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Introduction

Bison is a general-purpose parser generator that converts a grammar description for an LALR(1)
context-free grammar into a C program to parse that grammar. Once you are proficient with
Bison, you may use it to develop a wide range of language parsers, from those used in simple desk
calculators to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to work with
Bison with no change. Anyone familiar with Yacc should be able to use Bison with little trouble.
You need to be fluent in C programming in order to use Bison or to understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show three
explained examples, each building on the last. If you don’t know Bison or Yacc, start by reading
these chapters. Reference chapters follow which describe specific aspects of Bison in detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it Yacc-compatible.
This edition corresponds to version 1.20 of Bison.
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Conditions for Using Bison

Bison grammars can be used only in programs that are free software. This is in contrast to what
happens with the GNU C compiler and the other GNU programming tools.

The reason Bison is special is that the output of the Bison utility—the Bison parser file—
contains a verbatim copy of a sizable piece of Bison, which is the code for the yyparse function.
(The actions from your grammar are inserted into this function at one point, but the rest of the
function is not changed.)

As a result, the Bison parser file is covered by the same copying conditions that cover Bison
itself and the rest of the GNU system: any program containing it has to be distributed under the
standard GNU copying conditions.

Occasionally people who would like to use Bison to develop proprietary programs complain
about this.

We don’t particularly sympathize with their complaints. The purpose of the GNU project is to
promote the right to share software and the practice of sharing software; it is a means of changing
society. The people who complain are planning to be uncooperative toward the rest of the world;

why should they deserve our help in doing so?

However, it’s possible that a change in these conditions might encourage computer companies
to use and distribute the GNU system. If so, then we might decide to change the terms on yyparse
as a matter of the strategy of promoting the right to share. Such a change would be irrevocable.
Since we stand by the copying permissions we have announced, we cannot withdraw them once

given.

We mustn’t make an irrevocable change hastily. We have to wait until there is a complete GNU
system and there has been time to learn how this issue affects its reception.
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GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU

Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
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passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in

the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.
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b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,

and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative

or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do

one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)



Bison 1.20

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.
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10.

11.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system:;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the

rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS1S” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
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FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at

least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show
w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.
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You should also get your employer (if you work as a programmer) or your school, if any, to sign

a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.
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1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison will not
make sense. If you do not already know how to use Bison or Yacc, we suggest you start by reading
this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar. This
means that you specify one or more syntactic groupings and give rules for constructing them from
their parts. For example, in the C language, one kind of grouping is called an ‘expression’. One
rule for making an expression might be, “An expression can be made of a minus sign and another
expression”. Another would be, “An expression can be an integer”. As you can see, rules are often

recursive, but there must be at least one rule which leads out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-Naur
Form or “BNF”, which was developed in order to specify the language Algol 60. Any grammar
expressed in BNF is a context-free grammar. The input to Bison is essentially machine-readable
BNF.

Not all context-free languages can be handled by Bison, only those that are LALR(1). In
brief, this means that it must be possible to tell how to parse any portion of an input string with
just a single token of look-ahead. Strictly speaking, that is a description of an LR(1) grammar,
and LALR(1) involves additional restrictions that are hard to explain simply; but it is rare in
actual practice to find an LR(1) grammar that fails to be LALR(1). See Section 5.7 [Mysterious
Reduce/Reduce Conflicts], page 74, for more information on this.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping is named
by a symbol. Those which are built by grouping smaller constructs according to grammatical rules
are called nonterminal symbols; those which can’t be subdivided are called terminal symbols or
token types. We call a piece of input corresponding to a single terminal symbol a token, and a
piece corresponding to a single nonterminal symbol a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal, mean.
The tokens of C are identifiers, constants (numeric and string), and the various keywords, arithmetic
operators and punctuation marks. So the terminal symbols of a grammar for C include ‘identifier’,
‘number’, ‘string’, plus one symbol for each keyword, operator or punctuation mark: “f’, ‘return’,
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‘const’, ‘static’, ‘int’, ‘char’, ‘plus-sign’, ‘open-brace’, ‘close-brace’, ‘comma’ and many more. (These

tokens can be subdivided into characters, but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (x) /* identifier, open-paren, */
/* identifier, close-paren */
int x; /* keyword ‘int’, identifier, semicolon */
{ /* open-brace */

return x * x; /* keyword ‘return’, identifier, */
/* asterisk, identifier, semicolon */
¥ /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration, and the
function definition. These are represented in the grammar of C by nonterminal symbols ‘expression’,
‘statement’, ‘declaration’ and ‘function definition’. The full grammar uses dozens of additional
language constructs, each with its own nonterminal symbol, in order to express the meanings
of these four. The example above is a function definition; it contains one declaration, and one
statement. In the statement, each ‘x’ is an expression and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of simpler
constructs. For example, one kind of C statement is the return statement; this would be described
with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semicolon’.

There would be many other rules for ‘statement’, one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a complete
utterance in the language. It is called the start symbol. In a compiler, this means a complete input
program. In the C language, the nonterminal symbol ‘sequence of definitions and declarations’
plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not valid as
an entire C program. In the context-free grammar of C, this follows from the fact that ‘expression’
is not the start symbol.
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The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces to a
single grouping whose symbol is the grammar’s start symbol. If we use a grammar for C, the entire
input must be a ‘sequence of definitions and declarations’. If not, the parser reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you must
write a file expressing the grammar in Bison syntax: a Bison grammar file. See Chapter 3 [Bison

Grammar Files], page 39.

A nonterminal symbol in the formal grammar is represented in Bison input as an identifier, like

an identifier in C. By convention, it should be in lower case, such as expr, stmt or declaration.

The Bison representation for a terminal symbol is also called a token type. Token types as well
can be represented as C-like identifiers. By convention, these identifiers should be upper case to
distinguish them from nonterminals: for example, INTEGER, IDENTIFIER, IF or RETURN. A terminal
symbol that stands for a particular keyword in the language should be named after that keyword
converted to upper case. The terminal symbol error is reserved for error recovery. See Section 3.2
[Symbols], page 40.

A terminal symbol can also be represented as a character literal, just like a C character constant.
You should do this whenever a token is just a single character (parenthesis, plus-sign, etc.): use

that same character in a literal as the terminal symbol for that token.

The grammar rules also have an expression in Bison syntax. For example, here is the Bison rule
for a C return statement. The semicolon in quotes is a literal character token, representing part
of the C syntax for the statement; the naked semicolon, and the colon, are Bison punctuation used

in every rule.

stmt: RETURN expr ’;°

b

See Section 3.3 [Syntax of Grammar Rules], page 42.
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1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions
the terminal symbol ‘integer constant’, it means that any integer constant is grammatically valid
in that position. The precise value of the constant is irrelevant to how to parse the input: if ‘x+4’

is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed. A compiler is
useless if it fails to distinguish between 4, 1 and 3989 as constants in the program! Therefore, each
token in a Bison grammar has both a token type and a semantic value. See Section 3.5 [Defining
Language Semantics], page 44, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER, IDENTIFIER or
>, 7. It tells everything you need to know to decide where the token may validly appear and how
to group it with other tokens. The grammar rules know nothing about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token, such as
the value of an integer, or the name of an identifier. (A token such as *,? which is just punctuation
doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the semantic
value 4. Another input token might have the same token type INTEGER but value 3989. When a
grammar rule says that INTEGER is allowed, either of these tokens is acceptable because each is an
INTEGER. When the parser accepts the token, it keeps track of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For example,
in a calculator, an expression typically has a semantic value that is a number. In a compiler for
a programming language, an expression typically has a semantic value that is a tree structure

describing the meaning of the expression.

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Bison grammar, a grammar rule can have an action made up of
C statements. Each time the parser recognizes a match for that rule, the action is executed. See
Section 3.5.3 [Actions], page 45.



Chapter 1: The Concepts of Bison 17

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which says
an expression can be the sum of two expressions. When the parser recognizes such a sum, each of
the subexpressions has a semantic value which describes how it was built up. The action for this
rule should create a similar sort of value for the newly recognized larger expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:

expr: expr ’+’ expr { $$ = $1 + $3; }

b

The action says how to produce the semantic value of the sum expression from the values of the

two subexpressions.

1.5 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C source file
that parses the language described by the grammar. This file is called a Bison parser. Keep in
mind that the Bison utility and the Bison parser are two distinct programs: the Bison utility is a
program whose output is the Bison parser that becomes part of your program.

The job of the Bison parser is to group tokens into groupings according to the grammar rules—
for example, to build identifiers and operators into expressions. As it does this, it runs the actions
for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it wants
a new token. It doesn’t know what is “inside” the tokens (though their semantic values may reflect
this). Typically the lexical analyzer makes the tokens by parsing characters of text, but Bison does
not depend on this. See Section 4.2 [The Lexical Analyzer Function yylex], page 57.

The Bison parser file is C code which defines a function named yyparse which implements that
grammar. This function does not make a complete C program: you must supply some additional
functions. One is the lexical analyzer. Another is an error-reporting function which the parser calls
to report an error. In addition, a complete C program must start with a function called main; you
have to provide this, and arrange for it to call yyparse or the parser will never run. See Chapter 4
[Parser C-Language Interface], page 57.
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Aside from the token type names and the symbols in the actions you write, all variable and
function names used in the Bison parser file begin with ‘yy’ or ‘YY’. This includes interface func-
tions such as the lexical analyzer function yylex, the error reporting function yyerror and the
parser function yyparse itself. This also includes numerous identifiers used for internal purposes.
Therefore, you should avoid using C identifiers starting with ‘yy’ or ‘YY’ in the Bison grammar file

except for the ones defined in this manual.

1.6 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working com-
piler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison Grammar
Files], page 39). For each grammatical rule in the language, describe the action that is to be
taken when an instance of that rule is recognized. The action is described by a sequence of C

statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical analyzer
may be written by hand in C (see Section 4.2 [The Lexical Analyzer Function yylex], page 57).
It could also be produced using Lex, but the use of Lex is not discussed in this manual.

3. Write a controlling function that calls the Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:

1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.

3. Link the object files to produce the finished product.

1.7 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison grammar
file is as follows:

Al

C declarations

h}
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Bison declarations

W

Grammar rules

W

Additional C code

The ‘U4, ‘4L and ‘%}’ are punctuation that appears in every Bison grammar file to separate the
sections.

The C declarations may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header files that
do any of these things.

The Bison declarations declare the names of the terminal and nonterminal symbols, and may
also describe operator precedence and the data types of semantic values of various symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.

The additional C code can contain any C code you want to use. Often the definition of the
lexical analyzer yylex goes here, plus subroutines called by the actions in the grammar rules. In a

simple program, all the rest of the program can go here.
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2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish notation
calculator, an algebraic (infix) notation calculator, and a multi-function calculator. All three have
been tested under BSD Unix 4.3; each produces a usable, though limited, interactive desk-top
calculator.

These examples are simple, but Bison grammars for real programming languages are written
the same way.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calculator (a
calculator using postfix operators). This example provides a good starting point, since operator
precedence is not an issue. The second example will illustrate how operator precedence is handled.

[4

The source code for this calculator is named ‘rpcalc.y’. The ‘.y’ extension is a convention

used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in C,
comments are placed between ‘/*...x/’.

/* Reverse polish notation calculator. */

W
#tdefine YYSTYPE double
#include <math.h>

Ly
%token NUM

%% /* Grammar rules and actions follow */

The C declarations section (see Section 3.1.1 [The C Declarations Section], page 39) contains
two preprocessor directives.
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The #define directive defines the macro YYSTYPE, thus specifying the C data type for semantic
values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic Values], page 45).
The Bison parser will use whatever type YYSTYPE is defined as; if you don’t define it, int is the
default. Because we specify double, each token and each expression has an associated value, which
is a floating point number.

The #include directive is used to declare the exponentiation function pow.

The second section, Bison declarations, provides information to Bison about the token types
(see Section 3.1.2 [The Bison Declarations Section], page 40). Each terminal symbol that is not a
single-character literal must be declared here. (Single-character literals normally don’t need to be
declared.) In this example, all the arithmetic operators are designated by single-character literals,
so the only terminal symbol that needs to be declared is NUM, the token type for numeric constants.

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.

input: /* empty */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t}.10g\n", $1); }

exp: NUM { $$ = $1; }
| exp exp ’+’ { 8% = $1 + $2; +
| exp exp ’-’ { 8% = $1 - $2; +
| exp exp %’ { %% = $1 x $2; ¥
| exp exp ’/’ { 8% = 81/ $2; }
/* Exponentiation */
| exp exp ’~’ { $$ = pow (81, $2); }
/* Unary minus */
| exp ’n’ { %% = -3%1; ¥
hh

The groupings of the rpcalc “language” defined here are the expression (given the name exp),
the line of input (line), and the complete input transcript (input). Each of these nonterminal
symbols has several alternate rules, joined by the ‘|’ punctuator which is read as “or”. The following
sections explain what these rules mean.
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The semantics of the language is determined by the actions taken when a grouping is recognized.
The actions are the C code that appears inside braces. See Section 3.5.3 [Actions], page 45.

You must specify these actions in C, but Bison provides the means for passing semantic values
between the rules. In each action, the pseudo-variable $$ stands for the semantic value for the
grouping that the rule is going to construct. Assigning a value to $$ is the main job of most

actions. The semantic values of the components of the rule are referred to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:

input: /* empty */
| input line

This definition reads as follows: “A complete input is either an empty string, or a complete
input followed by an input line”. Notice that “complete input” is defined in terms of itself. This
definition is said to be left recursive since input appears always as the leftmost symbol in the
sequence. See Section 3.4 [Recursive Rules], page 43.

The first alternative is empty because there are no symbols between the colon and the first ‘|7;
this means that input can match an empty string of input (no tokens). We write the rules this
way because it is legitimate to type Ctrl-d right after you start the calculator. It’s conventional
to put an empty alternative first and write the comment ‘/* empty */’ in it.

The second alternate rule (input line) handles all nontrivial input. It means, “After reading
any number of lines, read one more line if possible.” The left recursion makes this rule into a loop.
Since the first alternative matches empty input, the loop can be executed zero or more times.

The parser function yyparse continues to process input until a grammatical error is seen or the

lexical analyzer says there are no more input tokens; we will arrange for the latter to happen at

end of file.

2.1.2.2 Explanation of 1line

Now consider the definition of line:
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line: ’\n’
| exp ’\n’ { printf ("\t}.10g\n", $1); }

The first alternative is a token which is a newline character; this means that rpcalc accepts
a blank line (and ignores it, since there is no action). The second alternative is an expression
followed by a newline. This is the alternative that makes rpcalc useful. The semantic value of the
exp grouping is the value of $§1 because the exp in question is the first symbol in the alternative.
The action prints this value, which is the result of the computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the semantic
value associated with the line is uninitialized (its value will be unpredictable). This would be a
bug if that value were ever used, but we don’t use it: once rpcalc has printed the value of the user’s

input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule handles the
simplest expressions: those that are just numbers. The second handles an addition-expression,
which looks like two expressions followed by a plus-sign. The third handles subtraction, and so on.

exp: NUM
| exp exp ’+’ { %% = %1 + $2; ¥
| exp exp ’-’ { 8% = $1 - $2; b
We have used ‘|’ to join all the rules for exp, but we could equally well have written them
separately:
exp: NUM ;
exp: exp exp ’+’ { 8% = $1 + $2; s
$ = 31 - $2; }

exp: exp exp -’ {3

Most of the rules have actions that compute the value of the expression in terms of the value of
its parts. For example, in the rule for addition, $1 refers to the first component exp and $2 refers
to the second one. The third component, >+’ has no meaningful associated semantic value, but if
it had one you could refer to it as $3. When yyparse recognizes a sum expression using this rule,
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the sum of the two subexpressions’ values is produced as the value of the entire expression. See
Section 3.5.3 [Actions], page 45.

You don’t have to give an action for every rule. When a rule has no action, Bison by default
copies the value of $1 into $$. This is what happens in the first rule (the one that uses NUM).

The formatting shown here is the recommended convention, but Bison does not require it. You
can add or change whitespace as much as you wish. For example, this:

exp : NUM | exp exp ’+’ {$$ = $1 + $2; } |
means the same thing as this
exp: NUM
= $1 + $2; }

| exp exp ’°+’ { $$
| ...

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of characters
into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See Section 4.2 [The
Lexical Analyzer Function yylex], page 57.

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer skips
blanks and tabs, then reads in numbers as double and returns them as NUM tokens. Any other
character that isn’t part of a number is a separate token. Note that the token-code for such a
single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents a token
type. The same text used in Bison rules to stand for this token type is also a C expression for the
numeric code for the type. This works in two ways. If the token type is a character literal, then its
numeric code is the ASCII code for that character; you can use the same character literal in the
lexical analyzer to express the number. If the token type is an identifier, that identifier is defined
by Bison as a C macro whose definition is the appropriate number. In this example, therefore, NUM
becomes a macro for yylex to use.
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The semantic value of the token (if it has one) is stored into the global variable yylval, which is
where the Bison parser will look for it. (The C data type of yylval is YYSTYPE, which was defined
at the beginning of the grammar; see Section 2.1.1 [Declarations for rpcalc], page 21.)

A token type code of zero is returned if the end-of-file is encountered. (Bison recognizes any

nonpositive value as indicating the end of the input.)

Here is the code for the lexical analyzer:

/* Lexical analyzer returns a double floating point
number on the stack and the token NUM, or the ASCII
character read if not a number. Skips all blanks
and tabs, returns O for EOF. */

#include <ctype.h>

yylex O
{

int c;

/* skip white space */
while ((¢c = getchar ()) == 7 || ¢ == ’\t’)
/* process numbers  */
if (¢ == .7 || isdigit (c))
{
ungetc (c, stdin);
scanf ("}1f", &yylval);
return NUM;
+
/* return end-of-file =*/
if (¢ == EOF)
return O;
/* return single chars */

return c;
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2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare minimum.

The only requirement is that it call yyparse to start the process of parsing.

main ()
{

yyparse ();
+

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print
an error message (usually but not always "parse error"). It is up to the programmer to supply
yyerror (see Chapter 4 [Parser C-Language Interface], page 57), so here is the definition we will

use:
#include <stdio.h>

yyerror (s) /* Called by yyparse on error */
char *s;

printf ("¥%s\n", s);
}

After yyerror returns, the Bison parser may recover from the error and continue parsing if
the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 77). Otherwise,
yyparse returns nonzero. We have not written any error rules in this example, so any invalid input
will cause the calculator program to exit. This is not clean behavior for a real calculator, but it is

adequate in the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the source code
in one or more source files. For such a simple example, the easiest thing is to put everything in one
file. The definitions of yylex, yyerror and main go at the end, in the “additional C code” section
of the file (see Section 1.7 [The Overall Layout of a Bison Grammar], page 18).



28 Bison 1.20

For a large project, you would probably have several source files, and use make to arrange to

recompile them.

With all the source in a single file, you use the following command to convert it into a parser

file:

bison file_name.y

In this example the file was called ‘rpcalc.y’ (for “Reverse Polish CALCulator”). Bison produces
a file named ‘file_name.tab.c’, removing the ‘.y’ from the original file name. The file output by
Bison contains the source code for yyparse. The additional functions in the input file (yylex,
yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File

Here is how to compile and run the parser file:

# List files in current directory.
% 1s
rpcalc.tab.c rpcalc.y

# Compile the Bison parser.
# ‘-1m’ tells compiler to search math library for pow.

% cc rpcalc.tab.c -1lm -o rpcalc

# List files again.
h 1s
rpcalc rpcalc.tab.c rpcalc.y

The file ‘rpcalc’ now contains the executable code. Here is an example session using rpcalc.

% rpcalc

4 9 +

13

37+ 345 %x+-

-13

37+345+%+-n Note the unary minus, ‘n’
13

56/ 4n+

-3.166666667

34-° Exponentiation
81
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) End-of-file indicator
h

2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves the
concept of operator precedence and the need for parentheses nested to arbitrary depth. Here is the
Bison code for ‘calc.y’, an infix desk-top calculator.

/* Infix notation calculator--calc */

W
#tdefine YYSTYPE double
#include <math.h>

hY

/* BISON Declarations */

htoken NUM

Yleft >=2 247

%left 2k )/)

hleft NEG /* negation--unary minus */
hright >~ /* exponentiation */

/* Grammar follows */

hh

input: /* empty string */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t}.10g\n", $1); 3

exp: NUM { 8% = $1; by
| exp ’+’ exp {8 = $1 + $3; +
| exp ’-’ exp {8 = 81 - $3; +
| exp ’#’ exp { 8% = $1  $3; +
| exp ’/’ exp { 8% =81/ 83; }
| -’ exp Y%prec NEG { $$ = -$2; }
| exp ’°’ exp { $$ = pow ($1, $3); }
| >C exp ’)° { %% = $2; ¥

3

The functions yylex, yyerror and main can be the same as before.
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There are two important new features shown in this code.

In the second section (Bison declarations), %left declares token types and says they are left-
associative operators. The declarations %left and %right (right associativity) take the place of
“itoken which is used to declare a token type name without associativity. (These tokens are single-
character literals, which ordinarily don’t need to be declared. We declare them here to specify the

associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher the
line number of the declaration (lower on the page or screen), the higher the precedence. Hence,
exponentiation has the highest precedence, unary minus (NEG) is next, followed by ‘*” and ¢/’, and

so on. See Section 5.3 [Operator Precedence], page 68.

The other important new feature is the Yprec in the grammar section for the unary minus
operator. The Yprec simply instructs Bison that the rule ‘| *-* exp’ has the same precedence as
NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent Precedence], page 70.

Here is a sample run of ‘calc.y”:

% calc

4 + 4.5 - (34/(8%3+-3))
6.880952381

-56 + 2

-54

3°2

9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to continue
parsing after the parser detects a syntax error. All we have handled is error reporting with yyerror.
Recall that by default yyparse returns after calling yyerror. This means that an erroneous input

line causes the calculator program to exit. Now we show how to rectify this deficiency.

The Bison language itself includes the reserved word error, which may be included in the

grammar rules. In the example below it has been added to one of the alternatives for line:
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line: ’\n’
| exp ’\n> { printf (“\t}.10g\n", $1);
| error ’\n’ { yyerrok; }

This addition to the grammar allows for simple error recovery in the event of a parse error. If
an expression that cannot be evaluated is read, the error will be recognized by the third rule for
line, and parsing will continue. (The yyerror function is still called upon to print its message
as well.) The action executes the statement yyerrok, a macro defined automatically by Bison; its
meaning is that error recovery is complete (see Chapter 6 [Error Recovery], page 77). Note the

difference between yyerrok and yyerror; neither one is a misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for example,
division by zero, which raises an exception signal that is normally fatal. A real calculator program
must handle this signal and use longjmp to return to main and resume parsing input lines; it would
also have to discard the rest of the current line of input. We won’t discuss this issue further because

it is not specific to Bison programs.

2.4 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more advanced
problem. The above calculators provided only five functions, ‘+’, ‘=7, ‘*’, */” and ‘~’. It would be

nice to have a calculator that provides other mathematical functions such as sin, cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-character
literals. The lexical analyzer yylex passes back all non-number characters as tokens, so new
grammar rules suffice for adding a new operator. But we want something more flexible: built-in

functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named variables,
store values in them, and use them later. Here is a sample session with the multi-function calculator:

% acalc

pi = 3.141592653589
3.1415926536
sin(pi)
0.0000000000
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alpha = betal = 2.3
2.3000000000

alpha

2.3000000000
1n(alpha)
0.8329091229
exp(ln(betal))
2.3000000000

h

Note that multiple assignment and nested function calls are permitted.

2.4.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.

h{

#include <math.h> /* For math functions, cos(), sin(), etc. */
#include '"calc.h" /* Contains definition of ‘symrec’ */
hY

hunion {

double val; /* For returning numbers. */
symrec *tptr; /* For returning symbol-table pointers */
+

htoken <val> NUM /* Simple double precision number  */
htoken <tptr> VAR FNCT /#* Variable and Function */

htype <val> exp

hright ’=’

%left 1 40

%left 2k )/)

hleft NEG /* Negation--unary minus */
hright >~ /* Exponentiation */

/* Grammar follows */

Wb

The above grammar introduces only two new features of the Bison language. These features
allow semantic values to have various data types (see Section 3.5.2 [More Than One Value Type],
page 45).
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The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM) and pointers to entries in
the symbol table. See Section 3.6.3 [The Collection of Value Types], page 52.

Since values can now have various types, it is necessary to associate a type with each grammar
symbol whose semantic value is used. These symbols are NUM, VAR, FNCT, and exp. Their declara-
tions are augmented with information about their data type (placed between angle brackets).

The Bison construct %type is used for declaring nonterminal symbols, just as %token is used for
declaring token types. We have not used %type before because nonterminal symbols are normally
declared implicitly by the rules that define them. But exp must be declared explicitly so we can
specify its value type. See Section 3.6.4 [Nonterminal Symbols], page 53.

2.4.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied directly

from calc; three rules, those which mention VAR or FNCT, are new.

input: /* empty */
| input line

line:
)\n)

| exp ’\n’ { printf ("\t}.10g\n", $1); }
| error ’\n’ { yyerrok; }

exp: NUM { 8% = $1; +
| VAR { $$ = $1->value.var; }
| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }
| FNCT >’ exp ’)’ { $$ = (x($1->value.fnctptr))($3);
| exp ’+’ exp {8 = $1 + $3; by
| exp ’-’ exp {8 = 81 - $3; by
| exp ’#’ exp { 8% = $1  $3; by
| exp ’/’ exp { 8% =81/ 83; by
| -’ exp Y%prec NEG { $$ = -$2; ¥
| exp ’°’ exp { $% = pow ($1, $3); b
| > exp 7)’ { $$ = $2; by

/* End of grammar */

Wb
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2.4.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and meanings
of variables and functions. This doesn’t affect the grammar rules (except for the actions) or the
Bison declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. Its definition, which is kept in the
header ‘calc.h’, is as follows. It provides for either functions or variables to be placed in the table.

/* Data type for links in the chain of symbols. */
struct symrec
{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
union {
double var; /* value of a VAR */
double (*fnctptr)(); /* value of a FNCT */
} value;
struct symrec *next; /* link field */
¥

typedef struct symrec symrec;

/* The symbol table: a chain of ‘struct symrec’. */

extern symrec *sym_table;

symrec *putsym ();
symrec *getsym ();

The new version of main includes a call to init_table, a function that initializes the symbol
table. Here it is, and init_table as well:

#include <stdio.h>

main ()

{
init_table ();

yyparse ();
}
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yyerror (s) /* Called by yyparse on error */
char *s;

printf ("¥%s\n", s);
}

struct init
{
char *fname;
double (*fnct)();
+;
struct init arith_fncts[]
= {
"sin", sin,
"cos", cos,
"atan", atan,
"1n", log,
"exp", exp,
"sqrt", sqrt,
0, 0
+;

/* The symbol table: a chain of ‘struct symrec’. */
symrec *sym_table = (symrec *)0;

init_table () /#* puts arithmetic functions in table. */
{
int 1i;
symrec *ptr;
for (i = 0; arith_fncts[i].fname '= 0; i++)
{
ptr = putsym (arith_fncts[i].fname, FNCT);
ptr->value.fnctptr = arith_fncts[i].fnct;
+

By simply editing the initialization list and adding the necessary include files, you can add
additional functions to the calculator.

Two important functions allow look-up and installation of symbols in the symbol table. The
function putsym is passed a name and the type (VAR or FNCT) of the object to be installed. The
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object is linked to the front of the list, and a pointer to the object is returned. The function
getsymis passed the name of the symbol to look up. If found, a pointer to that symbol is returned;

otherwise zero is returned.

symrec *
putsym (sym_name,sym_type)

char *sym_name;
int sym_type;

{
symrec *ptr;
ptr = (symrec *) malloc (sizeof (symrec));
ptr->name = (char *) malloc (strlen (sym_name) + 1);
strcpy (ptr->name,sym_name);
ptr->type = sym_type;
ptr->value.var = 0; /* set value to O even if fctn. */
ptr->next = (struct symrec *)sym_table;
sym_table = ptr;
return ptr;
+
symrec *

getsym (sym_name)

{

¥

The

char *sym_name;

symrec *ptr;
for (ptr = sym_table; ptr '= (symrec *) O;
ptr = (symrec *)ptr->next)
if (strcmp (ptr->name,sym_name) == 0)
return ptr;
return O;

function yylex must now recognize variables, numeric values, and the single-character

arithmetic operators. Strings of alphanumeric characters with a leading nondigit are recognized as

either variables or functions depending on what the symbol table says about them.

The string is passed to getsym for look up in the symbol table. If the name appears in the table,
a pointer to its location and its type (VAR or FNCT) is returned to yyparse. If it is not already in
the table, then it is installed as a VAR using putsym. Again, a pointer and its type (which must be

VAR) is returned to yyparse.

No change is needed in the handling of numeric values and arithmetic operators in yylex.



Chapter 2: Examples

#include <ctype.h>

yylex O

{

int c;

/* Ignore whitespace, get first nonwhite character.
while ((¢c = getchar ()) == 7 || ¢ == ’\t’);

if (¢ == EOF)

return O;

/* Char starts a number => parse the number.
if (¢ == .7 || isdigit (c))
{
ungetc (c, stdin);
scanf ("}1f", &yylval.val);
return NUM;

/* Char starts an identifier => read the name.
if (isalpha (c))
{
symrec *s;
static char *symbuf = O;
static int length = 0;
int i;

/* Initially make the buffer long enough
for a 40-character symbol name. */
if (length == 0)

length = 40, symbuf = (char *)malloc (length + 1);

i= 0;
do

*/

37
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{
/* If buffer is full, make it bigger. */
if (i == length)
{
length *= 2;
symbuf = (char *)realloc (symbuf, length + 1);
+
/* Add this character to the buffer. */
symbuf [i++] = c;
/* Get another character. */

c = getchar ();
}
while (¢ '= EOF && isalnum (c));

ungetc (c, stdin);
symbuf [i] = °\0’;

s = getsym (symbuf) ;
if (s == 0)
s = putsym (symbuf, VAR);
yylval.tptr = s;
return s->type;

/* Any other character is a token by itself. */
return c;

This program is both powerful and flexible. You may easily add new functions, and it is a simple
job to modify this code to install predefined variables such as pi or e as well.

2.5 Exercises

1. Add some new functions from ‘math.h’ to the initialization list.

2. Add another array that contains constants and their values. Then modify init_table to add
these constants to the symbol table. It will be easiest to give the constants type VAR.

3. Make the program report an error if the user refers to an uninitialized variable in any way
except to store a value in it.
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3 Bison Grammar Files

Bison takes as input a context-free grammar specification and produces a C-language function

that recognizes correct instances of the grammar.

The Bison grammar input file conventionally has a name ending in ‘.y’.

3.1 Outline of a Bison Grammar

A Bison grammar file has four main sections, shown here with the appropriate delimiters:

Al

C declarations

h}

Bison declarations

W
Grammar rules

Wb

Additional C code

Comments enclosed in ‘/* ... */” may appear in any of the sections.

3.1.1 The C Declarations Section

The C declarations section contains macro definitions and declarations of functions and variables
that are used in the actions in the grammar rules. These are copied to the beginning of the parser
file so that they precede the definition of yyparse. You can use ‘#include’ to get the declarations
from a header file. If you don’t need any C declarations, you may omit the ‘}{” and ‘4}’ delimiters
that bracket this section.
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3.1.2 The Bison Declarations Section

The Bison declarations section contains declarations that define terminal and nonterminal sym-
bols, specify precedence, and so on. In some simple grammars you may not need any declarations.
See Section 3.6 [Bison Declarations], page 50.

3.1.3 The Grammar Rules Section

The grammar rules section contains one or more Bison grammar rules, and nothing else. See
Section 3.3 [Syntax of Grammar Rules], page 42.

There must always be at least one grammar rule, and the first ‘4%’ (which precedes the grammar

rules) may never be omitted even if it is the first thing in the file.

3.1.4 The Additional C Code Section

The additional C code section is copied verbatim to the end of the parser file, just as the C
declarations section is copied to the beginning. This is the most convenient place to put anything
that you want to have in the parser file but which need not come before the definition of yyparse.
For example, the definitions of yylex and yyerror often go here. See Chapter 4 [Parser C-Language
Interface], page 57.

If the last section is empty, you may omit the ‘4%’ that separates it from the grammar rules.

The Bison parser itself contains many static variables whose names start with ‘yy’ and many
macros whose names start with ‘YY’. It is a good idea to avoid using any such names (except those

documented in this manual) in the additional C code section of the grammar file.

3.2 Symbols, Terminal and Nonterminal
Symbols in Bison grammars represent the grammatical classifications of the language.

A terminal symbol (also known as a token type) represents a class of syntactically equivalent
tokens. You use the symbol in grammar rules to mean that a token in that class is allowed. The
symbol is represented in the Bison parser by a numeric code, and the yylex function returns a
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token type code to indicate what kind of token has been read. You don’t need to know what the

code value is; you can use the symbol to stand for it.

A nonterminal symbol stands for a class of syntactically equivalent groupings. The symbol name

is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, digits (not at the beginning), underscores and periods. Pe-

riods make sense only in nonterminals.
There are two ways of writing terminal symbols in the grammar:

e A named token type is written with an identifier, like an identifier in C. By convention, it
should be all upper case. Each such name must be defined with a Bison declaration such as
hitoken. See Section 3.6.1 [Token Type Names], page 51.

e A character token type (or literal token) is written in the grammar using the same syntax
used in C for character constants; for example, >+’ is a character token type. A character
token type doesn’t need to be declared unless you need to specify its semantic value data type
(see Section 3.5.1 [Data Types of Semantic Values], page 45), associativity, or precedence (see
Section 5.3 [Operator Precedence], page 68).

By convention, a character token type is used only to represent a token that consists of that
particular character. Thus, the token type ’+° is used to represent the character ‘+’ as a token.
Nothing enforces this convention, but if you depart from it, your program will confuse other
readers.

All the usual escape sequences used in character literals in C can be used in Bison as well,
but you must not use the null character as a character literal because its ASCII code, zero,
is the code yylex returns for end-of-input (see Section 4.2.1 [Calling Convention for yylex],
page 58).

How you choose to write a terminal symbol has no effect on its grammatical meaning. That

depends only on where it appears in rules and on when the parser function returns that symbol.

The value returned by yylex is always one of the terminal symbols (or 0 for end-of-input).
Whichever way you write the token type in the grammar rules, you write it the same way in the
definition of yylex. The numeric code for a character token type is simply the ASCII code for the
character, so yylex can use the identical character constant to generate the requisite code. Each
named token type becomes a C macro in the parser file, so yylex can use the name to stand for
the code. (This is why periods don’t make sense in terminal symbols.) See Section 4.2.1 [Calling
Convention for yylex], page 58.
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If yylex is defined in a separate file, you need to arrange for the token-type macro definitions
to be available there. Use the ‘-d’ option when you run Bison, so that it will write these macro
definitions into a separate header file ‘name.tab.h’ which you can include in the other source files
that need it. See Chapter 9 [Invoking Bison], page 87.

The symbol error is a terminal symbol reserved for error recovery (see Chapter 6 [Error Re-
covery], page 77); you shouldn’t use it for any other purpose. In particular, yylex should never
return this value.

3.3 Syntax of Grammar Rules

A Bison grammar rule has the following general form:

result: components. ..

b

where result is the nonterminal symbol that this rule describes and components are various terminal
and nonterminal symbols that are put together by this rule (see Section 3.2 [Symbols], page 40).

For example,

exp: exp '+’ exp

says that two groupings of type exp, with a ‘+’ token in between, can be combined into a larger
grouping of type exp.

Whitespace in rules is significant only to separate symbols. You can add extra whitespace as
you wish.

Scattered among the components can be actions that determine the semantics of the rule. An
action looks like this:

{C statements}

Usually there is only one action and it follows the components. See Section 3.5.3 [Actions], page 45.
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Multiple rules for the same result can be written separately or can be joined with the vertical-bar

character ‘|’ as follows:

result: rulel-components. . .
| rule2-components. ..

They are still considered distinct rules even when joined in this way.

If components in a rule is empty, it means that result can match the empty string. For example,

here is how to define a comma-separated sequence of zero or more exp groupings:

expseq: /* empty */
| expseql

expseql: exp
| expseql ’,’ exp

It is customary to write a comment ‘/* empty */’ in each rule with no components.

3.4 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand side. Nearly
all Bison grammars need to use recursion, because that is the only way to define a sequence of any
number of somethings. Consider this recursive definition of a comma-separated sequence of one or

more expressions:

expseql: exp
| expseql ’,’ exp

b

Since the recursive use of expseql is the leftmost symbol in the right hand side, we call this left
recursion. By contrast, here the same construct is defined using right recursion:
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expseql: exp
| exp ’,’ expseql

b

Any kind of sequence can be defined using either left recursion or right recursion, but you should
always use left recursion, because it can parse a sequence of any number of elements with bounded
stack space. Right recursion uses up space on the Bison stack in proportion to the number of
elements in the sequence, because all the elements must be shifted onto the stack before the rule
can be applied even once. See Chapter 5 [The Bison Parser Algorithm ], page 65, for further
explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly on its
right hand side, but does appear in rules for other nonterminals which do appear on its right hand
side.

For example:

expr: primary
| primary ’+’ primary

primary: constant

I )(; expr )))

defines two mutually-recursive nonterminals, since each refers to the other.

3.5 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are determined by
the semantic values associated with various tokens and groupings, and by the actions taken when

various groupings are recognized.

For example, the calculator calculates properly because the value associated with each expression
is the proper number; it adds properly because the action for the grouping ‘x + y’ is to add the
numbers associated with x and y.
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3.5.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic values of
all language constructs. This was true in the RPN and infix calculator examples (see Section 2.1

[Reverse Polish Notation Calculator], page 21).

Bison’s default is to use type int for all semantic values. To specify some other type, define
YYSTYPE as a macro, like this:

#tdefine YYSTYPE double

This macro definition must go in the C declarations section of the grammar file (see Section 3.1

[Outline of a Bison Grammar], page 39).

3.5.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and groupings.
For example, a numeric constant may need type int or long, while a string constant needs type

char *, and an identifier might need a pointer to an entry in the symbol table.

To use more than one data type for semantic values in one parser, Bison requires you to do two
things:

e Specify the entire collection of possible data types, with the %union Bison declaration (see
Section 3.6.3 [The Collection of Value Types], page 52).

e Choose one of those types for each symbol (terminal or nonterminal) for which semantic values
are used. This is done for tokens with the %token Bison declaration (see Section 3.6.1 [Token
Type Names], page 51) and for groupings with the %type Bison declaration (see Section 3.6.4
[Nonterminal Symbols], page 53).

3.5.3 Actions

An action accompanies a syntactic rule and contains C code to be executed each time an instance
of that rule is recognized. The task of most actions is to compute a semantic value for the grouping

built by the rule from the semantic values associated with tokens or smaller groupings.
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An action consists of C statements surrounded by braces, much like a compound statement in
C. It can be placed at any position in the rule; it is executed at that position. Most rules have just
one action at the end of the rule, following all the components. Actions in the middle of a rule are
tricky and used only for special purposes (see Section 3.5.5 [Actions in Mid-Rule], page 48).

The C code in an action can refer to the semantic values of the components matched by the rule
with the construct $n, which stands for the value of the nth component. The semantic value for
the grouping being constructed is $$. (Bison translates both of these constructs into array element

references when it copies the actions into the parser file.)

Here is a typical example:

exp:
| exp 4+’ exp

{88 =81+ 83; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token. In
the action, $1 and $3 refer to the semantic values of the two component exp groupings, which are
the first and third symbols on the right hand side of the rule. The sum is stored into $$ so that it
becomes the semantic value of the addition-expression just recognized by the rule. If there were a

useful semantic value associated with the ‘+’ token, it could be referred to as $2.

If you don’t specify an action for a rule, Bison supplies a default: $$ = $1. Thus, the value of
the first symbol in the rule becomes the value of the whole rule. Of course, the default rule is valid
only if the two data types match. There is no meaningful default action for an empty rule; every
empty rule must have an explicit action unless the rule’s value does not matter.

$n with n zero or negative is allowed for reference to tokens and groupings on the stack before
those that match the current rule. This is a very risky practice, and to use it reliably you must be
certain of the context in which the rule is applied. Here is a case in which you can use this reliably:

foo: expr bar ’+’ expr { ...}
| expr bar ’-’ expr { ...}
bar: /* empty */

{ previous_expr = $0; 2

b
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As long as bar is used only in the fashion shown here, $0 always refers to the expr which

precedes bar in the definition of foo.

3.5.4 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs always have
that data type.

If you have used %union to specify a variety of data types, then you must declare a choice among
these types for each terminal or nonterminal symbol that can have a semantic value. Then each
time you use $$ or $n, its data type is determined by which symbol it refers to in the rule. In this

example,

exp:
| exp 4+’ exp

{88 =81+ 83; }

$1 and $3 refer to instances of exp, so they all have the data type declared for the nonterminal
symbol exp. If $2 were used, it would have the data type declared for the terminal symbol *+°,
whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting ‘<type>’
after the ‘¢’ at the beginning of the reference. For example, if you have defined types as shown

here:

hunion {
int itype;
double dtype;
b

then you can write $§<itype>1 to refer to the first subunit of the rule as an integer, or $<dtype>1
to refer to it as a double.
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3.5.5 Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions are written just
like usual end-of-rule actions, but they are executed before the parser even recognizes the following

components.

A mid-rule action may refer to the components preceding it using $n, but it may not refer to

subsequent components because it is run before they are parsed.

The mid-rule action itself counts as one of the components of the rule. This makes a difference
when there is another action later in the same rule (and usually there is another at the end): you
have to count the actions along with the symbols when working out which number n to use in $n.

The mid-rule action can also have a semantic value. The action can set its value with an
assignment to $$, and actions later in the rule can refer to the value using $n. Since there is no
symbol to name the action, there is no way to declare a data type for the value in advance, so you

must use the ‘$<...>’ construct to specify a data type each time you refer to this value.

There is no way to set the value of the entire rule with a mid-rule action, because assignments
to $$ do not have that effect. The only way to set the value for the entire rule is with an ordinary
action at the end of the rule.

Here is an example from a hypothetical compiler, handling a let statement that looks like ‘let
(variable) statement’ and serves to create a variable named variable temporarily for the duration
of statement. To parse this construct, we must put variable into the symbol table while statement

is parsed, then remove it afterward. Here is how it is done:

stmt: LET °(’ var ’)°
{ $<context>$ = push_context ();
declare_variable ($3); }
stmt { $$ = $s;
pop_context ($<context>5); }

As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy of the
current semantic context (the list of accessible variables) as its semantic value, using alternative
context in the data-type union. Then it calls declare_variable to add the new variable to that
list. Once the first action is finished, the embedded statement stmt can be parsed. Note that the
mid-rule action is component number 5, so the ‘stmt’ is component number 6.



Chapter 3: Bison Grammar Files 49

After the embedded statement is parsed, its semantic value becomes the value of the entire
let-statement. Then the semantic value from the earlier action is used to restore the prior list of
variables. This removes the temporary let-variable from the list so that it won’t appear to exist
while the rest of the program is parsed.

Taking action before a rule is completely recognized often leads to conflicts since the parser must
commit to a parse in order to execute the action. For example, the following two rules, without
mid-rule actions, can coexist in a working parser because the parser can shift the open-brace token

and look at what follows before deciding whether there is a declaration or not:

compound: ’{’ declarations statements ’}’
| >{’ statements ’}’

But when we add a mid-rule action as follows, the rules become nonfunctional:

compound: { prepare_for_local_variables (); }
’{’> declarations statements ’}’

| *{’ statements ’}’

b

Now the parser is forced to decide whether to run the mid-rule action when it has read no farther
than the open-brace. In other words, it must commit to using one rule or the other, without
sufficient information to do it correctly. (The open-brace token is what is called the look-ahead
token at this time, since the parser is still deciding what to do about it. See Section 5.1 [Look-Ahead
Tokens], page 66.)

You might think that you could correct the problem by putting identical actions into the two
rules, like this:

compound: { prepare_for_local_variables (); }
’{’ declarations statements ’}’
| { prepare_for_local_variables (); }

*{’ statements ’}’

But this does not help, because Bison does not realize that the two actions are identical. (Bison
never tries to understand the C code in an action.)
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If the grammar is such that a declaration can be distinguished from a statement by the first token

(which is true in C), then one solution which does work is to put the action after the open-brace,

like this:

compound: ’{’ { prepare_for_local_variables (); }
declarations statements ’}’

| *{’ statements ’}’

b

Now the first token of the following declaration or statement, which would in any case tell Bison
which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which serves as a subroutine:

subroutine: /* empty */

{ prepare_for_local_variables (); }

compound: subroutine
’{’ declarations statements ’}’
| subroutine
’{’ statements ’}’

Now Bison can execute the action in the rule for subroutine without deciding which rule for
compound it will eventually use. Note that the action is now at the end of its rule. Any mid-rule
action can be converted to an end-of-rule action in this way, and this is what Bison actually does
to implement mid-rule actions.

3.6 Bison Declarations

The Bison declarations section of a Bison grammar defines the symbols used in formulating the

grammar and the data types of semantic values. See Section 3.2 [Symbols], page 40.

All token type names (but not single-character literal tokens such as ’+’ and ’#*’) must be
declared. Nonterminal symbols must be declared if you need to specify which data type to use for
the semantic value (see Section 3.5.2 [More Than One Value Type], page 45).
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The first rule in the file also specifies the start symbol, by default. If you want some other symbol
to be the start symbol, you must declare it explicitly (see Section 1.1 [Languages and Context-Free
Grammars], page 13).

3.6.1 Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:

%token name

Bison will convert this into a #define directive in the parser, so that the function yylex (if it
is in this file) can use the name name to stand for this token type’s code.

Alternatively, you can use 4left, 4right, or 4nonassoc instead of token, if you wish to specify
precedence. See Section 3.6.2 [Operator Precedence], page 52.

You can explicitly specify the numeric code for a token type by appending an integer value in
the field immediately following the token name:

%token NUM 300

It is generally best, however, to let Bison choose the numeric codes for all token types. Bison will
automatically select codes that don’t conflict with each other or with ASCII characters.

In the event that the stack type is a union, you must augment the %token or other token
declaration to include the data type alternative delimited by angle-brackets (see Section 3.5.2
[More Than One Value Type], page 45).

For example:

hunion { /* define stack type */
double val;
symrec *tptr;
+
htoken <val> NUM /* define token NUM and its type */



52 Bison 1.20

3.6.2 Operator Precedence

Use the %left, %right or Jnonassoc declaration to declare a token and specify its precedence
and associativity, all at once. These are called precedence declarations. See Section 5.3 [Operator

Precedence], page 68, for general information on operator precedence.

The syntax of a precedence declaration is the same as that of }token: either

hleft syvmbols. ..

or

hleft <type> symbols. ..

And indeed any of these declarations serves the purposes of %token. But in addition, they

specify the associativity and relative precedence for all the symbols:

e The associativity of an operator op determines how repeated uses of the operator nest: whether
‘x op y op z’is parsed by grouping x with y first or by grouping y with z first. %left specifies
left-associativity (grouping x with y first) and %right specifies right-associativity (grouping y
with z first). %nonassoc specifies no associativity, which means that ‘x op y op z’is considered

a syntax error.

e The precedence of an operator determines how it nests with other operators. All the tokens
declared in a single precedence declaration have equal precedence and nest together according
to their associativity. When two tokens declared in different precedence declarations associate,

the one declared later has the higher precedence and is grouped first.

3.6.3 The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for semantic values.
The keyword %union is followed by a pair of braces containing the same thing that goes inside a

union in C.

For example:
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%union {
double val;
symrec *tptr;

¥

This says that the two alternative types are double and symrec *. They are given names val and
tptr; these names are used in the %token and %type declarations to pick one of the types for a
terminal or nonterminal symbol (see Section 3.6.4 [Nonterminal Symbols], page 53).

Note that, unlike making a union declaration in C, you do not write a semicolon after the closing
brace.

3.6.4 Nonterminal Symbols

When you use %union to specify multiple value types, you must declare the value type of each
nonterminal symbol for which values are used. This is done with a }type declaration, like this:

htype <type> nonterminal. ..

Here nonterminal is the name of a nonterminal symbol, and type is the name given in the %union
to the alternative that you want (see Section 3.6.3 [The Collection of Value Types], page 52). You
can give any number of nonterminal symbols in the same %type declaration, if they have the same
value type. Use spaces to separate the symbol names.

3.6.5 Suppressing Conflict Warnings

Bison normally warns if there are any conflicts in the grammar (see Section 5.2 [Shift/Reduce
Conflicts], page 67), but most real grammars have harmless shift /reduce conflicts which are resolved
in a predictable way and would be difficult to eliminate. It is desirable to suppress the warning
about these conflicts unless the number of conflicts changes. You can do this with the %expect
declaration.

The declaration looks like this:

hexpect n
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Here n is a decimal integer. The declaration says there should be no warning if there are n
shift /reduce conflicts and no reduce/reduce conflicts. The usual warning is given if there are either

more or fewer conflicts, or if there are any reduce/reduce conflicts.

In general, using fexpect involves these steps:

[4

e Compile your grammar without %expect. Use the ‘v’ option to get a verbose list of where

the conflicts occur. Bison will also print the number of conflicts.

e Check each of the conflicts to make sure that Bison’s default resolution is what you really

want. If not, rewrite the grammar and go back to the beginning.

e Add an Yexpect declaration, copying the number n from the number which Bison printed.

Now Bison will stop annoying you about the conflicts you have checked, but it will warn you

again if changes in the grammar result in additional conflicts.

3.6.6 The Start-Symbol

Bison assumes by default that the start symbol for the grammar is the first nonterminal specified
in the grammar specification section. The programmer may override this restriction with the %start

declaration as follows:

hstart symbol

3.6.7 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other words,
it consists entirely of pure (read-only) code. Reentrancy is important whenever asynchronous
execution is possible; for example, a nonreentrant program may not be safe to call from a signal
handler. In systems with multiple threads of control, a nonreentrant program must be called only

within interlocks.

The Bison parser is not normally a reentrant program, because it uses statically allocated

variables for communication with yylex. These variables include yylval and yylloc.

The Bison declaration }pure_parser says that you want the parser to be reentrant. It looks

like this:
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hpure_parser

The effect is that the two communication variables become local variables in yyparse, and
a different calling convention is used for the lexical analyzer function yylex. See Section 4.2.4
[Calling for Pure Parsers], page 60, for the details of this. The variable yynerrs also becomes local
in yyparse (see Section 4.3 [The Error Reporting Function yyerror|, page 60). The convention
for calling yyparse itself is unchanged.

3.6.8 Bison Declaration Summary

Here is a summary of all Bison declarations:

hunion Declare the collection of data types that semantic values may have (see Section 3.6.3
[The Collection of Value Types]|, page 52).

htoken Declare a terminal symbol (token type name) with no precedence or associativity spec-
ified (see Section 3.6.1 [Token Type Names], page 51).

hright Declare a terminal symbol (token type name) that is right-associative (see Section 3.6.2
[Operator Precedence], page 52).

hleft Declare a terminal symbol (token type name) that is left-associative (see Section 3.6.2
[Operator Precedence], page 52).

Jnonassoc
Declare a terminal symbol (token type name) that is nonassociative (using it in a way
that would be associative is a syntax error) (see Section 3.6.2 [Operator Precedence],
page 52).

htype Declare the type of semantic values for a nonterminal symbol (see Section 3.6.4 [Non-
terminal Symbols], page 53).

hstart Specify the grammar’s start symbol (see Section 3.6.6 [The Start-Symbol], page 54).

hexpect  Declare the expected number of shift-reduce conflicts (see Section 3.6.5 [Suppressing
Conflict Warnings], page 53).

hpure_parser
Request a pure (reentrant) parser program (see Section 3.6.7 [A Pure (Reentrant)
Parser], page 54).
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3.7 Multiple Parsers in the Same Program

Most programs that use Bison parse only one language and therefore contain only one Bison
parser. But what if you want to parse more than one language with the same program? Then you

need to avoid a name conflict between different definitions of yyparse, yylval, and so on.

The easy way to do this is to use the option ‘-p prefix’ (see Chapter 9 [Invoking Bison], page 87).
This renames the interface functions and variables of the Bison parser to start with prefix instead
of ‘yy’. You can use this to give each parser distinct names that do not conflict.

The precise list of symbols renamed is yyparse, yylex, yyerror, yylval, yychar and yydebug.

For example, if you use ‘-p ¢’, the names become cparse, clex, and so on.

All the other variables and macros associated with Bison are not renamed. These others are not
global; there is no conflict if the same name is used in different parsers. For example, YYSTYPE is not
renamed, but defining this in different ways in different parsers causes no trouble (see Section 3.5.1
[Data Types of Semantic Values], page 45).

The ‘-p’ option works by adding macro definitions to the beginning of the parser source file,
defining yyparse as prefixparse, and so on. This effectively substitutes one name for the other in

the entire parser file.
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4 Parser C-Language Interface

The Bison parser is actually a C function named yyparse. Here we describe the interface

conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for internal
purposes. If you use such an identifier (aside from those in this manual) in an action or in additional
C code in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens, executes
actions, and ultimately returns when it encounters end-of-input or an unrecoverable syntax error.
You can also write an action which directs yyparse to return immediately without reading further.

The value returned by yyparse is 0 if parsing was successful (return is due to end-of-input).
The value is 1 if parsing failed (return is due to a syntax error).

In an action, you can cause immediate return from yyparse by using these macros:

YYACCEPT Return immediately with value 0 (to report success).
YYABORT  Return immediately with value 1 (to report failure).

4.2 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and returns them
to the parser. Bison does not create this function automatically; you must write it so that yyparse

can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Bison grammar file. If yylex is
defined in a separate source file, you need to arrange for the token-type macro definitions to be
available there. To do this, use the ‘-d” option when you run Bison, so that it will write these macro
definitions into a separate header file ‘name.tab.h’ which you can include in the other source files
that need it. See Chapter 9 [Invoking Bison], page 87.
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4.2.1 Calling Convention for yylex

The value that yylex returns must be the numeric code for the type of token it has just found,
or 0 for end-of-input.

When a token is referred to in the grammar rules by a name, that name in the parser file becomes
a C macro whose definition is the proper numeric code for that token type. So yylex can use the
name to indicate that type. See Section 3.2 [Symbols], page 40.

When a token is referred to in the grammar rules by a character literal, the numeric code for
that character is also the code for the token type. So yylex can simply return that character code.
The null character must not be used this way, because its code is zero and that is what signifies
end-of-input.

Here is an example showing these things:

yylex O
{
if (¢ == EOF) /* Detect end of file. */
return O;
if (¢ ==+’ || ¢ == ’=?)
return c; /* Assume token type for ‘+’ is ’+’. %/
return INT; /* Return the type of the token. */
+

This interface has been designed so that the output from the lex utility can be used without change
as the definition of yylex.

4.2.2 Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be stored into the
global variable yylval. When you are using just one data type for semantic values, yylval has
that type. Thus, if the type is int (the default), you might write this in yylex:
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yylval = value; /# Put value onto Bison stack. */
return INT; /* Return the type of the token. */

When you are using multiple data types, yylval’s type is a union made from the Junion
declaration (see Section 3.6.3 [The Collection of Value Types], page 52). So when you store a
token’s value, you must use the proper member of the union. If the %union declaration looks like
this:

hunion {
int intval;
double val;
symrec *tptr;

¥

then the code in yylex might look like this:

yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */

4.2.3 Textual Positions of Tokens

If you are using the ‘@n’-feature (see Section 4.4 [Special Features for Use in Actions], page 61)
in actions to keep track of the textual locations of tokens and groupings, then you must provide
this information in yylex. The function yyparse expects to find the textual location of a token
just parsed in the global variable yylloc. So yylex must store the proper data in that variable.
The value of yylloc is a structure and you need only initialize the members that are going to be
used by the actions. The four members are called first_line, first_column, last_line and
last_column. Note that the use of this feature makes the parser noticeably slower.

The data type of yylloc has the name YYLTYPE.
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4.2.4 Calling for Pure Parsers

When you use the Bison declaration Ypure_parser to request a pure, reentrant parser, the
global communication variables yylval and yylloc cannot be used. (See Section 3.6.7 [A Pure
(Reentrant) Parser], page 54.) In such parsers the two global variables are replaced by pointers
passed as arguments to yylex. You must declare them as shown here, and pass the information
back by storing it through those pointers.

yylex (1lvalp, llocp)
YYSTYPE *1lvalp;
YYLTYPE *1locp;

*lvalp = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */

If the grammar file does not use the ‘@ constructs to refer to textual positions, then the type
YYLTYPE will not be defined. In this case, omit the second argument; yylex will be called with only
one argument.

4.3 The Error Reporting Function yyerror

The Bison parser detects a parse error or syntax error whenever it reads a token which cannot
satisfy any syntax rule. A action in the grammar can also explicitly proclaim an error, using the
macro YYERROR (see Section 4.4 [Special Features for Use in Actions], page 61).

The Bison parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found, and it
receives one argument. For a parse error, the string is normally "parse error".

If you define the macro YYERROR_VERBOSE in the Bison declarations section (see Section 3.1.2
[The Bison Declarations Section], page 40), then Bison provides a more verbose and specific error

message string instead of just plain "parse error'. It doesn’t matter what definition you use for
YYERROR_VERBOSE, just whether you define it.

The parser can detect one other kind of error: stack overflow. This happens when the input con-
tains constructions that are very deeply nested. It isn’t likely you will encounter this, since the Bison
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parser extends its stack automatically up to a very large limit. But if overflow happens, yyparse

calls yyerror in the usual fashion, except that the argument string is "parser stack overflow'.
The following definition suffices in simple programs:

yyerror (s)
char *s;

fprintf (stderr, "%s\n", s);
}

After yyerror returns to yyparse, the latter will attempt error recovery if you have written
suitable error recovery grammar rules (see Chapter 6 [Error Recovery], page 77). If recovery is
impossible, yyparse will immediately return 1.

The variable yynerrs contains the number of syntax errors encountered so far. Normally this
variable is global; but if you request a pure parser (see Section 3.6.7 [A Pure (Reentrant) Parser],
page 54) then it is a local variable which only the actions can access.

4.4 Special Features for Use in Actions

Here is a table of Bison constructs, variables and macros that are useful in actions.

‘¢’ Acts like a variable that contains the semantic value for the grouping made by the

current rule. See Section 3.5.3 [Actions], page 45.

‘$n’ Acts like a variable that contains the semantic value for the nth component of the

current rule. See Section 3.5.3 [Actions], page 45.

‘$<typealt>$’
Like $$ but specifies alternative typealt in the union specified by the %union declara-
tion. See Section 3.5.4 [Data Types of Values in Actions], page 47.

‘$<typealt>n’
Like $n but specifies alternative typealt in the union specified by the %union declara-
tion. See Section 3.5.4 [Data Types of Values in Actions], page 47.

‘YYABORT;’
Return immediately from yyparse, indicating failure. See Section 4.1 [The Parser
Function yyparse], page 57.
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‘YYACCEPT;’

‘YYBACKUP (

‘YYEMPTY’
‘YYERROR;’

Bison 1.20

Return immediately from yyparse, indicating success. See Section 4.1 [The Parser

Function yyparse], page 57.

token, value);’

Unshift a token. This macro is allowed only for rules that reduce a single value, and
only when there is no look-ahead token. It installs a look-ahead token with token type
token and semantic value value; then it discards the value that was going to be reduced
by this rule.

If the macro is used when it is not valid, such as when there is a look-ahead token
already, then it reports a syntax error with a message ‘cannot back up’ and performs

ordinary error recovery.

In either case, the rest of the action is not executed.

Value stored in yychar when there is no look-ahead token.

Cause an immediate syntax error. This statement initiates error recovery just as if the
parser itself had detected an error; however, it does not call yyerror, and does not
print any message. If you want to print an error message, call yyerror explicitly before
the ‘YYERROR;’ statement. See Chapter 6 [Error Recovery], page 77.

‘YYRECOVERING’

‘yychar’

This macro stands for an expression that has the value 1 when the parser is recovering
from a syntax error, and 0 the rest of the time. See Chapter 6 [Error Recovery], page 77.

Variable containing the current look-ahead token. (In a pure parser, this is actually a
local variable within yyparse.) When there is no look-ahead token, the value YYEMPTY
is stored in the variable. See Section 5.1 [Look-Ahead Tokens], page 66.

‘yyclearin;’

‘yyerrok;’

Discard the current look-ahead token. This is useful primarily in error rules. See

Chapter 6 [Error Recovery], page 77.

Resume generating error messages immediately for subsequent syntax errors. This is
useful primarily in error rules. See Chapter 6 [Error Recovery], page 77.

Acts like a structure variable containing information on the line numbers and column
numbers of the nth component of the current rule. The structure has four members,
like this:

struct {
int first_line, last_line;
int first_column, last_column;

};

Thus, to get the starting line number of the third component, use ‘@3.first_line’.
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In order for the members of this structure to contain valid information, you must make

yylex supply this information about each token. If you need only certain members,
then yylex need only fill in those members.

The use of this feature makes the parser noticeably slower.
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5 The Bison Parser Algorithm

As Bison reads tokens, it pushes them onto a stack along with their semantic values. The stack
is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 #’, with a ‘3’ to come. The stack will

have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last n tokens
and groupings shifted match the components of a grammar rule, they can be combined according
to that rule. This is called reduction. Those tokens and groupings are replaced on the stack by a
single grouping whose symbol is the result (left hand side) of that rule. Running the rule’s action is
part of the process of reduction, because this is what computes the semantic value of the resulting

grouping.

For example, if the infix calculator’s parser stack contains this:

1 +5 %3

and the next input token is a newline character, then the last three elements can be reduced to 15

via the rule:
expr: expr ’*’ expr;
Then the stack contains just these three elements:

1+ 15

At this point, another reduction can be made, resulting in the single value 16. Then the newline
token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single group-
ing whose symbol is the grammar’s start-symbol (see Section 1.1 [Languages and Context-Free

Grammars], page 13).

This kind of parser is known in the literature as a bottom-up parser.
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5.1 Look-Ahead Tokens

The Bison parser does not always reduce immediately as soon as the last n tokens and groupings
match a rule. This is because such a simple strategy is inadequate to handle most languages.
Instead, when a reduction is possible, the parser sometimes “looks ahead” at the next token in

order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the look-ahead token, which
is not on the stack. Now the parser can perform one or more reductions of tokens and groupings
on the stack, while the look-ahead token remains off to the side. When no more reductions should
take place, the look-ahead token is shifted onto the stack. This does not mean that all possible
reductions have been done; depending on the token type of the look-ahead token, some rules may

choose to delay their application.

Here is a simple case where look-ahead is needed. These three rules define expressions which
contain binary addition operators and postfix unary factorial operators (‘!’), and allow parentheses

for grouping.

expr: term '+’ expr
| term
>
term: *(? expr )’
| term *1!°
| NUMBER

Suppose that the tokens ‘1 + 27 have been read and shifted; what should be done? If the following
token is ‘)7, then the first three tokens must be reduced to form an expr. This is the only valid
course, because shifting the ‘)’ would produce a sequence of symbols term *)’, and no rule allows
this.

If the following token is ‘!’, then it must be shifted immediately so that ‘2 !’ can be reduced to
make a term. If instead the parser were to reduce before shifting, ‘1 + 2" would become an expr. It
would then be impossible to shift the ‘!’ because doing so would produce on the stack the sequence

of symbols expr ’!’. No rule allows that sequence.

The current look-ahead token is stored in the variable yychar. See Section 4.4 [Special Features

for Use in Actions], page 61.
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5.2 Shift /Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a pair of
rules like this:

if_stmt:
IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

Here we assume that IF, THEN and ELSE are terminal symbols for specific keyword tokens.

When the ELSE token is read and becomes the look-ahead token, the contents of the stack
(assuming the input is valid) are just right for reduction by the first rule. But it is also legitimate
to shift the ELSE, because that would lead to eventual reduction by the second rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce conflict.
Bison is designed to resolve these conflicts by choosing to shift, unless otherwise directed by operator

precedence declarations. To see the reason for this, let’s contrast it with the other alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-clause to the innermost

if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to attach

the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); end; else lose;

The conflict exists because the grammar as written is ambiguous: either parsing of the simple
nested if-statement is legitimate. The established convention is that these ambiguities are resolved
by attaching the else-clause to the innermost if-statement; this is what Bison accomplishes by
choosing to shift rather than reduce. (It would ideally be cleaner to write an unambiguous grammar,
but that is very hard to do in this case.) This particular ambiguity was first encountered in the

specifications of Algol 60 and is called the “dangling else” ambiguity.
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To avoid warnings from Bison about predictable, legitimate shift/reduce conflicts, use the
hexpect n declaration. There will be no warning as long as the number of shift/reduce conflicts is

exactly n. See Section 3.6.5 [Suppressing Conflict Warnings], page 53.

The definition of if_stmt above is solely to blame for the conflict, but the conflict does not
actually appear without additional rules. Here is a complete Bison input file that actually manifests
the conflict:

%token IF THEN ELSE variable

Wb
stmt: expr
| if_stmt
if_stmt:
IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
expr: variable

5.3 Operator Precedence

Another situation where shift /reduce conflicts appear is in arithmetic expressions. Here shifting
is not always the preferred resolution; the Bison declarations for operator precedence allow you to

specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input ‘1 - 2 * 3’

can be parsed in two different ways):

expr: expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
| >’ expr ’)’
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‘17, ‘=7 and ‘2’; should it reduce them via the rule for the

Suppose the parser has seen the tokens
addition operator? It depends on the next token. Of course, if the next token is “)’, we must
reduce; shifting is invalid because no single rule can reduce the token sequence ‘= 2 )’ or anything
starting with that. But if the next token is ‘*’ or ‘<’, we have a choice: either shifting or reduction

would allow the parse to complete, but with different results.

To decide which one Bison should do, we must consider the results. If the next operator token
op is shifted, then it must be reduced first in order to permit another opportunity to reduce the
sum. The result is (in effect) ‘1 = (2 op 3)’. On the other hand, if the subtraction is reduced before
shifting op, the result is ‘(1 = 2) op 3’. Clearly, then, the choice of shift or reduce should depend

on the relative precedence of the operators ‘=’ and op: ‘*’ should be shifted first, but not ‘<’.

What about input such as ‘1 = 2 = 5’; should this be ‘(1 = 2) = 5’ or should it be ‘1 = (2 - 5)°7
For most operators we prefer the former, which is called left association. The latter alternative,
right association, is desirable for assignment operators. The choice of left or right association is
a matter of whether the parser chooses to shift or reduce when the stack contains ‘1 - 2’ and the

.

look-ahead token is ‘=’: shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Bison allows you to specify these choices with the operator precedence declarations %left and
hright. Fach such declaration contains a list of tokens, which are operators whose precedence and
associativity is being declared. The %left declaration makes all those operators left-associative
and the Jright declaration makes them right-associative. A third alternative is }nonassoc, which

declares that it is a syntax error to find the same operator twice “in a row”.

The relative precedence of different operators is controlled by the order in which they are de-
clared. The first %1left or %right declaration in the file declares the operators whose precedence
is lowest, the next such declaration declares the operators whose precedence is a little higher, and

SO Oon.

5.3.3 Precedence Examples

In our example, we would want the following declarations:

%left <’
Yleft °-2
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hleft %’

In a more complete example, which supports other operators as well, we would declare them in

groups of equal precedence. For example, >+’ is declared with >=’:

%left ’<’ ’>’ ’=> NE LE GE
hleft 42 7=
%left 2k )/)

(Here NE and so on stand for the operators for “not equal” and so on. We assume that these tokens
are more than one character long and therefore are represented by names, not character literals.)

5.3.4 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each rule gets
its precedence from the last terminal symbol mentioned in the components. (You can also specify
explicitly the precedence of a rule. See Section 5.4 [Context-Dependent Precedence], page 70.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being considered
with that of the look-ahead token. If the token’s precedence is higher, the choice is to shift. If
the rule’s precedence is higher, the choice is to reduce. If they have equal precedence, the choice
is made based on the associativity of that precedence level. The verbose output file made by ‘-v’
(see Chapter 9 [Invoking Bison], page 87) says how each conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the look-ahead token has

no precedence, then the default is to shift.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at first,
but it is really very common. For example, a minus sign typically has a very high precedence as a
unary operator, and a somewhat lower precedence (lower than multiplication) as a binary operator.

The Bison precedence declarations, %4left, %right and %nonassoc, can only be used once for
a given token; so a token has only one precedence declared in this way. For context-dependent
precedence, you need to use an additional mechanism: the %prec modifier for rules.
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The %prec modifier declares the precedence of a particular rule by specifying a terminal symbol
whose precedence should be used for that rule. It’s not necessary for that symbol to appear
otherwise in the rule. The modifier’s syntax is:

hprec terminal-symbol

and it is written after the components of the rule. Its effect is to assign the rule the precedence of
terminal-symbol, overriding the precedence that would be deduced for it in the ordinary way. The
altered rule precedence then affects how conflicts involving that rule are resolved (see Section 5.3

[Operator Precedence], page 68).

Here is how Yprec solves the problem of unary minus. First, declare a precedence for a fictitious
terminal symbol named UMINUS. There are no tokens of this type, but the symbol serves to stand

for its precedence:

Yleft '+ *=?
Yleft **’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:

exp:

| exp -’ exp

| °-? exp Yprec UMINUS

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed on the
parser stack are not simply token type codes; they represent the entire sequence of terminal and
nonterminal symbols at or near the top of the stack. The current state collects all the information
about previous input which is relevant to deciding what to do next.

Each time a look-ahead token is read, the current parser state together with the type of look-
ahead token are looked up in a table. This table entry can say, “Shift the look-ahead token.” In
this case, it also specifies the new parser state, which is pushed onto the top of the parser stack. Or
it can say, “Reduce using rule number n.” This means that a certain number of tokens or groupings
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are taken off the top of the stack, and replaced by one grouping. In other words, that number of

states are popped from the stack, and one new state is pushed.

There is one other alternative: the table can say that the look-ahead token is erroneous in the

current state. This causes error processing to begin (see Chapter 6 [Error Recovery], page 77).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same sequence
of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word groupings.

sequence: /* empty */
{ printf ("empty sequence\n"); }
| maybeword
| sequence word
{ printf ("added word %s\n", $2);

b

maybeword: /#* empty */
{ printf ("empty maybeword\n'"); }
| word
{ printf ("single word %s\n", $1); }

The error is an ambiguity: there is more than one way to parse a single word into a sequence.
It could be reduced to a maybeword and then into a sequence via the second rule. Alternatively,
nothing-at-all could be reduced into a sequence via the first rule, and this could be combined with
the word using the third rule for sequence.

There is also more than one way to reduce nothing-at-all into a sequence. This can be done
directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One parsing
order runs the second rule’s action; the other runs the first rule’s action and the third rule’s action.
In this example, the output of the program changes.
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Bison resolves a reduce/reduce conflict by choosing to use the rule that appears first in the
grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be studied and
usually eliminated. Here is the proper way to define sequence:

sequence: /* empty */
{ printf ("empty sequence\n"); }
| sequence word
{ printf ("added word %s\n", $2);

Here is another common error that yields a reduce/reduce conflict

sequence: /* empty */
| sequence words
| sequence redirects

b

words: /* empty */
| words word

b

redirects:/* empty */
| redirects redirect

b

The intention here is to define a sequence which can contain either word or redirect groupings.
The individual definitions of sequence, words and redirects are error-free, but the three together

make a subtle ambiguity: even an empty input can be parsed in infinitely many ways!

Consider: nothing-at-all could be a words. Or it could be two words in a row, or three, or any
number. It could equally well be a redirects, or two, or any number. Or it could be a words
followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:

sequence: /* empty */
| sequence word
| sequence redirect

b

Second, to prevent either a words or a redirects from being empty:
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sequence: /* empty */
| sequence words
| sequence redirects

b

words: word
| words word

b

redirects:redirect
| redirects redirect

b

5.7 Mysterious Reduce/Reduce Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an example:

htoken ID
Wb
def: param_spec return_spec ’,’

b

param_spec:

type
| name_list ’:’ type
5
return_spec:
type
| name ’:’ type
5
type: ID
5
name: ID
5
name_list:
name

| name ’,’ name_list
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It would seem that this grammar can be parsed with only a single token of look-ahead: when
a param_spec is being read, an ID is a name if a comma or colon follows, or a type if another ID

follows. In other words, this grammar is LR(1).

However, Bison, like most parser generators, cannot actually handle all LR(1) grammars. In
this grammar, two contexts, that after an ID at the beginning of a param_spec and likewise at
the beginning of a return_spec, are similar enough that Bison assumes they are the same. They
appear similar because the same set of rules would be active—the rule for reducing to a name and
that for reducing to a type. Bison is unable to determine at that stage of processing that the rules
would require different look-ahead tokens in the two contexts, so it makes a single parser state
for them both. Combining the two contexts causes a conflict later. In parser terminology, this

occurrence means that the grammar is not LALR(1).

In general, it is better to fix deficiencies than to document them. But this particular deficiency
is intrinsically hard to fix; parser generators that can handle LR(1) grammars are hard to write

and tend to produce parsers that are very large. In practice, Bison is more useful as it is now.

When the problem arises, you can often fix it by identifying the two parser states that are being
confused, and adding something to make them look distinct. In the above example, adding one

rule to return_spec as follows makes the problem go away:

%token BOGUS
W
return_spec:
type
| name ’:’ type
/* This rule is never used. */

| ID BOGUS

b

This corrects the problem because it introduces the possibility of an additional active rule in the
context after the ID at the beginning of return_spec. This rule is not active in the corresponding
context in a param_spec, so the two contexts receive distinct parser states. As long as the token
BOGUS is never generated by yylex, the added rule cannot alter the way actual input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule for
return_spec to use ID directly instead of via name. This also causes the two confusing contexts to
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have different sets of active rules, because the one for return_spec activates the altered rule for

return_spec rather than the one for name.

param_spec:

type
| name_list ’:’ type
return_spec:
type
| ID ’:’ type

b

5.8 Stack Overflow, and How to Avoid It

The Bison parser stack can overflow if too many tokens are shifted and not reduced. When this
happens, the parser function yyparse returns a nonzero value, pausing only to call yyerror to

report the overflow.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can become
before a stack overflow occurs. Define the macro with a value that is an integer. This value is the
maximum number of tokens that can be shifted (and not reduced) before overflow. It must be a

constant expression whose value is known at compile time.

The stack space allowed is not necessarily allocated. If you specify a large value for YYMAXDEPTH,
the parser actually allocates a small stack at first, and then makes it bigger by stages as needed.
This increasing allocation happens automatically and silently. Therefore, you do not need to make
YYMAXDEPTH painfully small merely to save space for ordinary inputs that do not need much stack.

The default value of YYMAXDEPTH, if you do not define it, is 10000.

You can control how much stack is allocated initially by defining the macro YYINITDEPTH. This

value too must be a compile-time constant integer. The default is 200.
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6 Error Recovery

It is not usually acceptable to have a program terminate on a parse error. For example, a
compiler should recover sufficiently to parse the rest of the input file and check it for errors; a

calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient to
allow yyparse to return 1 on error and have the caller ignore the rest of the input line when that
happens (and then call yyparse again). But this is inadequate for a compiler, because it forgets all
the syntactic context leading up to the error. A syntax error deep within a function in the compiler
input should not cause the compiler to treat the following line like the beginning of a source file.

You can define how to recover from a syntax error by writing rules to recognize the special token
error. This is a terminal symbol that is always defined (you need not declare it) and reserved for
error handling. The Bison parser generates an error token whenever a syntax error happens; if
you have provided a rule to recognize this token in the current context, the parse can continue.

For example:

stmnts: /* empty string */
| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid addition

to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmnts, an error and a newline. If an error
occurs in the middle of an exp, there will probably be some additional tokens and subexpressions
on the stack after the last stmnts, and there will be tokens to read before the next newline. So the

rule is not applicable in the ordinary way.

But Bison can force the situation to fit the rule, by discarding part of the semantic context
and part of the input. First it discards states and objects from the stack until it gets back to a
state in which the error token is acceptable. (This means that the subexpressions already parsed
are discarded, back to the last complete stmnts.) At this point the error token can be shifted.
Then, if the old look-ahead token is not acceptable to be shifted next, the parser reads tokens and
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discards them until it finds a token which is acceptable. In this example, Bison reads and discards

input until the next newline so that the fourth rule can apply.

The choice of error rules in the grammar is a choice of strategies for error recovery. A simple
and useful strategy is simply to skip the rest of the current input line or current statement if an

error is detected:

stmnt: error ’;’ /* on error, skip until ’;’ is read */

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched, and
generate another, spurious error message:

primary: ’(’ expr ’)’
| >’ error ’)°

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax error often
leads to another. In the above example, the error recovery rule guesses that an error is due to bad
input within one stmnt. Suppose that instead a spurious semicolon is inserted in the middle of a
valid stmnt. After the error recovery rule recovers from the first error, another syntax error will

be found straightaway, since the text following the spurious semicolon is also an invalid stmnt.

To prevent an outpouring of error messages, the parser will output no error message for another
syntax error that happens shortly after the first; only after three consecutive input tokens have
been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules can.

You can make error messages resume immediately by using the macro yyerrok in an action. If
you do this in the error rule’s action, no error messages will be suppressed. This macro requires no
arguments; ‘yyerrok;’is a valid C statement.

The previous look-ahead token is reanalyzed immediately after an error. If this is unacceptable,
then the macro yyclearin may be used to clear this token. Write the statement ‘yyclearin;’ in
the error rule’s action.
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For example, suppose that on a parse error, an error handling routine is called that advances the
input stream to some point where parsing should once again commence. The next symbol returned
by the lexical scanner is probably correct. The previous look-ahead token ought to be discarded
with ‘yyclearin;’.

The macro YYRECOVERING stands for an expression that has the value 1 when the parser is
recovering from a syntax error, and 0 the rest of the time. A value of 1 indicates that error

messages are currently suppressed for new syntax errors.
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7 Handling Context Dependencies

The Bison paradigm is to parse tokens first, then group them into larger syntactic units. In
many languages, the meaning of a token is affected by its context. Although this violates the Bison
paradigm, certain techniques (known as kludges) may enable you to write Bison parsers for such
languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor robust.)

7.1 Semantic Info in Token Types

The C language has a context dependency: the way an identifier is used depends on what its

current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is actually a
declaration of x. How can a Bison parser for C decide how to parse this input?

The method used in GNU C is to have two different token types, IDENTIFIER and TYPENAME.
When yylex finds an identifier, it looks up the current declaration of the identifier in order to
decide which token type to return: TYPENAME if the identifier is declared as a typedef, IDENTIFIER
otherwise.

The grammar rules can then express the context dependency by the choice of token type to
recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can start
a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier is not
significant, such as in declarations that can shadow a typedef name, either TYPENAME or IDENTIFIER
is accepted—there is one rule for each of the two token types.

This technique is simple to use if the decision of which kinds of identifiers to allow is made at a
place close to where the identifier is parsed. But in C this is not always so: C allows a declaration
to redeclare a typedef name provided an explicit type has been specified earlier:

typedef int foo, bar, lose;
static foo (bar); /* redeclare bar as static variable */
static int foo (lose); /* redeclare foo as function */
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Unfortunately, the name being declared is separated from the declaration construct itself by a

complicated syntactic structure—the “declarator”.

As a result, the part of Bison parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined, and once
for parsing a declaration in which that can’t be done. Here is a part of the duplication, with actions

omitted for brevity:

initdcl:
declarator maybeasm ’=’
init
| declarator maybeasm

b

notype_initdcl:
notype_declarator maybeasm ’=’
init
| notype_declarator maybeasm

b

Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction between

declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in that
information which alters the lexical analysis is changed during parsing by other parts of the program.
The difference is here the information is global, and is used for other purposes in the program. A

true lexical tie-in has a special-purpose flag controlled by the syntactic context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Bison actions,

whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct ‘hex
(hex-expr)’. After the keyword hex comes an expression in parentheses in which all integers are
hexadecimal. In particular, the token ‘alb’ must be treated as an integer rather than as an identifier

if it appears in that context. Here is how you can do it:
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Al
int hexflag;
hY
Wb

expr: IDENTIFIER

| constant
| HEX ’(°
{ hexflag = 1; }
expr ’)’
{ hexflag = 0;
$$ = $4; }

| expr ’+’ expr

{ $$ = make_sum ($1, $3); }

constant:
INTEGER
| STRING

Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers are parsed
in hexadecimal, and tokens starting with letters are parsed as integers if possible.

The declaration of hexflag shown in the C declarations section of the parser file is needed to
make it accessible to the actions (see Section 3.1.1 [The C Declarations Section], page 39). You
must also write the code in yylex to obey the flag.

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See Chapter 6 [Error
Recovery], page 77.

The reason for this is that the purpose of an error recovery rule is to abort the parsing of one
construct and resume in some larger construct. For example, in C-like languages, a typical error
recovery rule is to skip tokens until the next semicolon, and then start a new statement, like this:
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stmt: expr ’;’
| IF °(’ expr ’)? stmt { ... }

error ’;’
{ hexflag = 0; }

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will apply, and
then the action for the completed ‘hex (expr)’ will never run. So hexflag would remain set for

the entire rest of the input, or until the next hex keyword, causing identifiers to be misinterpreted
as integers.

To avoid this problem the error recovery rule itself clears hexflag.

There may also be an error recovery rule that works within expressions. For example, there
could be a rule which applies within parentheses and skips to the close-parenthesis:

expr:
I )(; expr )))
{ 8% =9$2; }

| *(’ error )’

If this rule acts within the hex construct, it is not going to abort that construct (since it applies
to an inner level of parentheses within the construct). Therefore, it should not clear the flag: the
rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or might
not, depending on circumstances? There is no way you can write the action to determine whether
a hex construct is being aborted or not. So if you are using a lexical tie-in, you had better make
sure your error recovery rules are not of this kind. Each rule must be such that you can be sure
that it always will, or always won’t, have to clear the flag.
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8 Debugging Your Parser

If a Bison grammar compiles properly but doesn’t do what you want when it runs, the yydebug
parser-trace feature can help you figure out why.

To enable compilation of trace facilities, you must define the macro YYDEBUG when you compile
the parser. You could use ‘-DYYDEBUG=1" as a compiler option or you could put ‘#define YYDEBUG
17 in the C declarations section of the grammar file (see Section 3.1.1 [The C Declarations Section],
page 39). Alternatively, use the ‘-t’ option when you run Bison (see Chapter 9 [Invoking Bison],
page 87). We always define YYDEBUG so that debugging is always possible.

The trace facility uses stderr, so you must add #include <stdio.h> to the C declarations
section unless it is already there.

Once you have compiled the program with trace facilities, the way to request a trace is to store
a nonzero value in the variable yydebug. You can do this by making the C code do it (in main,
perhaps), or you can alter the value with a C debugger.

Each step taken by the parser when yydebug is nonzero produces a line or two of trace infor-
mation, written on stderr. The trace messages tell you these things:

e FEach time the parser calls yylex, what kind of token was read.

e Each time a token is shifted, the depth and complete contents of the state stack (see Section 5.5
[Parser States], page 71).

e FEach time a rule is reduced, which rule it is, and the complete contents of the state stack
afterward.

To make sense of this information, it helps to refer to the listing file produced by the Bison ‘-v’
option (see Chapter 9 [Invoking Bison], page 87). This file shows the meaning of each state in terms
of positions in various rules, and also what each state will do with each possible input token. As
you read the successive trace messages, you can see that the parser is functioning according to its
specification in the listing file. Eventually you will arrive at the place where something undesirable

happens, and you will see which parts of the grammar are to blame.

The parser file is a C program and you can use C debuggers on it, but it’s not easy to interpret
what it is doing. The parser function is a finite-state machine interpreter, and aside from the
actions it executes the same code over and over. Only the values of variables show where in the
grammar it is working.
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The debugging information normally gives the token type of each token read, but not its semantic
value. You can optionally define a macro named YYPRINT to provide a way to print the value. If
you define YYPRINT, it should take three arguments. The parser will pass a standard 1/O stream,
the numeric code for the token type, and the token value (from yylval).

Here is an example of YYPRINT suitable for the multi-function calculator (see Section 2.4.1

[Declarations for mfcalc], page 32):

#define YYPRINT(file, type, value) yyprint (file, type, value)

static void
yyprint (file, type, value)
FILE #*file;
int type;
YYSTYPE value;
{
if (type == VAR)
fprintf (file, " %s", value.tptr->name);
else if (type == NUM)
fprintf (file, " %d", value.val);
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9 Invoking Bison

The usual way to invoke Bison is as follows:

bison infile

Here infile is the grammar file name, which usually ends in ‘.y’. The parser file’s name is made
by replacing the ‘.y’ with ‘.tab.c’. Thus, the ‘bison foo.y’ filename yields ‘foo.tab.c’, and the
‘bison hack/foo.y’ filename yields ‘hack/foo.tab.c’.

9.1 Bison Options

Bison supports both traditional single-letter options and mnemonic long option names. Long
option names are indicated with ‘==’ instead of ‘-’. Abbreviations for option names are allowed as

[4

long as they are unique. When a long option takes an argument, like ‘-=file-prefix’, connect

the option name and the argument with ‘=’

Here is a list of options that can be used with Bison, alphabetized by short option. It is followed
by a cross key alphabetized by long option.

‘~b file-prefix’
‘—-=file-prefix=prefix’
Specify a prefix to use for all Bison output file names. The names are chosen as if the

input file were named ‘prefix.c’.

g’

‘-—defines’
Write an extra output file containing macro definitions for the token type names defined
in the grammar and the semantic value type YYSTYPE, as well as a few extern variable
declarations.
If the parser output file is named ‘name.c’ then this file is named ‘name.h’.
This output file is essential if you wish to put the definition of yylex in a separate
source file, because yylex needs to be able to refer to token type codes and the variable
yylval. See Section 4.2.2 [Semantic Values of Tokens], page 58.

-1’

‘--no-lines’

Don’t put any #line preprocessor commands in the parser file. Ordinarily Bison puts
them in the parser file so that the C compiler and debuggers will associate errors with
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your source file, the grammar file. This option causes them to associate errors with the

parser file, treating it an independent source file in its own right.

‘-0 outfile’
‘—-—output-file=outfile’
Specify the name outfile for the parser file.

The other output files’ names are constructed from outfile as described under the ‘-v’

and ‘-4’ switches.

‘-p prefix’

‘—-—name-prefix=prefix’
Rename the external symbols used in the parser so that they start with prefix instead of
‘yy’. The precise list of symbols renamed is yyparse, yylex, yyerror, yylval, yychar
and yydebug.

For example, if you use ‘-p ¢’, the names become cparse, clex, and so on.
See Section 3.7 [Multiple Parsers in the Same Program], page 56.
‘ot

‘-—debug’ Output a definition of the macro YYDEBUG into the parser file, so that the debugging
facilities are compiled. See Chapter 8 [Debugging Your Parser], page 85.

[4 b

-v
‘--verbose’
Write an extra output file containing verbose descriptions of the parser states and what
is done for each type of look-ahead token in that state.
This file also describes all the conflicts, both those resolved by operator precedence and
the unresolved ones.
The file’s name is made by removing ‘.tab.c’ or ‘.c’ from the parser output file name,
and adding ‘.output’ instead.
Therefore, if the input file is ‘foo.y’, then the parser file is called ‘foo.tab.c’ by
default. As a consequence, the verbose output file is called ‘foo.output’.
(_V7
‘--version’
Print the version number of Bison and exit.
(_h7

‘-=help’ Print a summary of the command-line options to Bison and exit.
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oy

‘--yacc’

‘-—fixed-output-files’
Equivalent to ‘-o y.tab.c’; the parser output file is called ‘y.tab.c’, and the other
outputs are called ‘y.output’ and ‘y.tab.h’. The purpose of this switch is to imitate
Yacc’s output file name conventions. Thus, the following shell script can substitute for
Yacc:

bison -y $*

9.2 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding short

option.
-=debug . . . . . . ..o s s e e e s e e e s
-—defines . . . . . . . . . L L. L0 s s e e e e e e s s d
——file-prefix . . . . . . . . . . . . . ... .. .. ... D
--fixed-output-files . . . . . . . . . . . . . . . . . .. .. ... ..y
==help . . . . . . . . . 0000000 h
—--name-prefix . . . . . . . . . L. . .. ... ... ... s ... P
--no-lines . . . . . . . . . . .00 e e e e e e e e s s e s ]
--output-file . . . . . . . . . . . . . .. ... .. ... ... -0
-=verbose . . . . . . . . L L0000 s s e e e e e e s sy
S =Y o= o
S - Y o 2

9.3 Invoking Bison under VMS

The command line syntax for Bison on VMS is a variant of the usual Bison command syntax—
adapted to fit VMS conventions.

To find the VMS equivalent for any Bison option, start with the long option, and substitute a ‘/’
for the leading ‘==’ and substitute a ‘_’ for each ‘=’ in the name of the long option. For example,

the following invocation under VMS:

bison /debug/name_prefix=bar foo.y



90 Bison 1.20

is equivalent to the following command under POSIX.

bison --debug --name-prefix=bar foo.y

The VMS file system does not permit filenames such as ‘foo.tab.c’. In the above example, the
output file would instead be named ‘foo_tab.c’.
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Appendix A Bison Symbols

error

YYABORT

YYACCEPT

YYBACKUP

YYERROR

A token name reserved for error recovery. This token may be used in grammar rules so
as to allow the Bison parser to recognize an error in the grammar without halting the
process. In effect, a sentence containing an error may be recognized as valid. On a parse
error, the token error becomes the current look-ahead token. Actions corresponding to
error are then executed, and the look-ahead token is reset to the token that originally
caused the violation. See Chapter 6 [Error Recovery], page 77.

Macro to pretend that an unrecoverable syntax error has occurred, by making yyparse
return 1 immediately. The error reporting function yyerror is not called. See Sec-

tion 4.1 [The Parser Function yyparse|, page 57.

Macro to pretend that a complete utterance of the language has been read, by making

yyparse return 0 immediately. See Section 4.1 [The Parser Function yyparse], page 57.

Macro to discard a value from the parser stack and fake a look-ahead token. See
Section 4.4 [Special Features for Use in Actions], page 61.

Macro to pretend that a syntax error has just been detected: call yyerror and then
perform normal error recovery if possible (see Chapter 6 [Error Recovery], page 77),
or (if recovery is impossible) make yyparse return 1. See Chapter 6 [Error Recovery],
page 77.

YYERROR_VERBOSE

Macro that you define with #define in the Bison declarations section to request ver-
bose, specific error message strings when yyerror is called.

YYINITDEPTH
Macro for specifying the initial size of the parser stack. See Section 5.8 [Stack Overflow],
page 76.

YYLTYPE  Macro for the data type of yylloc; a structure with four members. See Section 4.2.3
[Textual Positions of Tokens], page 59.

YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. See Section 5.8 [Stack
Overflow], page 76.

YYRECOVERING
Macro whose value indicates whether the parser is recovering from a syntax error. See
Section 4.4 [Special Features for Use in Actions], page 61.

YYSTYPE  Macro for the data type of semantic values; int by default. See Section 3.5.1 [Data

Types of Semantic Values], page 45.
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yychar

yyclearin

yydebug

yyerrok

yyerror

yylex

yylval

yylloc

yynerrs

yyparse

%1left

%nonassoc

hprec

Bison 1.20

External integer variable that contains the integer value of the current look-ahead
token. (In a pure parser, it is a local variable within yyparse.) Error-recovery rule
actions may examine this variable. See Section 4.4 [Special Features for Use in Actions],
page 61.

Macro used in error-recovery rule actions. It clears the previous look-ahead token. See
Chapter 6 [Error Recovery], page 77.

External integer variable set to zero by default. If yydebug is given a nonzero value,
the parser will output information on input symbols and parser action. See Chapter 8
[Debugging Your Parser], page 85.

Macro to cause parser to recover immediately to its normal mode after a parse error.
See Chapter 6 [Error Recovery], page 77.

User-supplied function to be called by yyparse on error. The function receives one
argument, a pointer to a character string containing an error message. See Section 4.3
[The Error Reporting Function yyerror], page 60.

User-supplied lexical analyzer function, called with no arguments to get the next token.
See Section 4.2 [The Lexical Analyzer Function yylex], page 57.

External variable in which yylex should place the semantic value associated with a
token. (In a pure parser, it is a local variable within yyparse, and its address is passed
to yylex.) See Section 4.2.2 [Semantic Values of Tokens], page 58.

External variable in which yylex should place the line and column numbers associated
with a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) You can ignore this variable if you don’t use the ‘@” feature in the

grammar actions. See Section 4.2.3 [Textual Positions of Tokens], page 59.

Global variable which Bison increments each time there is a parse error. (In a pure
parser, it is a local variable within yyparse.) See Section 4.3 [The Error Reporting
Function yyerror], page 60.

The parser function produced by Bison; call this function to start parsing. See Sec-
tion 4.1 [The Parser Function yyparse|, page 57.

Bison declaration to assign left associativity to token(s). See Section 3.6.2 [Operator
Precedence], page 52.

Bison declaration to assign nonassociativity to token(s). See Section 3.6.2 [Operator
Precedence], page 52.

Bison declaration to assign a precedence to a specific rule. See Section 5.4 [Context-
Dependent Precedence], page 70.
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hpure_parser

hright

%start

%token

htype

%union

Bison declaration to request a pure (reentrant) parser. See Section 3.6.7 [A Pure
(Reentrant) Parser], page 54.

Bison declaration to assign right associativity to token(s). See Section 3.6.2 [Operator
Precedence], page 52.

Bison declaration to specify the start symbol. See Section 3.6.6 [The Start-Symbol],
page 54.

Bison declaration to declare token(s) without specifying precedence. See Section 3.6.1
[Token Type Names], page 51.

Bison declaration to declare nonterminals. See Section 3.6.4 [Nonterminal Symbols],

page 53.

Bison declaration to specify several possible data types for semantic values. See Sec-
tion 3.6.3 [The Collection of Value Types], page 52.

These are the punctuation and delimiters used in Bison input:

L%%?
SLRY
WA T VA

Delimiter used to separate the grammar rule section from the Bison declarations section
or the additional C code section. See Section 1.7 [The Overall Layout of a Bison
Grammar], page 18.

All code listed between ‘%{’ and ‘%}’ is copied directly to the output file uninterpreted.
Such code forms the “C declarations” section of the input file. See Section 3.1 [Outline
of a Bison Grammar], page 39.

Comment delimiters, as in C.

Separates a rule’s result from its components. See Section 3.3 [Syntax of Grammar

Rules], page 42.
Terminates a rule. See Section 3.3 [Syntax of Grammar Rules], page 42.

Separates alternate rules for the same result nonterminal. See Section 3.3 [Syntax of
Grammar Rules], page 42.



94

Bison 1.20



Appendix B: Glossary 95

Appendix B Glossary

Backus-Naur Form (BNF)
Formal method of specifying context-free grammars. BNF was first used in the ALGOL-
60 report, 1963. See Section 1.1 [Languages and Context-Free Grammars], page 13.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if there
is a rule which says that an integer can be used as an expression, integers are allowed
anywhere an expression is permitted. See Section 1.1 [Languages and Context-Free
Grammars|, page 13.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time or on
entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string of
length zero.

Finite-state stack machine
A “machine” that has discrete states in which it is said to exist at each instant in
time. As input to the machine is processed, the machine moves from state to state as
specified by the logic of the machine. In the case of the parser, the input is the language
being parsed, and the states correspond to various stages in the grammar rules. See
Chapter 5 [The Bison Parser Algorithm ], page 65.

Grouping A language construct that is (in general) grammatically divisible; for example, ‘expres-
sion’ or ‘declaration’ in C. See Section 1.1 [Languages and Context-Free Grammars],
page 13.

Infix operator
An arithmetic operator that is placed between the operands on which it performs some
operation.

Input stream

A continuous flow of data between devices or programs.

Language construct
One of the typical usage schemas of the language. For example, one of the constructs
of the C language is the if statement. See Section 1.1 [Languages and Context-Free
Grammars|, page 13.

Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’ first com-
putes ‘a+b’ and then combines with ‘c’. See Section 5.3 [Operator Precedence], page 68.
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Left recursion
A rule whose result symbol is also its first component symbol; for example, ‘expseql
: expseql ’,’ exp;’. See Section 3.4 [Recursive Rules], page 43.

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to right. See
Chapter 5 [The Bison Parser Algorithm ], page 65.

Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See Section 4.2

[The Lexical Analyzer Function yylex], page 57.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are parsed.
See Section 7.2 [Lexical Tie-ins], page 82.

Look-ahead token
A token already read but not yet shifted. See Section 5.1 [Look-Ahead Tokens], page 66.

LALR(1) The class of context-free grammars that Bison (like most other parser generators) can
handle; a subset of LR(1). See Section 5.7 [Mysterious Reduce/Reduce Conflicts],
page 74.

LR(1) The class of context-free grammars in which at most one token of look-ahead is needed

to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed through
rules in terms of smaller constructs; in other words, a construct that is not a token.
See Section 3.2 [Symbols], page 40.

Parse error
An error encountered during parsing of an input stream due to invalid syntax. See
Chapter 6 [Error Recovery], page 77.

Parser A function that recognizes valid sentences of a language by analyzing the syntax struc-
ture of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs some
operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal, accord-
ing to a grammar rule. See Chapter 5 [The Bison Parser Algorithm ], page 65.

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number of times
in parallel, without interference between the various invocations. See Section 3.6.7 [A
Pure (Reentrant) Parser], page 54.
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Reverse polish notation

A language in which all operators are postfix operators.

Right recursion

Semantics

Shift

A rule whose result symbol is also its last component symbol; for example, ‘expseql:
exp ’,’ expseql;’. See Section 3.4 [Recursive Rules], page 43.

In computer languages, the semantics are specified by the actions taken for each in-
stance of the language, i.e., the meaning of each statement. See Section 3.5 [Defining
Language Semantics], page 44.

A parser is said to shift when it makes the choice of analyzing further input from the
stream rather than reducing immediately some already-recognized rule. See Chapter 5
[The Bison Parser Algorithm |, page 65.

Single-character literal

A single character that is recognized and interpreted as is. See Section 1.2 [From Formal
Rules to Bison Input], page 15.

Start symbol

The nonterminal symbol that stands for a complete valid utterance in the language
being parsed. The start symbol is usually listed as the first nonterminal symbol in a
language specification. See Section 3.6.6 [The Start-Symbol], page 54.

Symbol table

Token

A data structure where symbol names and associated data are stored during parsing
to allow for recognition and use of existing information in repeated uses of a symbol.
See Section 2.4 [Multi-function Calc], page 31.

A basic, grammatically indivisible unit of a language. The symbol that describes a
token in the grammar is a terminal symbol. The input of the Bison parser is a stream
of tokens which comes from the lexical analyzer. See Section 3.2 [Symbols], page 40.

Terminal symbol

A grammar symbol that has no rules in the grammar and therefore is grammatically
indivisible. The piece of text it represents is a token. See Section 1.1 [Languages and
Context-Free Grammars], page 13.
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