
Flex, version 2.5 A fast scanner generatorEdition 2.5, March 1995

Vern Paxson

Copyright c
 1990 The Regents of the University of California. All rights reserved.This code is derived from software contributed to Berkeley by Vern Paxson.The United States Government has rights in this work pursuant to contract no. DE-AC03-76SF00098 between the United States Department of Energy and the University of California.Redistribution and use in source and binary forms are permitted provided that: (1) source distri-butions retain this entire copyright notice and comment, and (2) distributions including binariesdisplay the following acknowledgement: \This product includes software developed by the Univer-sity of California, Berkeley and its contributors" in the documentation or other materials providedwith the distribution and in all advertising materials mentioning features or use of this software.Neither the name of the University nor the names of its contributors may be used to endorse orpromote products derived from this software without speci�c prior written permission.THIS SOFTWARE IS PROVIDED \AS IS" AND WITHOUT ANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

10.1 Name
ex - fast lexical analyzer generator0.2 Synopsisflex [-bcdfhilnpstvwBFILTV78+? -C[aefFmr] -ooutput -Pprefix -Sskeleton][--help --version] [�lename : : :]0.3 OverviewThis manual describes flex, a tool for generating programs that perform pattern-matching ontext. The manual includes both tutorial and reference sections:Description a brief overview of the toolSome Simple ExamplesFormat Of The Input FilePatterns the extended regular expressions used by
exHow The Input Is Matchedthe rules for determining what has been matchedActions how to specify what to do when a pattern is matchedThe Generated Scannerdetails regarding the scanner that
ex produces; how to control the input sourceStart Conditionsintroducing context into your scanners, and managing "mini-scanners"Multiple Input Bu�ershow to manipulate multiple input sources; how to scan from strings instead of �lesEnd-of-�le Rulesspecial rules for matching the end of the inputMiscellaneous Macrosa summary of macros available to the actionsValues Available To The Usera summary of values available to the actionsInterfacing With Yaccconnecting
ex scanners together with yacc parsersOptions
ex command-line options, and the "%option" directivePerformance Considerationshow to make your scanner go as fast as possibleGenerating C++ Scannersthe (experimental) facility for generating C++ scanner classes

2Incompatibilities With Lex And POSIXhow
ex di�ers from AT&T lex and the POSIX lex standardDiagnostics those error messages produced by
ex (or scanners it generates) whose meanings mightnot be apparentFiles �les used by
exDe�ciencies / Bugsknown problems with
exSee Also other documentation, related toolsAuthor includes contact information0.4 Descriptionflex is a tool for generating scanners: programs which recognized lexical patterns in text. flexreads the given input �les, or its standard input if no �le names are given, for a description of ascanner to generate. The description is in the form of pairs of regular expressions and C code, calledrules. flex generates as output a C source �le, `lex.yy.c', which de�nes a routine `yylex()'. This�le is compiled and linked with the `-lfl' library to produce an executable. When the executableis run, it analyzes its input for occurrences of the regular expressions. Whenever it �nds one, itexecutes the corresponding C code.0.5 Some simple examplesFirst some simple examples to get the
avor of how one uses flex. The following flex inputspeci�es a scanner which whenever it encounters the string "username" will replace it with theuser's login name:%%username printf("%s", getlogin());By default, any text not matched by a flex scanner is copied to the output, so the net e�ect ofthis scanner is to copy its input �le to its output with each occurrence of "username" expanded.In this input, there is just one rule. "username" is the pattern and the "printf" is the action. The"%%" marks the beginning of the rules.Here's another simple example:int num_lines = 0, num_chars = 0;%%\n ++num_lines; ++num_chars;. ++num_chars;%%main() {yylex();

3printf("# of lines = %d, # of chars = %d\n",num_lines, num_chars);}This scanner counts the number of characters and the number of lines in its input (it produces nooutput other than the �nal report on the counts). The �rst line declares two globals, "num lines"and "num chars", which are accessible both inside `yylex()' and in the `main()' routine declaredafter the second "%%". There are two rules, one which matches a newline ("\n") and incrementsboth the line count and the character count, and one which matches any character other than anewline (indicated by the "." regular expression).A somewhat more complicated example:/* scanner for a toy Pascal-like language */%{/* need this for the call to atof() below */#include <math.h>%}DIGIT [0-9]ID [a-z][a-z0-9]*%%{DIGIT}+ {printf("An integer: %s (%d)\n", yytext,atoi(yytext));}{DIGIT}+"."{DIGIT}* {printf("A float: %s (%g)\n", yytext,atof(yytext));}if|then|begin|end|procedure|function {printf("A keyword: %s\n", yytext);}{ID} printf("An identifier: %s\n", yytext);"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);"{"[^}\n]*"}" /* eat up one-line comments */[\t\n]+ /* eat up whitespace */. printf("Unrecognized character: %s\n", yytext);%%

4main(argc, argv)int argc;char **argv;{++argv, --argc; /* skip over program name */if (argc > 0)yyin = fopen(argv[0], "r");else yyin = stdin;yylex();}This is the beginnings of a simple scanner for a language like Pascal. It identi�es di�erent typesof tokens and reports on what it has seen.The details of this example will be explained in the following sections.0.6 Format of the input �leThe flex input �le consists of three sections, separated by a line with just `%%' in it:definitions%%rules%%user codeThe de�nitions section contains declarations of simple name de�nitions to simplify the scannerspeci�cation, and declarations of start conditions, which are explained in a later section. Namede�nitions have the form:name definitionThe "name" is a word beginning with a letter or an underscore (' ') followed by zero or moreletters, digits, ' ', or '-' (dash). The de�nition is taken to begin at the �rst non-white-space characterfollowing the name and continuing to the end of the line. The de�nition can subsequently be referredto using "{name}", which will expand to "(de�nition)". For example,DIGIT [0-9]ID [a-z][a-z0-9]*de�nes "DIGIT" to be a regular expression which matches a single digit, and "ID" to be a regularexpression which matches a letter followed by zero-or-more letters-or-digits. A subsequent referenceto {DIGIT}+"."{DIGIT}*is identical to([0-9])+"."([0-9])*and matches one-or-more digits followed by a '.' followed by zero-or-more digits.The rules section of the flex input contains a series of rules of the form:

5pattern actionwhere the pattern must be unindented and the action must begin on the same line.See below for a further description of patterns and actions.Finally, the user code section is simply copied to `lex.yy.c' verbatim. It is used for companionroutines which call or are called by the scanner. The presence of this section is optional; if it ismissing, the second `%%' in the input �le may be skipped, too.In the de�nitions and rules sections, any indented text or text enclosed in `%{' and `%}' is copiedverbatim to the output (with the `%{}''s removed). The `%{}''s must appear unindented on linesby themselves.In the rules section, any indented or %{} text appearing before the �rst rule may be used todeclare variables which are local to the scanning routine and (after the declarations) code whichis to be executed whenever the scanning routine is entered. Other indented or %{} text in therule section is still copied to the output, but its meaning is not well-de�ned and it may well causecompile-time errors (this feature is present for POSIX compliance; see below for other such features).In the de�nitions section (but not in the rules section), an unindented comment (i.e., a linebeginning with "/*") is also copied verbatim to the output up to the next "*/".0.7 PatternsThe patterns in the input are written using an extended set of regular expressions. These are:`x' match the character `x'`.' any character (byte) except newline`[xyz]' a "character class"; in this case, the pattern matches either an `x', a `y', or a `z'`[abj-oZ]' a "character class" with a range in it; matches an `a', a `b', any letter from `j' through`o', or a `Z'`[^A-Z]' a "negated character class", i.e., any character but those in the class. In this case, anycharacter EXCEPT an uppercase letter.`[^A-Z\n]' any character EXCEPT an uppercase letter or a newline`r*' zero or more r's, where r is any regular expression`r+' one or more r's`r?' zero or one r's (that is, "an optional r")`r{2,5}' anywhere from two to �ve r's`r{2,}' two or more r's`r{4}' exactly 4 r's`{name}' the expansion of the "name" de�nition (see above)`"[xyz]\"foo"'the literal string: `[xyz]"foo'

6`\x' if x is an `a', `b', `f', `n', `r', `t', or `v', then the ANSI-C interpretation of \x. Otherwise,a literal `x' (used to escape operators such as `*')`\0' a NUL character (ASCII code 0)`\123' the character with octal value 123`\x2a' the character with hexadecimal value 2a`(r)' match an r; parentheses are used to override precedence (see below)`rs' the regular expression r followed by the regular expression s; called "concatenation"`r|s' either an r or an s`r/s' an r but only if it is followed by an s. The text matched by s is included whendetermining whether this rule is the longest match, but is then returned to the inputbefore the action is executed. So the action only sees the text matched by r. This typeof pattern is called trailing context. (There are some combinations of `r/s' that flexcannot match correctly; see notes in the De�ciencies / Bugs section below regarding"dangerous trailing context".)`^r' an r, but only at the beginning of a line (i.e., which just starting to scan, or right aftera newline has been scanned).`r$' an r, but only at the end of a line (i.e., just before a newline). Equivalent to "r/\n".Note that
ex's notion of "newline" is exactly whatever the C compiler used to compile
ex interprets '\n' as; in particular, on some DOS systems you must either �lter out\r's in the input yourself, or explicitly use r/\r\n for "r$".`<s>r' an r, but only in start condition s (see below for discussion of start conditions)<s1,s2,s3>r same, but in any of start conditions s1, s2, or s3`<*>r' an r in any start condition, even an exclusive one.`<<EOF>>' an end-of-�le <s1,s2><<EOF>> an end-of-�le when in start condition s1 or s2Note that inside of a character class, all regular expression operators lose their special meaningexcept escape ('\') and the character class operators, '-', ']', and, at the beginning of the class, '^'.The regular expressions listed above are grouped according to precedence, from highest prece-dence at the top to lowest at the bottom. Those grouped together have equal precedence. Forexample,foo|bar*is the same as(foo)|(ba(r*))since the '*' operator has higher precedence than concatenation, and concatenation higher thanalternation ('|'). This pattern therefore matches either the string "foo" or the string "ba" followedby zero-or-more r's. To match "foo" or zero-or-more "bar"'s, use:foo|(bar)*and to match zero-or-more "foo"'s-or-"bar"'s:

7(foo|bar)*In addition to characters and ranges of characters, character classes can also contain characterclass expressions. These are expressions enclosed inside `[': and `:'] delimiters (which themselvesmust appear between the '[' and ']' of the character class; other elements may occur inside thecharacter class, too). The valid expressions are:[:alnum:] [:alpha:] [:blank:][:cntrl:] [:digit:] [:graph:][:lower:] [:print:] [:punct:][:space:] [:upper:] [:xdigit:]These expressions all designate a set of characters equivalent to the corresponding standardC `isXXX' function. For example, `[:alnum:]' designates those characters for which `isalnum()'returns true - i.e., any alphabetic or numeric. Some systems don't provide `isblank()', so
exde�nes `[:blank:]' as a blank or a tab.For example, the following character classes are all equivalent:[[:alnum:]][[:alpha:][:digit:][[:alpha:]0-9][a-zA-Z0-9]If your scanner is case-insensitive (the `-i'
ag), then `[:upper:]' and `[:lower:]' are equiva-lent to `[:alpha:]'.Some notes on patterns:- A negated character class such as the example "[^A-Z]" above will match a newline unless "\n"(or an equivalent escape sequence) is one of the characters explicitly present in the negatedcharacter class (e.g., "[^A-Z\n]"). This is unlike how many other regular expression toolstreat negated character classes, but unfortunately the inconsistency is historically entrenched.Matching newlines means that a pattern like [^"]* can match the entire input unless there'sanother quote in the input.- A rule can have at most one instance of trailing context (the '/' operator or the '$' operator).The start condition, '^', and "<<EOF>>" patterns can only occur at the beginning of a pattern,and, as well as with '/' and '$', cannot be grouped inside parentheses. A '^' which does notoccur at the beginning of a rule or a '$' which does not occur at the end of a rule loses itsspecial properties and is treated as a normal character.The following are illegal:foo/bar$<sc1>foo<sc2>barNote that the �rst of these, can be written "foo/bar\n".The following will result in '$' or '^' being treated as a normal character:foo|(bar$)foo|^barIf what's wanted is a "foo" or a bar-followed-by-a-newline, the following could be used (thespecial '|' action is explained below):foo |bar$ /* action goes here */A similar trick will work for matching a foo or a bar-at-the-beginning-of-a-line.

80.8 How the input is matchedWhen the generated scanner is run, it analyzes its input looking for strings which match any ofits patterns. If it �nds more than one match, it takes the one matching the most text (for trailingcontext rules, this includes the length of the trailing part, even though it will then be returned tothe input). If it �nds two or more matches of the same length, the rule listed �rst in the flex input�le is chosen.Once the match is determined, the text corresponding to the match (called the token) is madeavailable in the global character pointer yytext, and its length in the global integer yyleng. Theaction corresponding to the matched pattern is then executed (a more detailed description of actionsfollows), and then the remaining input is scanned for another match.If no match is found, then the default rule is executed: the next character in the input isconsidered matched and copied to the standard output. Thus, the simplest legal flex input is:%%which generates a scanner that simply copies its input (one character at a time) to its output.Note that yytext can be de�ned in two di�erent ways: either as a character pointer or asa character array. You can control which de�nition flex uses by including one of the specialdirectives `%pointer' or `%array' in the �rst (de�nitions) section of your
ex input. The default is`%pointer', unless you use the `-l' lex compatibility option, in which case yytext will be an array.The advantage of using `%pointer' is substantially faster scanning and no bu�er over
ow whenmatching very large tokens (unless you run out of dynamic memory). The disadvantage is thatyou are restricted in how your actions can modify yytext (see the next section), and calls to the`unput()' function destroys the present contents of yytext, which can be a considerable portingheadache when moving between di�erent lex versions.The advantage of `%array' is that you can then modify yytext to your heart's content, and callsto `unput()' do not destroy yytext (see below). Furthermore, existing lex programs sometimesaccess yytext externally using declarations of the form:extern char yytext[];This de�nition is erroneous when used with `%pointer', but correct for `%array'.`%array' de�nes yytext to be an array of YYLMAX characters, which defaults to a fairly largevalue. You can change the size by simply #de�ne'ing YYLMAX to a di�erent value in the �rstsection of your flex input. As mentioned above, with `%pointer' yytext grows dynamically toaccommodate large tokens. While this means your `%pointer' scanner can accommodate very largetokens (such as matching entire blocks of comments), bear in mind that each time the scanner mustresize yytext it also must rescan the entire token from the beginning, so matching such tokens canprove slow. yytext presently does not dynamically grow if a call to `unput()' results in too muchtext being pushed back; instead, a run-time error results.Also note that you cannot use `%array' with C++ scanner classes (the c++ option; see below).0.9 ActionsEach pattern in a rule has a corresponding action, which can be any arbitrary C statement. Thepattern ends at the �rst non-escaped whitespace character; the remainder of the line is its action.If the action is empty, then when the pattern is matched the input token is simply discarded. Forexample, here is the speci�cation for a program which deletes all occurrences of "zap me" from itsinput:

9%%"zap me"(It will copy all other characters in the input to the output since they will be matched by thedefault rule.)Here is a program which compresses multiple blanks and tabs down to a single blank, and throwsaway whitespace found at the end of a line:%%[\t]+ putchar(' ');[\t]+$ /* ignore this token */If the action contains a '{', then the action spans till the balancing '}' is found, and the actionmay cross multiple lines. flex knows about C strings and comments and won't be fooled by bracesfound within them, but also allows actions to begin with `%{' and will consider the action to be allthe text up to the next `%}' (regardless of ordinary braces inside the action).An action consisting solely of a vertical bar ('|') means "same as the action for the next rule."See below for an illustration.Actions can include arbitrary C code, including return statements to return a value to whateverroutine called `yylex()'. Each time `yylex()' is called it continues processing tokens from whereit last left o� until it either reaches the end of the �le or executes a return.Actions are free to modify yytext except for lengthening it (adding characters to its end{thesewill overwrite later characters in the input stream). This however does not apply when using`%array' (see above); in that case, yytext may be freely modi�ed in any way.Actions are free to modify yyleng except they should not do so if the action also includes useof `yymore()' (see below).There are a number of special directives which can be included within an action:- `ECHO' copies yytext to the scanner's output.- BEGIN followed by the name of a start condition places the scanner in the corresponding startcondition (see below).- REJECT directs the scanner to proceed on to the "second best" rule which matched the input(or a pre�x of the input). The rule is chosen as described above in "How the Input is Matched",and yytext and yyleng set up appropriately. It may either be one which matched as muchtext as the originally chosen rule but came later in the flex input �le, or one which matchedless text. For example, the following will both count the words in the input and call the routinespecial() whenever "frob" is seen:int word_count = 0;%%frob special(); REJECT;[^ \t\n]+ ++word_count;Without the REJECT, any "frob"'s in the input would not be counted as words, since thescanner normally executes only one action per token. Multiple REJECT's are allowed, eachone �nding the next best choice to the currently active rule. For example, when the followingscanner scans the token "abcd", it will write "abcdabcaba" to the output:%%a |

10ab |abc |abcd ECHO; REJECT;.|\n /* eat up any unmatched character */(The �rst three rules share the fourth's action since they use the special '|' action.) REJECTis a particularly expensive feature in terms of scanner performance; if it is used in any of thescanner's actions it will slow down all of the scanner's matching. Furthermore, REJECT cannotbe used with the `-Cf' or `-CF' options (see below).Note also that unlike the other special actions, REJECT is a branch; code immediately followingit in the action will not be executed.- `yymore()' tells the scanner that the next time it matches a rule, the corresponding tokenshould be appended onto the current value of yytext rather than replacing it. For example,given the input "mega-kludge" the following will write "mega-mega-kludge" to the output:%%mega- ECHO; yymore();kludge ECHO;First "mega-" is matched and echoed to the output. Then "kludge" is matched, but theprevious "mega-" is still hanging around at the beginning of yytext so the `ECHO' for the"kludge" rule will actually write "mega-kludge".Two notes regarding use of `yymore()'. First, `yymore()' depends on the value of yylengcorrectly re
ecting the size of the current token, so you must not modify yyleng if you are using`yymore()'. Second, the presence of `yymore()' in the scanner's action entails a minor performancepenalty in the scanner's matching speed.- `yyless(n)' returns all but the �rst n characters of the current token back to the input stream,where they will be rescanned when the scanner looks for the next match. yytext and yylengare adjusted appropriately (e.g., yyleng will now be equal to n). For example, on the input"foobar" the following will write out "foobarbar":%%foobar ECHO; yyless(3);[a-z]+ ECHO;An argument of 0 to yyless will cause the entire current input string to be scanned again.Unless you've changed how the scanner will subsequently process its input (using BEGIN, forexample), this will result in an endless loop.Note that yyless is a macro and can only be used in the
ex input �le, not from other source�les.- `unput(c)' puts the character c back onto the input stream. It will be the next characterscanned. The following action will take the current token and cause it to be rescanned enclosedin parentheses.{int i;/* Copy yytext because unput() trashes yytext */char *yycopy = strdup(yytext);unput(')');for (i = yyleng - 1; i >= 0; --i)unput(yycopy[i]);

11unput('(');free(yycopy);}Note that since each `unput()' puts the given character back at the beginning of the inputstream, pushing back strings must be done back-to-front. An important potential problemwhen using `unput()' is that if you are using `%pointer' (the default), a call to `unput()'destroys the contents of yytext, starting with its rightmost character and devouring onecharacter to the left with each call. If you need the value of yytext preserved after a call to`unput()' (as in the above example), you must either �rst copy it elsewhere, or build yourscanner using `%array' instead (see How The Input Is Matched).Finally, note that you cannot put back EOF to attempt to mark the input stream with anend-of-�le.- `input()' reads the next character from the input stream. For example, the following is oneway to eat up C comments:%%"/*" {register int c;for (; ;){while ((c = input()) != '*' &&c != EOF); /* eat up text of comment */if (c == '*'){while ((c = input()) == '*');if (c == '/')break; /* found the end */}if (c == EOF){error("EOF in comment");break;}}}(Note that if the scanner is compiled using `C++', then `input()' is instead referred to as`yyinput()', in order to avoid a name clash with the `C++' stream by the name of input.)- YY FLUSH BUFFER
ushes the scanner's internal bu�er so that the next time the scannerattempts to match a token, it will �rst re�ll the bu�er using YY_INPUT (see The GeneratedScanner, below). This action is a special case of the more general `yy_flush_buffer()' func-tion, described below in the section Multiple Input Bu�ers.- `yyterminate()' can be used in lieu of a return statement in an action. It terminates the scan-

12ner and returns a 0 to the scanner's caller, indicating "all done". By default, `yyterminate()'is also called when an end-of-�le is encountered. It is a macro and may be rede�ned.0.10 The generated scannerThe output of flex is the �le `lex.yy.c', which contains the scanning routine `yylex()', anumber of tables used by it for matching tokens, and a number of auxiliary routines and macros.By default, `yylex()' is declared as follows:int yylex(){: : : various definitions and the actions in here : : :}(If your environment supports function prototypes, then it will be "int yylex(void)".) Thisde�nition may be changed by de�ning the "YY DECL" macro. For example, you could use:#define YY_DECL float lexscan(a, b) float a, b;to give the scanning routine the name lexscan, returning a
oat, and taking two
oats asarguments. Note that if you give arguments to the scanning routine using a K&R-style/non-prototyped function declaration, you must terminate the de�nition with a semi-colon (`;').Whenever `yylex()' is called, it scans tokens from the global input �le yyin (which defaults tostdin). It continues until it either reaches an end-of-�le (at which point it returns the value 0) orone of its actions executes a return statement.If the scanner reaches an end-of-�le, subsequent calls are unde�ned unless either yyin is pointedat a new input �le (in which case scanning continues from that �le), or `yyrestart()' is called.`yyrestart()' takes one argument, a `FILE *' pointer (which can be nil, if you've set up YY_INPUTto scan from a source other than yyin), and initializes yyin for scanning from that �le. Essentiallythere is no di�erence between just assigning yyin to a new input �le or using `yyrestart()' todo so; the latter is available for compatibility with previous versions of flex, and because it canbe used to switch input �les in the middle of scanning. It can also be used to throw away thecurrent input bu�er, by calling it with an argument of yyin; but better is to use YY_FLUSH_BUFFER(see above). Note that `yyrestart()' does not reset the start condition to INITIAL (see StartConditions, below).If `yylex()' stops scanning due to executing a return statement in one of the actions, thescanner may then be called again and it will resume scanning where it left o�.By default (and for purposes of e�ciency), the scanner uses block-reads rather than simple`getc()' calls to read characters from yyin. The nature of how it gets its input can be controlled byde�ning the YY_INPUTmacro. YY INPUT's calling sequence is "YY INPUT(buf,result,max size)".Its action is to place up to max size characters in the character array buf and return in the integervariable result either the number of characters read or the constant YY NULL (0 on Unix systems)to indicate EOF. The default YY INPUT reads from the global �le-pointer "yyin".A sample de�nition of YY INPUT (in the de�nitions section of the input �le):%{#define YY_INPUT(buf,result,max_size) \{ \int c = getchar(); \result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \

13}%}This de�nition will change the input processing to occur one character at a time.When the scanner receives an end-of-�le indication from YY INPUT, it then checks the`yywrap()' function. If `yywrap()' returns false (zero), then it is assumed that the functionhas gone ahead and set up yyin to point to another input �le, and scanning continues. If it returnstrue (non-zero), then the scanner terminates, returning 0 to its caller. Note that in either case, thestart condition remains unchanged; it does not revert to INITIAL.If you do not supply your own version of `yywrap()', then you must either use `%optionnoyywrap' (in which case the scanner behaves as though `yywrap()' returned 1), or you mustlink with `-lfl' to obtain the default version of the routine, which always returns 1.Three routines are available for scanning from in-memory bu�ers rather than �les: `yy_scan_string()',`yy_scan_bytes()', and `yy_scan_buffer()'. See the discussion of them below in the section Mul-tiple Input Bu�ers.The scanner writes its `ECHO' output to the yyout global (default, stdout), which may be rede-�ned by the user simply by assigning it to some other FILE pointer.0.11 Start conditionsflex provides a mechanism for conditionally activating rules. Any rule whose pattern is pre�xedwith "<sc>" will only be active when the scanner is in the start condition named "sc". For example,<STRING>[^"]* { /* eat up the string body ... */: : :}will be active only when the scanner is in the "STRING" start condition, and<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */: : :}will be active only when the current start condition is either "INITIAL", "STRING", or "QUOTE".Start conditions are declared in the de�nitions (�rst) section of the input using unindented linesbeginning with either `%s' or `%x' followed by a list of names. The former declares inclusive startconditions, the latter exclusive start conditions. A start condition is activated using the BEGINaction. Until the next BEGIN action is executed, rules with the given start condition will be activeand rules with other start conditions will be inactive. If the start condition is inclusive, then ruleswith no start conditions at all will also be active. If it is exclusive, then only rules quali�ed withthe start condition will be active. A set of rules contingent on the same exclusive start conditiondescribe a scanner which is independent of any of the other rules in the flex input. Because ofthis, exclusive start conditions make it easy to specify "mini-scanners" which scan portions of theinput that are syntactically di�erent from the rest (e.g., comments).If the distinction between inclusive and exclusive start conditions is still a little vague, here's asimple example illustrating the connection between the two. The set of rules:%s example%%

14<example>foo do_something();bar something_else();is equivalent to%x example%%<example>foo do_something();<INITIAL,example>bar something_else();Without the `<INITIAL,example>' quali�er, the `bar' pattern in the second example wouldn'tbe active (i.e., couldn't match) when in start condition `example'. If we just used `<example>' toqualify `bar', though, then it would only be active in `example' and not in INITIAL, while in the�rst example it's active in both, because in the �rst example the `example' starting condition is aninclusive (`%s') start condition.Also note that the special start-condition speci�er `<*>' matches every start condition. Thus,the above example could also have been written;%x example%%<example>foo do_something();<*>bar something_else();The default rule (to `ECHO' any unmatched character) remains active in start conditions. It isequivalent to:<*>.|\\n ECHO;`BEGIN(0)' returns to the original state where only the rules with no start conditions are ac-tive. This state can also be referred to as the start-condition "INITIAL", so `BEGIN(INITIAL)' isequivalent to `BEGIN(0)'. (The parentheses around the start condition name are not required butare considered good style.)BEGIN actions can also be given as indented code at the beginning of the rules section. Forexample, the following will cause the scanner to enter the "SPECIAL" start condition whenever`yylex()' is called and the global variable enter_special is true:int enter_special;%x SPECIAL%% if (enter_special)BEGIN(SPECIAL);<SPECIAL>blahblahblah: : :more rules follow: : :To illustrate the uses of start conditions, here is a scanner which provides two di�erent interpre-tations of a string like "123.456". By default it will treat it as as three tokens, the integer "123",a dot ('.'), and the integer "456". But if the string is preceded earlier in the line by the string"expect-
oats" it will treat it as a single token, the
oating-point number 123.456:

15%{#include <math.h>%}%s expect%%expect-floats BEGIN(expect);<expect>[0-9]+"."[0-9]+ {printf("found a float, = %f\n",atof(yytext));}<expect>\n {/* that's the end of the line, so* we need another "expect-number"* before we'll recognize any more* numbers*/BEGIN(INITIAL);}[0-9]+ {Version 2.5 December 1994 18printf("found an integer, = %d\n",atoi(yytext));}"." printf("found a dot\n");Here is a scanner which recognizes (and discards) C comments while maintaining a count of thecurrent input line.%x comment%% int line_num = 1;"/*" BEGIN(comment);<comment>[^*\n]* /* eat anything that's not a '*' */<comment>"*"+[^*/\n]* /* eat up '*'s not followed by '/'s */<comment>\n ++line_num;<comment>"*"+"/" BEGIN(INITIAL);This scanner goes to a bit of trouble to match as much text as possible with each rule. Ingeneral, when attempting to write a high-speed scanner try to match as much possible in each rule,as it's a big win.Note that start-conditions names are really integer values and can be stored as such. Thus, theabove could be extended in the following fashion:%x comment foo

16%% int line_num = 1;int comment_caller;"/*" {comment_caller = INITIAL;BEGIN(comment);}: : :<foo>"/*" {comment_caller = foo;BEGIN(comment);}<comment>[^*\n]* /* eat anything that's not a '*' */<comment>"*"+[^*/\n]* /* eat up '*'s not followed by '/'s */<comment>\n ++line_num;<comment>"*"+"/" BEGIN(comment_caller);Furthermore, you can access the current start condition using the integer-valued YY_STARTmacro. For example, the above assignments to comment_caller could instead be writtencomment_caller = YY_START;Flex provides YYSTATE as an alias for YY_START (since that is what's used by AT&T lex).Note that start conditions do not have their own name-space; %s's and %x's declare names inthe same fashion as #de�ne's.Finally, here's an example of how to match C-style quoted strings using exclusive start con-ditions, including expanded escape sequences (but not including checking for a string that's toolong):%x str%% char string_buf[MAX_STR_CONST];char *string_buf_ptr;\" string_buf_ptr = string_buf; BEGIN(str);<str>\" { /* saw closing quote - all done */BEGIN(INITIAL);*string_buf_ptr = '\0';/* return string constant token type and* value to parser*/}<str>\n {/* error - unterminated string constant */

17/* generate error message */}<str>\\[0-7]{1,3} {/* octal escape sequence */int result;(void) sscanf(yytext + 1, "%o", &result);if (result > 0xff)/* error, constant is out-of-bounds */*string_buf_ptr++ = result;}<str>\\[0-9]+ {/* generate error - bad escape sequence; something* like '\48' or '\0777777'*/}<str>\\n *string_buf_ptr++ = '\n';<str>\\t *string_buf_ptr++ = '\t';<str>\\r *string_buf_ptr++ = '\r';<str>\\b *string_buf_ptr++ = '\b';<str>\\f *string_buf_ptr++ = '\f';<str>\\(.|\n) *string_buf_ptr++ = yytext[1];<str>[^\\\n\"]+ {char *yptr = yytext;while (*yptr)*string_buf_ptr++ = *yptr++;}Often, such as in some of the examples above, you wind up writing a whole bunch of rules allpreceded by the same start condition(s). Flex makes this a little easier and cleaner by introducinga notion of start condition scope. A start condition scope is begun with:<SCs>{where SCs is a list of one or more start conditions. Inside the start condition scope, every ruleautomatically has the pre�x `<SCs>' applied to it, until a `}' which matches the initial `{'. So, forexample,<ESC>{"\\n" return '\n';"\\r" return '\r';"\\f" return '\f';"\\0" return '\0';}

18is equivalent to:<ESC>"\\n" return '\n';<ESC>"\\r" return '\r';<ESC>"\\f" return '\f';<ESC>"\\0" return '\0';Start condition scopes may be nested.Three routines are available for manipulating stacks of start conditions:`void yy_push_state(int new_state)'pushes the current start condition onto the top of the start condition stack and switchesto new state as though you had used `BEGIN new_state' (recall that start conditionnames are also integers).`void yy_pop_state()'pops the top of the stack and switches to it via BEGIN.`int yy_top_state()'returns the top of the stack without altering the stack's contents.The start condition stack grows dynamically and so has no built-in size limitation. If memoryis exhausted, program execution aborts.To use start condition stacks, your scanner must include a `%option stack' directive (see Optionsbelow).0.12 Multiple input bu�ersSome scanners (such as those which support "include" �les) require reading from several inputstreams. As flex scanners do a large amount of bu�ering, one cannot control where the nextinput will be read from by simply writing a YY_INPUT which is sensitive to the scanning context.YY_INPUT is only called when the scanner reaches the end of its bu�er, which may be a long timeafter scanning a statement such as an "include" which requires switching the input source.To negotiate these sorts of problems, flex provides a mechanism for creating and switchingbetween multiple input bu�ers. An input bu�er is created by using:YY_BUFFER_STATE yy_create_buffer(FILE *file, int size)which takes a FILE pointer and a size and creates a bu�er associated with the given �le andlarge enough to hold size characters (when in doubt, use YY_BUF_SIZE for the size). It returnsa YY_BUFFER_STATE handle, which may then be passed to other routines (see below). The YY_BUFFER_STATE type is a pointer to an opaque struct yy_buffer_state structure, so you maysafely initialize YY BUFFER STATE variables to `((YY_BUFFER_STATE) 0)' if you wish, and alsorefer to the opaque structure in order to correctly declare input bu�ers in source �les other thanthat of your scanner. Note that the FILE pointer in the call to yy_create_buffer is only usedas the value of yyin seen by YY_INPUT; if you rede�ne YY_INPUT so it no longer uses yyin, thenyou can safely pass a nil FILE pointer to yy_create_buffer. You select a particular bu�er to scanfrom using:void yy_switch_to_buffer(YY_BUFFER_STATE new_buffer)switches the scanner's input bu�er so subsequent tokens will come from new bu�er. Note that`yy_switch_to_buffer()' may be used by `yywrap()' to set things up for continued scanning,

19instead of opening a new �le and pointing yyin at it. Note also that switching input sources viaeither `yy_switch_to_buffer()' or `yywrap()' does not change the start condition.void yy_delete_buffer(YY_BUFFER_STATE buffer)is used to reclaim the storage associated with a bu�er. You can also clear the current contents ofa bu�er using:void yy_flush_buffer(YY_BUFFER_STATE buffer)This function discards the bu�er's contents, so the next time the scanner attempts to match atoken from the bu�er, it will �rst �ll the bu�er anew using YY_INPUT.`yy_new_buffer()' is an alias for `yy_create_buffer()', provided for compatibility with theC++ use of new and delete for creating and destroying dynamic objects.Finally, the YY_CURRENT_BUFFERmacro returns a YY_BUFFER_STATE handle to the current bu�er.Here is an example of using these features for writing a scanner which expands include �les (the`<<EOF>>' feature is discussed below):/* the "incl" state is used for picking up the name* of an include file*/%x incl%{#define MAX_INCLUDE_DEPTH 10YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];int include_stack_ptr = 0;%}%%include BEGIN(incl);[a-z]+ ECHO;[^a-z\n]*\n? ECHO;<incl>[\t]* /* eat the whitespace */<incl>[^ \t\n]+ { /* got the include file name */if (include_stack_ptr >= MAX_INCLUDE_DEPTH){fprintf(stderr, "Includes nested too deeply");exit(1);}include_stack[include_stack_ptr++] =YY_CURRENT_BUFFER;yyin = fopen(yytext, "r");if (! yyin)error(: : :);yy_switch_to_buffer(

20yy_create_buffer(yyin, YY_BUF_SIZE));BEGIN(INITIAL);}<<EOF>> {if (--include_stack_ptr < 0){yyterminate();}else{yy_delete_buffer(YY_CURRENT_BUFFER);yy_switch_to_buffer(include_stack[include_stack_ptr]);}}Three routines are available for setting up input bu�ers for scanning in-memory strings insteadof �les. All of them create a new input bu�er for scanning the string, and return a correspondingYY_BUFFER_STATE handle (which you should delete with `yy_delete_buffer()' when done with it).They also switch to the new bu�er using `yy_switch_to_buffer()', so the next call to `yylex()'will start scanning the string.`yy_scan_string(const char *str)'scans a NUL-terminated string.`yy_scan_bytes(const char *bytes, int len)'scans len bytes (including possibly NUL's) starting at location bytes.Note that both of these functions create and scan a copy of the string or bytes. (This may bedesirable, since `yylex()' modi�es the contents of the bu�er it is scanning.) You can avoid thecopy by using:`yy_scan_buffer(char *base, yy_size_t size)'which scans in place the bu�er starting at base, consisting of size bytes, the last twobytes of which must be YY_END_OF_BUFFER_CHAR (ASCII NUL). These last two bytesare not scanned; thus, scanning consists of `base[0]' through `base[size-2]', inclu-sive.If you fail to set up base in this manner (i.e., forget the �nal two YY_END_OF_BUFFER_CHAR bytes), then `yy_scan_buffer()' returns a nil pointer instead of creating a newinput bu�er.The type yy_size_t is an integral type to which you can cast an integer expressionre
ecting the size of the bu�er.0.13 End-of-�le rulesThe special rule "<<EOF>>" indicates actions which are to be taken when an end-of-�le isencountered and yywrap() returns non-zero (i.e., indicates no further �les to process). The actionmust �nish by doing one of four things:

21- assigning yyin to a new input �le (in previous versions of
ex, after doing the assignment youhad to call the special action YY_NEW_FILE; this is no longer necessary);- executing a return statement;- executing the special `yyterminate()' action;- or, switching to a new bu�er using `yy_switch_to_buffer()' as shown in the example above.<<EOF>> rules may not be used with other patterns; they may only be quali�ed with a list ofstart conditions. If an unquali�ed <<EOF>> rule is given, it applies to all start conditions which donot already have <<EOF>> actions. To specify an <<EOF>> rule for only the initial start condition,use <INITIAL><<EOF>>These rules are useful for catching things like unclosed comments. An example:%x quote%%: : :other rules for dealing with quotes: : :<quote><<EOF>> {error("unterminated quote");yyterminate();}<<EOF>> {if (*++filelist)yyin = fopen(*filelist, "r");elseyyterminate();}0.14 Miscellaneous macrosThe macro YY_USER_ACTION can be de�ned to provide an action which is always executed priorto the matched rule's action. For example, it could be #de�ne'd to call a routine to convert yytextto lower-case. When YY_USER_ACTION is invoked, the variable yy_act gives the number of thematched rule (rules are numbered starting with 1). Suppose you want to pro�le how often each ofyour rules is matched. The following would do the trick:#define YY_USER_ACTION ++ctr[yy_act]where ctr is an array to hold the counts for the di�erent rules. Note that the macro YY_NUM_RULES gives the total number of rules (including the default rule, even if you use `-s', so a correctdeclaration for ctr is:int ctr[YY_NUM_RULES];The macro YY_USER_INIT may be de�ned to provide an action which is always executed beforethe �rst scan (and before the scanner's internal initializations are done). For example, it could beused to call a routine to read in a data table or open a logging �le.The macro `yy_set_interactive(is_interactive)' can be used to control whether the currentbu�er is considered interactive. An interactive bu�er is processed more slowly, but must be used

22when the scanner's input source is indeed interactive to avoid problems due to waiting to �llbu�ers (see the discussion of the `-I'
ag below). A non-zero value in the macro invocationmarks the bu�er as interactive, a zero value as non-interactive. Note that use of this macrooverrides `%option always-interactive' or `%option never-interactive' (see Options below).`yy_set_interactive()' must be invoked prior to beginning to scan the bu�er that is (or is not)to be considered interactive.The macro `yy_set_bol(at_bol)' can be used to control whether the current bu�er's scanningcontext for the next token match is done as though at the beginning of a line. A non-zero macroargument makes rules anchored withThe macro `YY_AT_BOL()' returns true if the next token scanned from the current bu�er willhave '^' rules active, false otherwise.In the generated scanner, the actions are all gathered in one large switch statement and separatedusing YY_BREAK, which may be rede�ned. By default, it is simply a "break", to separate each rule'saction from the following rule's. Rede�ning YY_BREAK allows, for example, C++ users to #de�neYY BREAK to do nothing (while being very careful that every rule ends with a "break" or a"return"!) to avoid su�ering from unreachable statement warnings where because a rule's actionends with "return", the YY_BREAK is inaccessible.0.15 Values available to the userThis section summarizes the various values available to the user in the rule actions.- `char *yytext' holds the text of the current token. It may be modi�ed but not lengthened(you cannot append characters to the end).If the special directive `%array' appears in the �rst section of the scanner description, thenyytext is instead declared `char yytext[YYLMAX]', where YYLMAX is a macro de�nition thatyou can rede�ne in the �rst section if you don't like the default value (generally 8KB). Using`%array' results in somewhat slower scanners, but the value of yytext becomes immune to callsto `input()' and `unput()', which potentially destroy its value when yytext is a characterpointer. The opposite of `%array' is `%pointer', which is the default.You cannot use `%array' when generating C++ scanner classes (the `-+'
ag).- `int yyleng' holds the length of the current token.- `FILE *yyin' is the �le which by default flex reads from. It may be rede�ned but doing so onlymakes sense before scanning begins or after an EOF has been encountered. Changing it in themidst of scanning will have unexpected results since flex bu�ers its input; use `yyrestart()'instead. Once scanning terminates because an end-of-�le has been seen, you can assign yyinat the new input �le and then call the scanner again to continue scanning.- `void yyrestart(FILE *new_file)' may be called to point yyin at the new input �le. Theswitch-over to the new �le is immediate (any previously bu�ered-up input is lost). Note thatcalling `yyrestart()' with yyin as an argument thus throws away the current input bu�erand continues scanning the same input �le.- `FILE *yyout' is the �le to which `ECHO' actions are done. It can be reassigned by the user.- YY_CURRENT_BUFFER returns a YY_BUFFER_STATE handle to the current bu�er.- YY_START returns an integer value corresponding to the current start condition. You cansubsequently use this value with BEGIN to return to that start condition.

230.16 Interfacing with yaccOne of the main uses of flex is as a companion to the yacc parser-generator. yacc parsersexpect to call a routine named `yylex()' to �nd the next input token. The routine is supposed toreturn the type of the next token as well as putting any associated value in the global yylval. Touse flex with yacc, one speci�es the `-d' option to yacc to instruct it to generate the �le `y.tab.h'containing de�nitions of all the `%tokens' appearing in the yacc input. This �le is then includedin the flex scanner. For example, if one of the tokens is "TOK NUMBER", part of the scannermight look like:%{#include "y.tab.h"%}%%[0-9]+ yylval = atoi(yytext); return TOK_NUMBER;0.17 Optionsflex has the following options:`-b' Generate backing-up information to `lex.backup'. This is a list of scanner states whichrequire backing up and the input characters on which they do so. By adding rules onecan remove backing-up states. If all backing-up states are eliminated and `-Cf' or `-CF'is used, the generated scanner will run faster (see the `-p'
ag). Only users who wishto squeeze every last cycle out of their scanners need worry about this option. (See thesection on Performance Considerations below.)`-c' is a do-nothing, deprecated option included for POSIX compliance.`-d' makes the generated scanner run in debug mode. Whenever a pattern is recognizedand the global yy_flex_debug is non-zero (which is the default), the scanner will writeto stderr a line of the form:--accepting rule at line 53 ("the matched text")The line number refers to the location of the rule in the �le de�ning the scanner (i.e.,the �le that was fed to
ex). Messages are also generated when the scanner backs up,accepts the default rule, reaches the end of its input bu�er (or encounters a NUL; atthis point, the two look the same as far as the scanner's concerned), or reaches anend-of-�le.`-f' speci�es fast scanner. No table compression is done and stdio is bypassed. The resultis large but fast. This option is equivalent to `-Cfr' (see below).`-h' generates a "help" summary of flex's options to stdout and then exits. `-?' and`--help' are synonyms for `-h'.`-i' instructs flex to generate a case-insensitive scanner. The case of letters given in theflex input patterns will be ignored, and tokens in the input will be matched regardlessof case. The matched text given in yytext will have the preserved case (i.e., it will notbe folded).

24`-l' turns on maximum compatibility with the original AT&T lex implementation. Notethat this does not mean full compatibility. Use of this option costs a considerableamount of performance, and it cannot be used with the `-+, -f, -F, -Cf', or `-CF'options. For details on the compatibilities it provides, see the section "IncompatibilitiesWith Lex And POSIX" below. This option also results in the name YY_FLEX_LEX_COMPAT being #de�ne'd in the generated scanner.`-n' is another do-nothing, deprecated option included only for POSIX compliance.`-p' generates a performance report to stderr. The report consists of comments regardingfeatures of the flex input �le which will cause a serious loss of performance in theresulting scanner. If you give the
ag twice, you will also get comments regardingfeatures that lead to minor performance losses.Note that the use of REJECT, `%option yylineno' and variable trailing context (seethe De�ciencies / Bugs section below) entails a substantial performance penalty; useof `yymore()', the `^' operator, and the `-I'
ag entail minor performance penalties.`-s' causes the default rule (that unmatched scanner input is echoed to stdout) to besuppressed. If the scanner encounters input that does not match any of its rules, itaborts with an error. This option is useful for �nding holes in a scanner's rule set.`-t' instructs flex to write the scanner it generates to standard output instead of`lex.yy.c'.`-v' speci�es that flex should write to stderr a summary of statistics regarding the scannerit generates. Most of the statistics are meaningless to the casual flex user, but the�rst line identi�es the version of flex (same as reported by `-V'), and the next line the
ags used when generating the scanner, including those that are on by default.`-w' suppresses warning messages.`-B' instructs flex to generate a batch scanner, the opposite of interactive scanners gener-ated by `-I' (see below). In general, you use `-B' when you are certain that your scannerwill never be used interactively, and you want to squeeze a little more performance outof it. If your goal is instead to squeeze out a lot more performance, you should be usingthe `-Cf' or `-CF' options (discussed below), which turn on `-B' automatically anyway.`-F' speci�es that the fast scanner table representation should be used (and stdio bypassed).This representation is about as fast as the full table representation `(-f)', and for somesets of patterns will be considerably smaller (and for others, larger). In general, if thepattern set contains both "keywords" and a catch-all, "identi�er" rule, such as in theset: "case" return TOK_CASE;"switch" return TOK_SWITCH;..."default" return TOK_DEFAULT;[a-z]+ return TOK_ID;then you're better o� using the full table representation. If only the "identi�er" ruleis present and you then use a hash table or some such to detect the keywords, you'rebetter o� using `-F'.This option is equivalent to `-CFr' (see below). It cannot be used with `-+'.

25`-I' instructs flex to generate an interactive scanner. An interactive scanner is one thatonly looks ahead to decide what token has been matched if it absolutely must. It turnsout that always looking one extra character ahead, even if the scanner has alreadyseen enough text to disambiguate the current token, is a bit faster than only lookingahead when necessary. But scanners that always look ahead give dreadful interactiveperformance; for example, when a user types a newline, it is not recognized as a newlinetoken until they enter another token, which often means typing in another whole line.Flex scanners default to interactive unless you use the `-Cf' or `-CF' table-compressionoptions (see below). That's because if you're looking for high-performance you shouldbe using one of these options, so if you didn't, flex assumes you'd rather trade o� a bitof run-time performance for intuitive interactive behavior. Note also that you cannotuse `-I' in conjunction with `-Cf' or `-CF'. Thus, this option is not really needed; it ison by default for all those cases in which it is allowed.You can force a scanner to not be interactive by using `-B' (see above).`-L' instructs flex not to generate `#line' directives. Without this option, flex peppersthe generated scanner with #line directives so error messages in the actions will becorrectly located with respect to either the original flex input �le (if the errors aredue to code in the input �le), or `lex.yy.c' (if the errors are flex's fault { you shouldreport these sorts of errors to the email address given below).`-T' makes flex run in trace mode. It will generate a lot of messages to stderr concern-ing the form of the input and the resultant non-deterministic and deterministic �niteautomata. This option is mostly for use in maintaining flex.`-V' prints the version number to stdout and exits. `--version' is a synonym for `-V'.`-7' instructs flex to generate a 7-bit scanner, i.e., one which can only recognized 7-bitcharacters in its input. The advantage of using `-7' is that the scanner's tables can be upto half the size of those generated using the `-8' option (see below). The disadvantageis that such scanners often hang or crash if their input contains an 8-bit character.Note, however, that unless you generate your scanner using the `-Cf' or `-CF' tablecompression options, use of `-7' will save only a small amount of table space, and makeyour scanner considerably less portable. Flex's default behavior is to generate an 8-bitscanner unless you use the `-Cf' or `-CF', in which case flex defaults to generating7-bit scanners unless your site was always con�gured to generate 8-bit scanners (as willoften be the case with non-USA sites). You can tell whether
ex generated a 7-bit oran 8-bit scanner by inspecting the
ag summary in the `-v' output as described above.Note that if you use `-Cfe' or `-CFe' (those table compression options, but also usingequivalence classes as discussed see below),
ex still defaults to generating an 8-bitscanner, since usually with these compression options full 8-bit tables are not muchmore expensive than 7-bit tables.`-8' instructs flex to generate an 8-bit scanner, i.e., one which can recognize 8-bit charac-ters. This
ag is only needed for scanners generated using `-Cf' or `-CF', as otherwise
ex defaults to generating an 8-bit scanner anyway.See the discussion of `-7' above for
ex's default behavior and the tradeo�s between7-bit and 8-bit scanners.

26`-+' speci�es that you want
ex to generate a C++ scanner class. See the section on Gener-ating C++ Scanners below for details.`-C[aefFmr]'controls the degree of table compression and, more generally, trade-o�s between smallscanners and fast scanners.`-Ca' ("align") instructs
ex to trade o� larger tables in the generated scanner for fasterperformance because the elements of the tables are better aligned for memory accessand computation. On some RISC architectures, fetching and manipulating long-wordsis more e�cient than with smaller-sized units such as shortwords. This option candouble the size of the tables used by your scanner.`-Ce' directs flex to construct equivalence classes, i.e., sets of characters which haveidentical lexical properties (for example, if the only appearance of digits in the flexinput is in the character class "[0-9]" then the digits '0', '1', : : :, '9' will all be put in thesame equivalence class). Equivalence classes usually give dramatic reductions in the�nal table/object �le sizes (typically a factor of 2-5) and are pretty cheap performance-wise (one array look-up per character scanned).`-Cf' speci�es that the full scanner tables should be generated - flex should not com-press the tables by taking advantages of similar transition functions for di�erent states.`-CF' speci�es that the alternate fast scanner representation (described above underthe `-F'
ag) should be used. This option cannot be used with `-+'.`-Cm' directs flex to construct meta-equivalence classes, which are sets of equivalenceclasses (or characters, if equivalence classes are not being used) that are commonlyused together. Meta-equivalence classes are often a big win when using compressedtables, but they have a moderate performance impact (one or two "if" tests and onearray look-up per character scanned).`-Cr' causes the generated scanner to bypass use of the standard I/O library (stdio)for input. Instead of calling `fread()' or `getc()', the scanner will use the `read()'system call, resulting in a performance gain which varies from system to system, but ingeneral is probably negligible unless you are also using `-Cf' or `-CF'. Using `-Cr' cancause strange behavior if, for example, you read from yyin using stdio prior to callingthe scanner (because the scanner will miss whatever text your previous reads left inthe stdio input bu�er).`-Cr' has no e�ect if you de�ne YY_INPUT (see The Generated Scanner above).A lone `-C' speci�es that the scanner tables should be compressed but neither equiva-lence classes nor meta-equivalence classes should be used.The options `-Cf' or `-CF' and `-Cm' do not make sense together - there is no opportunityfor meta-equivalence classes if the table is not being compressed. Otherwise the optionsmay be freely mixed, and are cumulative.The default setting is `-Cem', which speci�es that flex should generate equivalenceclasses and meta-equivalence classes. This setting provides the highest degree of tablecompression. You can trade o� faster-executing scanners at the cost of larger tableswith the following generally being true:slowest & smallest-Cem

27-Cm-Ce-C-C{f,F}e-C{f,F}-C{f,F}afastest & largestNote that scanners with the smallest tables are usually generated and compiled thequickest, so during development you will usually want to use the default, maximalcompression.`-Cfe' is often a good compromise between speed and size for production scanners.`-ooutput' directs
ex to write the scanner to the �le `out-' put instead of `lex.yy.c'. If youcombine `-o' with the `-t' option, then the scanner is written to stdout but its `#line'directives (see the `-L' option above) refer to the �le output.`-Pprefix' changes the default `yy' pre�x used by flex for all globally-visible variable and functionnames to instead be pre�x. For example, `-Pfoo' changes the name of yytext to`footext'. It also changes the name of the default output �le from `lex.yy.c' to`lex.foo.c'. Here are all of the names a�ected:yy_create_bufferyy_delete_bufferyy_flex_debugyy_init_bufferyy_flush_bufferyy_load_buffer_stateyy_switch_to_bufferyyinyylengyylexyylinenoyyoutyyrestartyytextyywrap(If you are using a C++ scanner, then only yywrap and yyFlexLexer are a�ected.)Within your scanner itself, you can still refer to the global variables and functionsusing either version of their name; but externally, they have the modi�ed name.This option lets you easily link together multiple flex programs into the same exe-cutable. Note, though, that using this option also renames `yywrap()', so you nowmust either provide your own (appropriately-named) version of the routine for yourscanner, or use `%option noyywrap', as linking with `-lfl' no longer provides one foryou by default.`-Sskeleton_file'overrides the default skeleton �le from which flex constructs its scanners. You'll neverneed this option unless you are doing flex maintenance or development.

28flex also provides a mechanism for controlling options within the scanner speci�cation itself,rather than from the
ex command-line. This is done by including `%option' directives in the�rst section of the scanner speci�cation. You can specify multiple options with a single `%option'directive, and multiple directives in the �rst section of your
ex input �le. Most options are givensimply as names, optionally preceded by the word "no" (with no intervening whitespace) to negatetheir meaning. A number are equivalent to
ex
ags or their negation:7bit -7 option8bit -8 optionalign -Ca optionbackup -b optionbatch -B optionc++ -+ optioncaseful orcase-sensitive opposite of -i (default)case-insensitive orcaseless -i optiondebug -d optiondefault opposite of -s optionecs -Ce optionfast -F optionfull -f optioninteractive -I optionlex-compat -l optionmeta-ecs -Cm optionperf-report -p optionread -Cr optionstdout -t optionverbose -v optionwarn opposite of -w option(use "%option nowarn" for -w)array equivalent to "%array"pointer equivalent to "%pointer" (default)Some `%option's' provide features otherwise not available:`always-interactive'instructs
ex to generate a scanner which always considers its input "interactive". Nor-mally, on each new input �le the scanner calls `isatty()' in an attempt to determinewhether the scanner's input source is interactive and thus should be read a characterat a time. When this option is used, however, then no such call is made.`main' directs
ex to provide a default `main()' program for the scanner, which simply calls`yylex()'. This option implies noyywrap (see below).`never-interactive'instructs
ex to generate a scanner which never considers its input "interactive" (again,no call made to `isatty())'. This is the opposite of `always-' interactive.

29`stack' enables the use of start condition stacks (see Start Conditions above).`stdinit' if unset (i.e., `%option nostdinit') initializes yyin and yyout to nil FILE pointers,instead of stdin and stdout.`yylineno' directs flex to generate a scanner that maintains the number of the current line readfrom its input in the global variable yylineno. This option is implied by `%optionlex-compat'.`yywrap' if unset (i.e., `%option noyywrap'), makes the scanner not call `yywrap()' upon anend-of-�le, but simply assume that there are no more �les to scan (until the user pointsyyin at a new �le and calls `yylex()' again).flex scans your rule actions to determine whether you use the REJECT or `yymore()' features.The reject and yymore options are available to override its decision as to whether you use theoptions, either by setting them (e.g., `%option reject') to indicate the feature is indeed used, orunsetting them to indicate it actually is not used (e.g., `%option noyymore').Three options take string-delimited values, o�set with '=':%option outfile="ABC"is equivalent to `-oABC', and%option prefix="XYZ"is equivalent to `-PXYZ'.Finally,%option yyclass="foo"only applies when generating a C++ scanner (`-+' option). It informs flex that you have de-rived `foo' as a subclass of yyFlexLexer so flex will place your actions in the member function`foo::yylex()' instead of `yyFlexLexer::yylex()'. It also generates a `yyFlexLexer::yylex()'member function that emits a run-time error (by invoking `yyFlexLexer::LexerError()') if called.See Generating C++ Scanners, below, for additional information.A number of options are available for lint purists who want to suppress the appearance ofunneeded routines in the generated scanner. Each of the following, if unset, results in the corre-sponding routine not appearing in the generated scanner:input, unputyy_push_state, yy_pop_state, yy_top_stateyy_scan_buffer, yy_scan_bytes, yy_scan_string(though `yy_push_state()' and friends won't appear anyway unless you use `%option stack').0.18 Performance considerationsThe main design goal of flex is that it generate high-performance scanners. It has been op-timized for dealing well with large sets of rules. Aside from the e�ects on scanner speed of thetable compression `-C' options outlined above, there are a number of options/actions which degradeperformance. These are, from most expensive to least:

30REJECT%option yylinenoarbitrary trailing contextpattern sets that require backing up%array%option interactive%option always-interactive'^' beginning-of-line operatoryymore()with the �rst three all being quite expensive and the last two being quite cheap. Note also that`unput()' is implemented as a routine call that potentially does quite a bit of work, while `yyless()'is a quite-cheap macro; so if just putting back some excess text you scanned, use `yyless()'.REJECT should be avoided at all costs when performance is important. It is a particularlyexpensive option.Getting rid of backing up is messy and often may be an enormous amount of work for a compli-cated scanner. In principal, one begins by using the `-b'
ag to generate a `lex.backup' �le. Forexample, on the input%%foo return TOK_KEYWORD;foobar return TOK_KEYWORD;the �le looks like:State #6 is non-accepting -associated rule line numbers:2 3out-transitions: [o]jam-transitions: EOF [\001-n p-\177]State #8 is non-accepting -associated rule line numbers:3out-transitions: [a]jam-transitions: EOF [\001-` b-\177]State #9 is non-accepting -associated rule line numbers:3out-transitions: [r]jam-transitions: EOF [\001-q s-\177]Compressed tables always back up.The �rst few lines tell us that there's a scanner state in which it can make a transition on an 'o'but not on any other character, and that in that state the currently scanned text does not matchany rule. The state occurs when trying to match the rules found at lines 2 and 3 in the input �le.If the scanner is in that state and then reads something other than an 'o', it will have to back upto �nd a rule which is matched. With a bit of head-scratching one can see that this must be the

31state it's in when it has seen "fo". When this has happened, if anything other than another 'o' isseen, the scanner will have to back up to simply match the 'f' (by the default rule).The comment regarding State #8 indicates there's a problem when "foob" has been scanned.Indeed, on any character other than an 'a', the scanner will have to back up to accept "foo".Similarly, the comment for State #9 concerns when "fooba" has been scanned and an 'r' does notfollow.The �nal comment reminds us that there's no point going to all the trouble of removing backingup from the rules unless we're using `-Cf' or `-CF', since there's no performance gain doing so withcompressed scanners.The way to remove the backing up is to add "error" rules:%%foo return TOK_KEYWORD;foobar return TOK_KEYWORD;fooba |foob |fo {/* false alarm, not really a keyword */return TOK_ID;}Eliminating backing up among a list of keywords can also be done using a "catch-all" rule:%%foo return TOK_KEYWORD;foobar return TOK_KEYWORD;[a-z]+ return TOK_ID;This is usually the best solution when appropriate.Backing up messages tend to cascade. With a complicated set of rules it's not uncommon to gethundreds of messages. If one can decipher them, though, it often only takes a dozen or so rules toeliminate the backing up (though it's easy to make a mistake and have an error rule accidentallymatch a valid token. A possible future flex feature will be to automatically add rules to eliminatebacking up).It's important to keep in mind that you gain the bene�ts of eliminating backing up only if youeliminate every instance of backing up. Leaving just one means you gain nothing.Variable trailing context (where both the leading and trailing parts do not have a �xed length)entails almost the same performance loss as REJECT (i.e., substantial). So when possible a rule like:%%mouse|rat/(cat|dog) run();is better written:%%mouse/cat|dog run();rat/cat|dog run();or as

32%%mouse|rat/cat run();mouse|rat/dog run();Note that here the special '|' action does not provide any savings, and can even make thingsworse (see De�ciencies / Bugs below).Another area where the user can increase a scanner's performance (and one that's easier toimplement) arises from the fact that the longer the tokens matched, the faster the scanner will run.This is because with long tokens the processing of most input characters takes place in the (short)inner scanning loop, and does not often have to go through the additional work of setting up thescanning environment (e.g., yytext) for the action. Recall the scanner for C comments:%x comment%% int line_num = 1;"/*" BEGIN(comment);<comment>[^*\n]*<comment>"*"+[^*/\n]*<comment>\n ++line_num;<comment>"*"+"/" BEGIN(INITIAL);This could be sped up by writing it as:%x comment%% int line_num = 1;"/*" BEGIN(comment);<comment>[^*\n]*<comment>[^*\n]*\n ++line_num;<comment>"*"+[^*/\n]*<comment>"*"+[^*/\n]*\n ++line_num;<comment>"*"+"/" BEGIN(INITIAL);Now instead of each newline requiring the processing of another action, recognizing the newlinesis "distributed" over the other rules to keep the matched text as long as possible. Note that addingrules does not slow down the scanner! The speed of the scanner is independent of the number ofrules or (modulo the considerations given at the beginning of this section) how complicated therules are with regard to operators such as '*' and '|'.A �nal example in speeding up a scanner: suppose you want to scan through a �le containingidenti�ers and keywords, one per line and with no other extraneous characters, and recognize allthe keywords. A natural �rst approach is:%%asm |auto |break |: : : etc : : :volatile |

33while /* it's a keyword */.|\n /* it's not a keyword */To eliminate the back-tracking, introduce a catch-all rule:%%asm |auto |break |... etc ...volatile |while /* it's a keyword */[a-z]+ |.|\n /* it's not a keyword */Now, if it's guaranteed that there's exactly one word per line, then we can reduce the totalnumber of matches by a half by merging in the recognition of newlines with that of the othertokens:%%asm\n |auto\n |break\n |: : : etc : : :volatile\n |while\n /* it's a keyword */[a-z]+\n |.|\n /* it's not a keyword */One has to be careful here, as we have now reintroduced backing up into the scanner. Inparticular, while we know that there will never be any characters in the input stream other thanletters or newlines, flex can't �gure this out, and it will plan for possibly needing to back upwhen it has scanned a token like "auto" and then the next character is something other than anewline or a letter. Previously it would then just match the "auto" rule and be done, but nowit has no "auto" rule, only a "auto\n" rule. To eliminate the possibility of backing up, we couldeither duplicate all rules but without �nal newlines, or, since we never expect to encounter suchan input and therefore don't how it's classi�ed, we can introduce one more catch-all rule, this onewhich doesn't include a newline:%%asm\n |auto\n |break\n |: : : etc : : :volatile\n |while\n /* it's a keyword */[a-z]+\n |[a-z]+ |.|\n /* it's not a keyword */

34Compiled with `-Cf', this is about as fast as one can get a flex scanner to go for this particularproblem.A �nal note: flex is slow when matching NUL's, particularly when a token contains multipleNUL's. It's best to write rules which match short amounts of text if it's anticipated that the textwill often include NUL's.Another �nal note regarding performance: as mentioned above in the section How the Input isMatched, dynamically resizing yytext to accommodate huge tokens is a slow process because itpresently requires that the (huge) token be rescanned from the beginning. Thus if performance isvital, you should attempt to match "large" quantities of text but not "huge" quantities, where thecuto� between the two is at about 8K characters/token.0.19 Generating C++ scannersflex provides two di�erent ways to generate scanners for use with C++. The �rst way is tosimply compile a scanner generated by flex using a C++ compiler instead of a C compiler. Youshould not encounter any compilations errors (please report any you �nd to the email address givenin the Author section below). You can then use C++ code in your rule actions instead of C code.Note that the default input source for your scanner remains yyin, and default echoing is still doneto yyout. Both of these remain `FILE *' variables and not C++ streams.You can also use flex to generate a C++ scanner class, using the `-+' option, (or, equivalently,`%option c++'), which is automatically speci�ed if the name of the
ex executable ends in a `+', suchas flex++. When using this option,
ex defaults to generating the scanner to the �le `lex.yy.cc'instead of `lex.yy.c'. The generated scanner includes the header �le `FlexLexer.h', which de�nesthe interface to two C++ classes.The �rst class, FlexLexer, provides an abstract base class de�ning the general scanner classinterface. It provides the following member functions:`const char* YYText()'returns the text of the most recently matched token, the equivalent of yytext.`int YYLeng()'returns the length of the most recently matched token, the equivalent of yyleng.`int lineno() const'returns the current input line number (see `%option yylineno'), or 1 if `%optionyylineno' was not used.`void set_debug(int flag)'sets the debugging
ag for the scanner, equivalent to assigning to yy_flex_debug (seethe Options section above). Note that you must build the scanner using `%optiondebug' to include debugging information in it.`int debug() const'returns the current setting of the debugging
ag.Also provided are member functions equivalent to `yy_switch_to_buffer(), yy_create_buffer()'(though the �rst argument is an `istream*' object pointer and not a `FILE*', `yy_flush_buffer()',`yy_delete_buffer()', and `yyrestart()' (again, the �rst argument is a `istream*' objectpointer).

35The second class de�ned in `FlexLexer.h' is yyFlexLexer, which is derived from FlexLexer.It de�nes the following additional member functions:`yyFlexLexer(istream* arg_yyin = 0, ostream* arg_yyout = 0)'constructs a yyFlexLexer object using the given streams for input and output. If notspeci�ed, the streams default to cin and cout, respectively.`virtual int yylex()'performs the same role is `yylex()' does for ordinary
ex scanners: it scans the inputstream, consuming tokens, until a rule's action returns a value. If you derive a subclassS from yyFlexLexer and want to access the member functions and variables of S inside`yylex()', then you need to use `%option yyclass="S"' to inform flex that you willbe using that subclass instead of yyFlexLexer. In this case, rather than generating`yyFlexLexer::yylex()', flex generates `S::yylex()' (and also generates a dummy`yyFlexLexer::yylex()' that calls `yyFlexLexer::LexerError()' if called).`virtual void switch_streams(istream* new_in = 0, ostream* new_out = 0)'reassigns yyin to new_in (if non-nil) and yyout to new_out (ditto), deleting the pre-vious input bu�er if yyin is reassigned.`int yylex(istream* new_in = 0, ostream* new_out = 0)'�rst switches the input streams via `switch_streams(new_in, new_out)' and thenreturns the value of `yylex()'.In addition, yyFlexLexer de�nes the following protected virtual functions which you can rede�nein derived classes to tailor the scanner:`virtual int LexerInput(char* buf, int max_size)'reads up to `max_size' characters into buf and returns the number of characters read.To indicate end-of-input, return 0 characters. Note that "interactive" scanners (see the`-B' and `-I'
ags) de�ne the macro YY_INTERACTIVE. If you rede�ne LexerInput()and need to take di�erent actions depending on whether or not the scanner might bescanning an interactive input source, you can test for the presence of this name via`#ifdef'.`virtual void LexerOutput(const char* buf, int size)'writes out size characters from the bu�er buf, which, while NUL-terminated, may alsocontain "internal" NUL's if the scanner's rules can match text with NUL's in them.`virtual void LexerError(const char* msg)'reports a fatal error message. The default version of this function writes the messageto the stream cerr and exits.Note that a yyFlexLexer object contains its entire scanning state. Thus you can use such objectsto create reentrant scanners. You can instantiate multiple instances of the same yyFlexLexer class,and you can also combine multiple C++ scanner classes together in the same program using the`-P' option discussed above. Finally, note that the `%array' feature is not available to C++ scannerclasses; you must use `%pointer' (the default).Here is an example of a simple C++ scanner:// An example of using the flex C++ scanner class.%{

36int mylineno = 0;%}string \"[^\n"]+\"ws [\t]+alpha [A-Za-z]dig [0-9]name ({alpha}|{dig}|\$)({alpha}|{dig}|[_.\-/$])*num1 [-+]?{dig}+\.?([eE][-+]?{dig}+)?num2 [-+]?{dig}*\.{dig}+([eE][-+]?{dig}+)?number {num1}|{num2}%%{ws} /* skip blanks and tabs */"/*" {int c;while((c = yyinput()) != 0){if(c == '\n')++mylineno;else if(c == '*'){if((c = yyinput()) == '/')break;elseunput(c);}}}{number} cout << "number " << YYText() << '\n';\n mylineno++;{name} cout << "name " << YYText() << '\n';{string} cout << "string " << YYText() << '\n';%%Version 2.5 December 1994 44

37int main(int /* argc */, char** /* argv */){FlexLexer* lexer = new yyFlexLexer;while(lexer->yylex() != 0);return 0;}If you want to create multiple (di�erent) lexer classes, you use the `-P'
ag (or the `prefix=' op-tion) to rename each yyFlexLexer to some other xxFlexLexer. You then can include `<FlexLexer.h>'in your other sources once per lexer class, �rst renaming yyFlexLexer as follows:#undef yyFlexLexer#define yyFlexLexer xxFlexLexer#include <FlexLexer.h>#undef yyFlexLexer#define yyFlexLexer zzFlexLexer#include <FlexLexer.h>if, for example, you used `%option prefix="xx"' for one of your scanners and `%optionprefix="zz"' for the other.IMPORTANT: the present form of the scanning class is experimental and may change consid-erably between major releases.0.20 Incompatibilities with lex and POSIXflex is a rewrite of the AT&T Unix lex tool (the two implementations do not share any code,though), with some extensions and incompatibilities, both of which are of concern to those whowish to write scanners acceptable to either implementation. Flex is fully compliant with the POSIXlex speci�cation, except that when using `%pointer' (the default), a call to `unput()' destroys thecontents of yytext, which is counter to the POSIX speci�cation.In this section we discuss all of the known areas of incompatibility between
ex, AT&T lex, andthe POSIX speci�cation.flex's `-l' option turns on maximum compatibility with the original AT&T lex implemen-tation, at the cost of a major loss in the generated scanner's performance. We note below whichincompatibilities can be overcome using the `-l' option.flex is fully compatible with lex with the following exceptions:- The undocumented lex scanner internal variable yylineno is not supported unless `-l' or`%option yylineno' is used. yylineno should be maintained on a per-bu�er basis, rather thana per-scanner (single global variable) basis. yylineno is not part of the POSIX speci�cation.- The `input()' routine is not rede�nable, though it may be called to read characters followingwhatever has been matched by a rule. If `input()' encounters an end-of-�le the normal`yywrap()' processing is done. A \real" end-of-�le is returned by `input()' as EOF.Input is instead controlled by de�ning the YY_INPUT macro.The flex restriction that `input()' cannot be rede�ned is in accordance with the POSIXspeci�cation, which simply does not specify any way of controlling the scanner's input otherthan by making an initial assignment to yyin.

38- The `unput()' routine is not rede�nable. This restriction is in accordance with POSIX.- flex scanners are not as reentrant as lex scanners. In particular, if you have an interactivescanner and an interrupt handler which long-jumps out of the scanner, and the scanner issubsequently called again, you may get the following message:fatal flex scanner internal error--end of buffer missedTo reenter the scanner, �rst useyyrestart(yyin);Note that this call will throw away any bu�ered input; usually this isn't a problem with aninteractive scanner.Also note that
ex C++ scanner classes are reentrant, so if using C++ is an option for you, youshould use them instead. See "Generating C++ Scanners" above for details.- `output()' is not supported. Output from the `ECHO' macro is done to the �le-pointer yyout(default stdout).`output()' is not part of the POSIX speci�cation.- lex does not support exclusive start conditions (%x), though they are in the POSIX speci�-cation.- When de�nitions are expanded, flex encloses them in parentheses. With lex, the following:NAME [A-Z][A-Z0-9]*%%foo{NAME}? printf("Found it\n");%%will not match the string "foo" because when the macro is expanded the rule is equivalent to"foo[A-Z][A-Z0-9]*?" and the precedence is such that the '?' is associated with "[A-Z0-9]*".With flex, the rule will be expanded to "foo([A-Z][A-Z0-9]*)?" and so the string "foo" willmatch.Note that if the de�nition begins with `^' or ends with `$' then it is not expanded with paren-theses, to allow these operators to appear in de�nitions without losing their special meanings.But the `<s>, /', and `<<EOF>>' operators cannot be used in a flex de�nition.Using `-l' results in the lex behavior of no parentheses around the de�nition.The POSIX speci�cation is that the de�nition be enclosed in parentheses.- Some implementations of lex allow a rule's action to begin on a separate line, if the rule'spattern has trailing whitespace:%%foo|bar<space here>{ foobar_action(); }flex does not support this feature.- The lex `%r' (generate a Ratfor scanner) option is not supported. It is not part of the POSIXspeci�cation.- After a call to `unput()', yytext is unde�ned until the next token is matched, unless thescanner was built using `%array'. This is not the case with lex or the POSIX speci�cation.The `-l' option does away with this incompatibility.- The precedence of the `{}' (numeric range) operator is di�erent. lex interprets "abc{1,3}"as "match one, two, or three occurrences of 'abc'", whereas flex interprets it as "match 'ab'

39followed by one, two, or three occurrences of 'c'". The latter is in agreement with the POSIXspeci�cation.- The precedence of the `^' operator is di�erent. lex interprets "^foo|bar" as "match either'foo' at the beginning of a line, or 'bar' anywhere", whereas flex interprets it as "match either'foo' or 'bar' if they come at the beginning of a line". The latter is in agreement with thePOSIX speci�cation.- The special table-size declarations such as `%a' supported by lex are not required by flexscanners; flex ignores them.- The name FLEX SCANNER is #de�ne'd so scanners may be written for use with eitherflex or lex. Scanners also include YY_FLEX_MAJOR_VERSION and YY_FLEX_MINOR_VERSIONindicating which version of flex generated the scanner (for example, for the 2.5 release, thesede�nes would be 2 and 5 respectively).The following flex features are not included in lex or the POSIX speci�cation:C++ scanners%optionstart condition scopesstart condition stacksinteractive/non-interactive scannersyy_scan_string() and friendsyyterminate()yy_set_interactive()yy_set_bol()YY_AT_BOL()<<EOF>><*>YY_DECLYY_STARTYY_USER_ACTIONYY_USER_INIT#line directives%{}'s around actionsmultiple actions on a lineplus almost all of the
ex
ags. The last feature in the list refers to the fact that with flex youcan put multiple actions on the same line, separated with semicolons, while with lex, the followingfoo handle_foo(); ++num_foos_seen;is (rather surprisingly) truncated tofoo handle_foo();flex does not truncate the action. Actions that are not enclosed in braces are simply terminatedat the end of the line.0.21 Diagnostics`warning, rule cannot be matched'indicates that the given rule cannot be matched because it follows other rules thatwill always match the same text as it. For example, in the following "foo" cannot bematched because it comes after an identi�er "catch-all" rule:

40[a-z]+ got_identifier();foo got_foo();Using REJECT in a scanner suppresses this warning.`warning, -s option given but default rule can be matched'means that it is possible (perhaps only in a particular start condition) that the defaultrule (match any single character) is the only one that will match a particular input.Since `-s' was given, presumably this is not intended.`reject_used_but_not_detected undefined'`yymore_used_but_not_detected undefined'These errors can occur at compile time. They indicate that the scanner uses REJECTor `yymore()' but that flex failed to notice the fact, meaning that flex scanned the�rst two sections looking for occurrences of these actions and failed to �nd any, butsomehow you snuck some in (via a #include �le, for example). Use `%option reject'or `%option yymore' to indicate to
ex that you really do use these features.`flex scanner jammed'a scanner compiled with `-s' has encountered an input string which wasn't matchedby any of its rules. This error can also occur due to internal problems.`token too large, exceeds YYLMAX'your scanner uses `%array' and one of its rules matched a string longer than the `YYL-'MAX constant (8K bytes by default). You can increase the value by #de�ne'ing YYLMAXin the de�nitions section of your flex input.`scanner requires -8 flag to use the character 'x''Your scanner speci�cation includes recognizing the 8-bit character x and you did notspecify the -8
ag, and your scanner defaulted to 7-bit because you used the `-Cf' or`-CF' table compression options. See the discussion of the `-7'
ag for details.`flex scanner push-back overflow'you used `unput()' to push back so much text that the scanner's bu�er could not holdboth the pushed-back text and the current token in yytext. Ideally the scanner shoulddynamically resize the bu�er in this case, but at present it does not.`input buffer overflow, can't enlarge buffer because scanner uses REJECT'the scanner was working on matching an extremely large token and needed to expandthe input bu�er. This doesn't work with scanners that use REJECT.`fatal flex scanner internal error--end of buffer missed'This can occur in an scanner which is reentered after a long-jump has jumped out (orover) the scanner's activation frame. Before reentering the scanner, use:yyrestart(yyin);or, as noted above, switch to using the C++ scanner class.`too many start conditions in <> construct!'you listed more start conditions in a <> construct than exist (so you must have listedat least one of them twice).

410.22 Files`-lfl' library with which scanners must be linked.`lex.yy.c' generated scanner (called `lexyy.c' on some systems).`lex.yy.cc'generated C++ scanner class, when using `-+'.`<FlexLexer.h>'header �le de�ning the C++ scanner base class, FlexLexer, and its derived class,yyFlexLexer.`flex.skl' skeleton scanner. This �le is only used when building
ex, not when
ex executes.`lex.backup'backing-up information for `-b'
ag (called `lex.bck' on some systems).0.23 De�ciencies / BugsSome trailing context patterns cannot be properly matched and generate warning messages("dangerous trailing context"). These are patterns where the ending of the �rst part of the rulematches the beginning of the second part, such as "zx*/xy*", where the 'x*' matches the 'x' atthe beginning of the trailing context. (Note that the POSIX draft states that the text matched bysuch patterns is unde�ned.)For some trailing context rules, parts which are actually �xed-length are not recognized as such,leading to the abovementioned performance loss. In particular, parts using '|' or {n} (such as"foo{3}") are always considered variable-length.Combining trailing context with the special '|' action can result in �xed trailing context beingturned into the more expensive variable trailing context. For example, in the following:%%abc |xyz/defUse of `unput()' invalidates yytext and yyleng, unless the `%array' directive or the `-l' optionhas been used.Pattern-matching of NUL's is substantially slower than matching other characters.Dynamic resizing of the input bu�er is slow, as it entails rescanning all the text matched so farby the current (generally huge) token.Due to both bu�ering of input and read-ahead, you cannot intermix calls to <stdio.h> routines,such as, for example, `getchar()', with flex rules and expect it to work. Call `input()' instead.The total table entries listed by the `-v'
ag excludes the number of table entries needed todetermine what rule has been matched. The number of entries is equal to the number of DFAstates if the scanner does not use REJECT, and somewhat greater than the number of states if itdoes.REJECT cannot be used with the `-f' or `-F' options.The flex internal algorithms need documentation.

420.24 See alsolex(1), yacc(1), sed(1), awk(1).John Levine, Tony Mason, and Doug Brown: Lex & Yacc; O'Reilly and Associates. Be sure toget the 2nd edition.M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator.Alfred Aho, Ravi Sethi and Je�rey Ullman: Compilers: Principles, Techniques and Tools;Addison-Wesley (1986). Describes the pattern-matching techniques used by flex (deterministic�nite automata).0.25 AuthorVern Paxson, with the help of many ideas and much inspiration from Van Jacobson. Originalversion by Jef Poskanzer. The fast table representation is a partial implementation of a design doneby Van Jacobson. The implementation was done by Kevin Gong and Vern Paxson.Thanks to the many flex beta-testers, feedbackers, and contributors, especially Francois Pinard,Casey Leedom, Stan Adermann, Terry Allen, David Barker-Plummer, John Basrai, Nelson H.F.Beebe, `benson@odi.com', Karl Berry, Peter A. Bigot, Simon Blanchard, Keith Bostic, FredericBrehm, Ian Brockbank, Kin Cho, Nick Christopher, Brian Clapper, J.T. Conklin, Jason Cough-lin, Bill Cox, Nick Cropper, Dave Curtis, Scott David Daniels, Chris G. Demetriou, Theo Deraadt,Mike Donahue, Chuck Doucette, Tom Epperly, Leo Eskin, Chris Faylor, Chris Flatters, Jon Forrest,Joe Gayda, Kaveh R. Ghazi, Eric Goldman, Christopher M. Gould, Ulrich Grepel, Peer Griebel,Jan Hajic, Charles Hemphill, NORO Hideo, Jarkko Hietaniemi, Scott Hofmann, Je� Honig, DanaHudes, Eric Hughes, John Interrante, Ceriel Jacobs, Michal Jaegermann, Sakari Jalovaara, Jef-frey R. Jones, Henry Juengst, Klaus Kaempf, Jonathan I. Kamens, Terrence O Kane, Amir Katz,`ken@ken.hilco.com', Kevin B. Kenny, Steve Kirsch, Winfried Koenig, Marq Kole, Ronald Lam-precht, Greg Lee, Rohan Lenard, Craig Leres, John Levine, Steve Liddle, Mike Long, Mohamedel Lozy, Brian Madsen, Malte, Joe Marshall, Bengt Martensson, Chris Metcalf, Luke Mewburn,Jim Meyering, R. Alexander Milowski, Erik Naggum, G.T. Nicol, Landon Noll, James Nordby,Marc Nozell, Richard Ohnemus, Karsten Pahnke, Sven Panne, Roland Pesch, Walter Pelissero,Gaumond Pierre, Esmond Pitt, Jef Poskanzer, Joe Rahmeh, Jarmo Raiha, Frederic Raimbault,Pat Rankin, Rick Richardson, Kevin Rodgers, Kai Uwe Rommel, Jim Roskind, Alberto Santini,Andreas Scherer, Darrell Schiebel, Raf Schietekat, Doug Schmidt, Philippe Schnoebelen, AndreasSchwab, Alex Siegel, Eckehard Stolz, Jan-Erik Strvmquist, Mike Stump, Paul Stuart, Dave Tall-man, Ian Lance Taylor, Chris Thewalt, Richard M. Timoney, Jodi Tsai, Paul Tuinenga, Gary Weik,Frank Whaley, Gerhard Wilhelms, Kent Williams, Ken Yap, Ron Zellar, Nathan Zelle, David Zuhn,and those whose names have slipped my marginal mail-archiving skills but whose contributions areappreciated all the same.Thanks to Keith Bostic, Jon Forrest, Noah Friedman, John Gilmore, Craig Leres, John Levine,Bob Mulcahy, G.T. Nicol, Francois Pinard, Rich Salz, and Richard Stallman for help with variousdistribution headaches.Thanks to Esmond Pitt and Earle Horton for 8-bit character support; to Benson Margulies andFred Burke for C++ support; to Kent Williams and Tom Epperly for C++ class support; to OveEwerlid for support of NUL's; and to Eric Hughes for support of multiple bu�ers.This work was primarily done when I was with the Real Time Systems Group at the LawrenceBerkeley Laboratory in Berkeley, CA. Many thanks to all there for the support I received.

43Send comments to `vern@ee.lbl.gov'.

iTable of Contents0.1 Name . 10.2 Synopsis . 10.3 Overview . 10.4 Description . 20.5 Some simple examples . 20.6 Format of the input �le . 40.7 Patterns . 50.8 How the input is matched . 80.9 Actions . 80.10 The generated scanner . 120.11 Start conditions . 130.12 Multiple input bu�ers . 180.13 End-of-�le rules . 200.14 Miscellaneous macros . 210.15 Values available to the user . 220.16 Interfacing with yacc . 230.17 Options . 230.18 Performance considerations . 290.19 Generating C++ scanners . 340.20 Incompatibilities with lex and POSIX . 370.21 Diagnostics . 390.22 Files . 410.23 De�ciencies / Bugs . 410.24 See also . 420.25 Author . 42

