NSTSU

lose Simple Java — Parser
=15

This assighnment is to write a Simple Java Parser. You must write the grammar that
conforms to the syntactic definitions in the following sections. Once you have defined
these grammars, you can substitute them into Yacc to generate a C file named "y.tab.c"
(this C file contains yyparse()). yyparse() will call yylex() to obtain a token, so you need
to modify your first assignment — Scanner — to allow yyparse() to obtain the token.

Full Java grammar structure:
http://db.cse.nsysu.edu.tw/%7Echangyi/slides/compiler/lab/Java.doc

You must consider the following issues:
(a) Your parser must be able to generate error messages when it encounters an
error. Those error messages include the following cases:
1. The line number where the error occurred.
2. The position of the character, Moreover an explanation of the cause of
the error.
(b) When the parser encounters an error, it should process the input as completely
as possible. That is, the parser should perform recovery, when it encounters an error.

1. What to Submit
You must submit the following files:
[l The revised Scanner should be named — your student ID.|
[] Your Parser should be named - your student ID.y
(It should include comments to explain how to process statements.)
[J Your test files
[0 All .c and .h files
[0 makefile
[0 A Readme.pdf containing:

[Lex, Yacc version

[C] Operating platform

[J Execution method

[0 How you handle the issues in this specification

[] Problems you encountered while writing this assignment

[The results of executing all test files, saved as an image.

Please compress all the above files into one file, named — your student ID_hw2

CompilerLab-SimpleJava-Parser2026 1

http://db.cse.nsysu.edu.tw/~changyi/slides/compiler/lab/Java.doc

2 Syntactic Definitions
The following syntactic definitions are just snippets. You must come up with your own grammar

that conforms to these syntactic definitions to complete your assignment.

2.1 Data Types and Declarations
The basic data types are boolean, char, int, float, and String. A variable is declared in the

following format:

[static] type identifier _list;

identifier_list >
identifier [= const_expr] {, identifier [= const_expr]}

For example:

int a, b, ¢ =10;
int a = 10;

intb, c = 2;

R R

intd=1+ 2;

< static boolean b;

The array declaration is in the following format. (In this assignment, we only consider one-

dimensional arrays and do not consider the actions of the Assignment):

typel] identifier = new type[integer_constant];

For example:

< int[] a = new int[10];

CompilerLab-SimpleJava-Parser2026

The declaration format of a constant (final):

final type identifier_list;

identifier_list >
identifier = const_expr {, identifier = const_expr}

lfinal float pi = 3.14;|

For example:
<> [x] means that x will appear O or 1 times.
<> {x} represents that x will appear O or more times.

< x|y means either x or y.

Classes and Objects
Every object has a type, which is the object's class. Each class type has two members:

< Fields are data variables associated with a class and its objects.

< Methods contain the executable code of a class.

class Point { /’— Fields
static int counter ; —
intx,y; —
void clear() { ™~
X=0; Method
y=0;
} -
}

There can be multiple classes in the same file.

CompilerLab-SimpleJava-Parser2026

Creating objects

Use the ‘'new’ keyword to create objects.

Point lowerLeft = new Point() ;

Point upperRight = new Point() ;

Fields
There are two types of fields:
e class fields (static fields), such as static int counter;

e instance fields (non-static fields), such as int x, y;

2.2 Methods

A method declaration should have the following format:

method_modifier type identifier({zero or more formal arguments})

one compound statement

method_modifier >
public | protected | private

Even if arguments are not declared, parentheses are still required. Within a method, no other

methods can be declared. The format of a formal argument is as follows:

type identifier

If there are multiple formal arguments, separate them with commas.
Methods may return a value or not. If a method does not return a value, its type will be void. For

example, the following examples are valid method declarations:

boolean funci(int x, int y, String z) {}
String func2(boolean a) {}
void func3() {}

Each method has a unique name.

CompilerLab-SimpleJava-Parser2026 4

2.3 Statements
There are six different types of statements: compound, simple, conditional, loop, return, and

method call.

2.3.1 Compound
A compund statement consists of a block of statements delimited by the { and }, and an optional

variable and constant declaration section :

{zero or more variable and constant declaration}

{zero or more statements}

¥

Variables and constants declared within a compound statement are domain-dependent.

They become invalid, once the statement is removed.

An example of a compound statement:

-

{
inta;
read(a) ;
print(a) ;
}

CompilerLab-SimpleJava-Parser2026

2.3.2 Simple

simple >
name = expression ; |
print(expression) ; |

read(name) ; |

name++ ;
name-- ; |
expression ; |

.
’

name >
identifier |
identifier.identifier

expressions

expression >
term |

expression + term |

expression — term

term >
factor {* factor | / factor}

factor >
identifier |
const_expr |
(expression) |
PrefixOp identifier |
identifier PostfixOp |
MethodInvocation

CompilerLab-SimpleJava-Parser2026

PrefixOp =
++ |
-
+ |
PostfixOp >
++ |
For example:
> a+-b
< (1+2)*3
< b+add(c,d);

method invocation

A method call has the following format:

name({expressions separated by zero or more comma})

CompilerLab-SimpleJava-Parser2026

2.3.3 Conditional

if (boolean_expr) one simple or compound statement

{else one simple or compound statement}

boolean_expr >

expression Infixop expression

Infixop >

2.3.4 Loop

The format of a loop statement is as follows:

while (boolean_expr)

one simple or compound statement

or

for (ForInitOpt ;boolean_expr ; ForUpdateOpt)

one simple or compound statement

ForInitOpt -

[int] identifier = expression {, identifier = expression}

ForUpdateOpt >
identifier ++ |
identifier --

CompilerLab-SimpleJava-Parser2026

For example:

intsum=0,1=1;
while (1 <=10){
sum =sum +1;

iI=1+1;

for (int index = 0; index < 10; index++) {
if (list[index] > max) {

max = list[index];

2.3.5 return

The format of a return statement is as follows:

return expression ;

2.3.6Method Invocation

name({expressions separated by zero or more comma}) ;

3 Semantic Definition
Your parser must be able to perform a simple Semantic Definition check.
For example, two identical variables cannot be declared within the same scope.

For example:

inta;

float a ;

Declaring two variables of 'a' within this scope is illegal, and your parser must be able to detect it.

CompilerLab-SimpleJava-Parser2026 9

4. Error and Recovery

You must consider the following cases:

(a) Your parser must be able to generate error messages when it encounters an error. Those error
messages include the following cases:
1. The line number where the error occurred.
2. The position of the character, Moreover an explanation of the cause of the error.
(b) When the parser encounters an error, it should process the input as completely as possible;

that is, the parser must perform recovery, when encountering an error.

5. Scoring Methods

(a) 6 publicly available test cases. | will select 3 that are exactly the same, and only those that are
all correct will receive points (20% each).

(b) 2 hidden test cases, randomly arranged from the publicly available test cases (10% each).

(c) Annotations: Explanation of how to process statements (5%)

(d) Readme.pdf (5%)

(e) Verbal Q&A (5% * 2)

(f) Bonus (including statements that are never used) (5%)

CompilerLab-SimpleJava-Parser2026 10

6 Example Simple Java Program

+ testijava

< input

class sigma {

final int n = 10;
int sum, index;

main()
{
index = 0;
sum = 0;
while (index <= n)
{
sum = sum + index;
index = index + 1;
}

print(sum);

< output

: /* Test file: Perfect test file

* Compute sum =1 + 2 + ... + n
*/

: class sigma {

: // "final" should have const_expr
: final int n = 10 ;

: int sum , index ;

VONONOITDNWN =

: main ()
{

: index = 0 ;
:sum = 0 ;
: while (index <= n)

: sum = sum + index ;
: index = index + 1 ;

; Erint (sum) ;
.}

CompilerLab-SimpleJava-Parser2026

11

+ test2java

< input

s Point

static int counter ;
int x, vy ;

int x ;
void clear()

0;
0;

< output

line 1: /*Test file: Duplicate declare
variable in the same scopex/

line 2: class Point

line 3: {

line 4: static int counter ;

line 5: int x , y ;

line 6: /*Duplicate declare x*x/

line 7: int x ;

> 'x' is a duplicate identifier.

line 8: void clear ()

line 9: {

line 10: 0 ;

line 11: 0 ;

line 12:

line 13:

CompilerLab-SimpleJava-Parser2026

12

test3.java

(Note: Line 10 should be missing Semicolon, but it's acceptable for the error to appear in the int

of Line 12, meaning at least one error occurred.)

< intput

int z;
int xy ;

float w;

ss Test {
int d;

Point p = new Point()

int w,q;

< output

line 1: /*Test file of Syntax errer:

Out

But
line 2: class
line
Line
line
line
line
line
line
line
line : Point
Line char:

char:
int x

e~

: float
: }

: class

VN~ DNWN

: int z ;

of symbol.

it can go throughx/

Point {

12, a syntax error at "y"
Y ;

: /*Need ',' before yx*/

L

Test {
: int d ;

’

p = new Point ()
17, statement without semicolon

line : [/*Need ';' at EOL=*/

line 12: int w
line 13: }

N

CompilerLab-SimpleJava-Parser2026

13

-

+ testqg.java

boolean test()
{

int x;
char Xx;

{

boolean w;

new Point();

< output

line 1: /*Test file: Duplicate declaration in different scope and
same scopex

line 2: class Point

line 3: {

line 4: int x , y ;

line 5: int p ;

line 6: boolean test ()

line 7: {

line 8: /*Another x, but in different scopes*/

line 9: int x ;

line 10: /*Another x in the same scopex/

*%%%%%'Xx' in the next line is a duplicated identifier in the
current scope.xkkkxx

line 11: char x ;

line 12: {

line 13: boolean w ;

line 14: }

line 15: /*Another w, but in different scopesx/

line 16: int w ;

line 17: }

line 18: }

line 19: class Test

line 20: {

line 21: /*Another p, but in different scopesx/

line 22: Point p = new Point () ;

line 23: }

CompilerLab-SimpleJava-Parser2026

+ tests.java

< input
class test5{
int add(int al, int a2){
return (al + a2);

void main() {
int x, vy, z;
for(int i=0;i<2;i++){
if(i==0){

else
i 1;
}

for(x = 0; x<5;x++){

dd(x,y);

print("x:"+x+"y:"+y);
) z=(x+y)*5/ 2-- -y;

< output

: class test5 {

: int add (int a1l , int a2) {
: retrun (a1 + a2) ;

line
line
line
line
line
line
line
line
line ELSE WITHOUT IF
*kkkkkE If at line 10, char A4xxxx%%
line :

line

line

line : O ; x <5 ; x ++) {

line :

line : FUNCTION CALL

line : H
line
line
line
line
line
line
line
line 2
line : /* this is a comment // line// with some /* /*and
line : // delimiters %/

: void main {
s int x , vy ;
: for (int i 0 ;i<2;1i++) {
: if (i == {

VOO OITDNWGWN

IIX:II + X + uy:u + y) ;
+y)*x5/2---y;

S
nH

=
~rt
X ~

CompilerLab-SimpleJava-Parser2026

test6.java
< input

class testéq
void sum(){

int sumxyz = X +y + z ;
void main() {

int [] i= new int [1];
for(i[0] = 0; i[0]<5; i[0]++)
i[0]++;

Point iowerLeft = new Point() ;

while(**/a++){
print("error!!");
}

class Point {
int x, y, z;

output

class testé {
void sum () {
NEVER USED
%nt SUMXYZ = X + Y + 2 ;

void main () {

line
line
line
line
line
line
line
line
line
line
line :
line : NEW CLASS

line : Point lowerLeft = new Point () ;

line :

line : ERROR CONDITION

******Invalld Boolean Expression at line 16, char 9x%xx%%
line : while (* * / a ++) {

line : print ("error!!") ;

line .

line : CLASS DECLARE

line : class Point {

line cintx , vy, z ;

line :

line : }

line :

line : }

1| :
@l <5;i[0] ++)

VOO UITDNWN -

CompilerLab-SimpleJava-Parser2026

