency symbols (added at the end)
	Slide 22: Regular Expression
	Slide 23
	Slide 24
	Slide 25: About Homework I
	Slide 26: Recommended env
	Slide 27: Homework Submission Instructions
	Slide 28: Contact Information
	Slide 29

