
CompilerLab-SimpleJava-Parser2026 1

Simple Java － Parser

This assignment is to write a Simple Java Parser. You must write the grammar that
conforms to the syntactic definitions in the following sections. Once you have defined
these grammars, you can substitute them into Yacc to generate a C file named "y.tab.c"
(this C file contains yyparse()). yyparse() will call yylex() to obtain a token, so you need
to modify your first assignment – Scanner – to allow yyparse() to obtain the token.

Full Java grammar structure:
http://db.cse.nsysu.edu.tw/%7Echangyi/slides/compiler/lab/Java.doc

You must consider the following issues:

(a) Your parser must be able to generate error messages when it encounters an
error. Those error messages include the following cases:

1. The line number where the error occurred.
2. The position of the character, Moreover an explanation of the cause of

the error.
(b) When the parser encounters an error, it should process the input as completely

as possible. That is, the parser should perform recovery, when it encounters an error.
1. What to Submit

You must submit the following files:
� The revised Scanner should be named – your student ID.l

� Your Parser should be named – your student ID.y

(It should include comments to explain how to process statements.)

� Your test files

� All .c and .h files

� Makefile

� A Readme.pdf containing:

� Lex, Yacc version

� Operating platform

� Execution method

� How you handle the issues in this specification

� Problems you encountered while writing this assignment

� The results of executing all test files, saved as an image.

Please compress all the above files into one file, named – your student ID_hw2

http://db.cse.nsysu.edu.tw/~changyi/slides/compiler/lab/Java.doc

CompilerLab-SimpleJava-Parser2026 2

2 Syntactic Definitions

The following syntactic definitions are just snippets. You must come up with your own grammar

that conforms to these syntactic definitions to complete your assignment.

2.1 Data Types and Declarations

The basic data types are boolean, char, int, float, and String. A variable is declared in the

following format:

For example:

The array declaration is in the following format. (In this assignment, we only consider one-

dimensional arrays and do not consider the actions of the Assignment):

For example:

CompilerLab-SimpleJava-Parser2026 3

The declaration format of a constant (final):

For example:

Classes and Objects

Every object has a type, which is the object's class. Each class type has two members:

There can be multiple classes in the same file.

CompilerLab-SimpleJava-Parser2026 4

Creating objects

Use the `new` keyword to create objects.

Fields

There are two types of fields:

• class fields (static fields), such as static int counter;

• instance fields (non-static fields), such as int x, y;

2.2 Methods

A method declaration should have the following format:

Even if arguments are not declared, parentheses are still required. Within a method, no other

methods can be declared. The format of a formal argument is as follows:

If there are multiple formal arguments, separate them with commas.

Methods may return a value or not. If a method does not return a value, its type will be void. For

example, the following examples are valid method declarations:

Each method has a unique name.

CompilerLab-SimpleJava-Parser2026 5

2.3 Statements

There are six different types of statements: compound, simple, conditional, loop, return, and

method call.

2.3.1 Compound

A compund statement consists of a block of statements delimited by the { and }, and an optional

variable and constant declaration section :

Variables and constants declared within a compound statement are domain-dependent.

They become invalid, once the statement is removed.

An example of a compound statement:

CompilerLab-SimpleJava-Parser2026 6

CompilerLab-SimpleJava-Parser2026 7

For example:

method invocation

A method call has the following format:

CompilerLab-SimpleJava-Parser2026 8

2.3.3 Conditional

2.3.4 Loop

The format of a loop statement is as follows:

or

CompilerLab-SimpleJava-Parser2026 9

For example:

2.3.5 return

The format of a return statement is as follows:

2.3.6Method Invocation

3 Semantic Definition

Your parser must be able to perform a simple Semantic Definition check.

For example, two identical variables cannot be declared within the same scope.

For example:

Declaring two variables of 'a' within this scope is illegal, and your parser must be able to detect it.

CompilerLab-SimpleJava-Parser2026 10

4. Error and Recovery

You must consider the following cases:

(a) Your parser must be able to generate error messages when it encounters an error. Those error

messages include the following cases:

1. The line number where the error occurred.

2. The position of the character, Moreover an explanation of the cause of the error.

(b) When the parser encounters an error, it should process the input as completely as possible;

that is, the parser must perform recovery, when encountering an error.

5. Scoring Methods

(a) 6 publicly available test cases. I will select 3 that are exactly the same, and only those that are

all correct will receive points (20% each).

(b) 2 hidden test cases, randomly arranged from the publicly available test cases (10% each).

(c) Annotations: Explanation of how to process statements (5%)

(d) Readme.pdf (5%)

(e) Verbal Q&A (5% * 2)

(f) Bonus (including statements that are never used) (5%)

CompilerLab-SimpleJava-Parser2026 11

6 Example Simple Java Program

CompilerLab-SimpleJava-Parser2026 12

CompilerLab-SimpleJava-Parser2026 13

test3.java

(Note: Line 10 should be missing Semicolon, but it's acceptable for the error to appear in the int

of Line 12, meaning at least one error occurred.)

CompilerLab-SimpleJava-Parser2026 14

CompilerLab-SimpleJava-Parser2026 15

CompilerLab-SimpleJava-Parser2026 16

