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tInformation �ltering is an area of resear
h that develops tools for dis
riminating between relevantand irrelevant information. Users �rst give des
riptions about what they need, i.e., user pro�lesrepresented by a set of keywords, to start the servi
es. A pro�le index is built on these pro�les.Then, the Web page will be re
ommended to the users whose pro�les belong to the �ltered results.Therefore, a 
riti
al issue of the information �ltering servi
e is how to index the user pro�les for aneÆ
ient mat
hing pro
ess. Among previous proposed methods, Wu and Chen's graph-based indexmethod 
an expe
t to minimize the storage spa
e. However, when the users often 
hange theirinterests, the index stru
ture of Wu and Chen's method needs to be re
onstru
ted, resulting in thehigh update 
ost. Therefore, in this paper, we propose a data mining-based method for the in
re-mental update of the index stru
ture, the updatable tree, to redu
e the update 
ost. In fa
t, ea
hkeyword 
ould have a weight representing the degree of importan
e to a user. We apply this featureto distinguish between long-term and short-term interests. By making use of the property that theshort-term interest has a higher probability to be 
hanged than the long-term one, our proposedmethod 
an lo
ally update the short-term interest, resulting in the low update 
ost. A

ording toour experimental results, our method really 
an redu
e the update 
ost as needed by Wu and Chen'smethod.Keywords : data mining, in
remental update, information �ltering, personalization, pro�le.1. INTRODUCTIONThe growth of the Web has brought about the rapid a

umulation of data and the in
reasingpossibility of information sharing. When sear
hing the Web, a user 
an be overwhelmed by thousandsof results retrieved by a sear
h engine, and few of whi
h are valuable. Therefore, many te
hniqueshave been developed on the Web to retrieve useful information. Information �ltering is one of thete
hniques to help users �nd what they want [4, 6, 7, 15℄. It is 
lassi�ed into two kinds of approa
hes,
ollaborative �ltering and 
ontent-based information �ltering. Collaborative �ltering identi�es the�This resear
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relevant users who own similar interests and provides the data they like to ea
h other [3, 8℄. However,it is not well-suited to lo
ating information for a spe
i�
 
ontent information need [8℄. On the otherhand, 
ontent-based information �ltering identi�es and provides the relevant data for the users basedon the similarity between data and their interests [14℄.In this paper, we fo
us on 
ontent-based information �ltering. Ea
h user has his (her) pro�lewhi
h stores a set of keywords that 
an present his (her) interests [1, 12, 15℄. For a pro�le to mat
hthe do
ument, every keyword that it 
ontains must be in the do
ument [13℄. The mat
hed Webpages are also presented with the asso
iated set of keywords. Comparing data with pro�les, theusers who are interested in the data are identi�ed and informed. That is, information �ltering 
an�nd good mat
hes between the Web pages and the users' information needs [9, 10, 11, 14℄.In order to mat
h data with pro�les eÆ
iently, a pro�le index is built on these pro�les. Indexinguser pro�les 
an redu
e the 
osts of storage spa
e and the pro
essing time for 
omparing the userpro�les with in
oming Web pages. We 
an use a proxy server whi
h is regarded as a me
hanismto produ
e Web pages. That is, the Web pages fet
hed by the proxy server will form the in
omingWeb pages for the information �ltering servi
e [13℄. Two kinds of models that index stru
tures arebased on, ve
tor spa
e and boolean models, are used on the information �ltering servi
e. In theve
tor spa
e model, user pro�les and do
uments are identi�ed by keywords whi
h are asso
iatedwith the weight that 
an represent its statisti
al importan
e, su
h as its frequen
y in the do
ument.Sin
e ea
h keyword has a weight, the ve
tor spa
e model 
an provide the best mat
h with relevan
eranking. On the other hand, the user may use the boolean model to spe
ify keywords that he (she)wants in do
uments re
eived [5, 16℄. The boolean model is used to provide the exa
t mat
h, andsimple to implement. Note that, in fa
t, the boolean model is a spe
ial 
ase of the ve
tor spa
emodel in whi
h all the keywords have the same weight. Both models have their appli
able problemdomains.In [15℄, Yan and Gar
ia-Molina have proposed three methods based on the ve
tor spa
e model:the brute for
e method, the pro�le indexing method and the sele
tive pro�le indexing method. In[16℄, Yan and Gar
ia-Molina have proposed four methods based on the boolean model: the brute for
emethod, the 
ounting method, the key method and the tree method. To improve the performan
ein terms of the storage spa
e on storing the index in [16℄, Wu and Chen [13℄ have proposed fourmethods: index path with path signatures, index graph with path signatures, index path with pro�lesets, and index graph with pro�le sets.Among these methods for information �ltering, Wu and Chen's index graph with pro�le sets [13℄
an expe
t to minimize the storage spa
e at the 
ost of the pro
essing time. However, their methoddoes not 
on
ern about the issue of updates. With the 
on
ern of updates, the reorganization ofan index stru
ture should be lo
ally operated so that the update 
ost for reorganizing the stru
ture2



is minimized. When someone's interests are 
hanged, Wu and Chen's graph-based index stru
ture[13℄ needs to be re
onstru
ted from the root. That is, their index stru
ture will be a�e
ted globally,resulting in the high update 
ost.Therefore, in this paper, in order to redu
e the update 
ost as needed by Wu and Chen's method[13℄, we propose a data mining-based method for 
onstru
ting the index stru
ture, the updatabletree, whi
h supports the in
remental update. We adopt the ve
tor spa
e model. Ea
h keyword 
anbe distinguished between the long-term interest whi
h has the weight greater than or equal to thethreshold and the short-term interest whi
h has the weight less than the threshold. Moreover, weuse a revised version of the Apriori algorithm [2℄, a well-known data mining method for miningasso
iation rules, to get the large itemset, i.e., the long-term interest, by taking weights of keywordsin pro�les into 
onsideration. By making use of the property that the probability of modifying theshort-term interests is higher than that of modifying the long-term interests, we 
an update theshort-term interests lo
ally to redu
e the update 
ost. A

ording to our experimental results, ourmethod really 
an redu
e the update 
ost as needed by Wu and Chen's method [13℄.The rest of the paper is organized as follows. Se
tion 2 presents a data mining-based method forthe in
remental update. In Se
tion 3, we show the performan
e study and make a 
omparison ofthe proposed method and Wu and Chen's method. Finally, Se
tion 4 gives the 
on
lusion.2. THE DATA MINING-BASED METHOD FOR THEINCREMENTAL UPDATEBased on Wu and Chen's method [13℄, when someone's interests are 
hanged, their graph-basedindex stru
ture needs to be re
onstru
ted from the root. In this se
tion, we present a data mining-based method for the in
remental update of the index stru
ture for storing keywords to redu
e theupdate 
ost.2.1 The Proposed MethodWe adopt the ve
tor spa
e model. Basi
ally, a pro�le in the ve
tor spa
e model 
ontains alist of keywords and ea
h keyword is weighted a

ording to its degree of importan
e. Hen
e, ea
hkeyword in the pro�le is given a weight that signi�es its statisti
al importan
e. The weight ofa keyword is bounded by (0::1℄ and weights among keywords are independent. For example, inpro�le f
ar; sto
kg = f0:9; 0:2g, keyword 
ar has a weight 0:9, and keyword sto
k has a weight0:2. Therefore, in the proposed method, we take the weight of ea
h keyword into 
onsideration.Furthermore, we assume that user pro�les are 
lustered so that in ea
h 
luster, the user pro�les havesimilar interests. Our proposed method is then applied in a 
luster.A threshold � is given to distinguish how importan
e of those keywords is. If the weight of thekeyword is greater than or equal to threshold �, it 
an be regarded as the long-term interests. The3
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(a) (b)Figure 1: Pro�les for the running example: (a) the pro�les 
ontaining those keywords with the weight< �; (b) the pro�les 
ontaining those keywords with the weight � �.long-term interests are interests that result from an a

umulation of experien
es over a long time.On the other hand, if the weight of the keyword is less than threshold �, it 
an be regarded as theshort-term interests. The short-term interests are interests in events on a day-to-day basis whi
h
hange over a short period. By making use of the property of the keywords whi
h are assigned withthe weight, we 
an redu
e the update 
ost in our proposed method.In our proposed method, we use a revised version of the Apriori algorithm [2℄ to get largeitemsets. The Apriori algorithm 
onstru
ts a 
andidate set of large itemsets, 
ounts the numberof o

urren
e of ea
h 
andidate set, and then determines large itemsets based on a predeterminedminimum support. Be
ause the large itemsets in our proposed method represent the long-terminterests whi
h are not often modi�ed, we modify the de�nition of 
andidate itemsets in the Apriorialgorithm. That is, the 
ount of the keyword will be in
reased only when the weight of the keywordis greater than or equal to threshold �. Moreover, in the original Apriori algorithm, if the value ofthe predetermined minimum support is set too large, it may not generate large itemsets. Therefore,in our revised Apriori algorithm, the minimum support is dynami
ally de
ided to guarantee that we
an get large itemsets. It is 
al
ulated by PjCnji=1 Sup(Ci)jCnj , where Cn represents the 
andidate itemsetin the n'th round, and Sup(Ci) represents the number of o

urren
e of 
andidate itemset Ci amongpro�les.Take an example in Figure 1 to illustrate the way to get the large itemset. In Figure 1, there are�ve pro�les whi
h 
ontain a list of keywords with weights and the threshold � = 0.5. Those keywordswith the weight < � are shown in Figure 1-(a), and those keywords with the weight � � are shown inFigure 1-(b). Be
ause the keyword with the weight � � will be
ome the 
andidate item, we only usethose pro�les as shown in Figure 1-(b) to be the input data. That is, as shown in Figure 2, the largeitemset 
an be 
hosen from those pro�les shown in Figure 1-(b). Those pro�les are s
anned on
eto generate the one-item 
andidate itemset, C1, with the support that is the number of o

urren
eamong them. The minimum support of C1 is 
al
ulated by (2+2+5+3+1+2+3+3+2)9 = 2:6. So, we4
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Figure 2: An example of getting the large itemset
hoose only those itemsets f
g, fdg, fgg, fig whi
h have support greater than or equal to 2.6 tobe L1. Next, itemsets in C2 are generated from the 
ombination of any two itemsets in L1. Thesimilar pro
ess is pro
eeded until no more large itemsets are generated. The �nal result of the largeitemset is L3 = f
; d; gg. We 
hoose the large itemset with the longest length, the same as that inthe Apriori algorithm.By using our revised Apriori algorithm, we 
an get the large itemset from the pro�les whi
hhave the weight of ea
h keyword greater than or equal to the threshold. After we get the largeitemset, we divide those pro�les into two parts a

ording to the result of the large itemset. Onepart 
ontains the large itemset and the other part does not 
ontain the large itemset. Next, thosepro�les in the two parts keep on getting the large itemset by using our revised Apriori algorithm,respe
tively. We use ea
h result of the large itemsets to 
onstru
t the index stru
ture, the updatabletree. Those steps are repeated until no keyword is in the pro�les whi
h have the weight of ea
hkeyword greater than or equal to the threshold. Note that the 
onstru
tion of the updatable treerequires a number of iteration on �nding the large itemsets. This may be time-
onsuming, but itoperates in the o�-line manner. Finally, we insert the identi�ers of the pro�les and those keywordswhi
h have the weight less than the threshold to the index stru
ture a

ording to the path fromthe root that those pro�les own by themselves. By making use of the property that the probabilityof modifying the short-term interests is higher than that of modifying the long-term interests, andthat we always put the short-term interests whi
h have the weight less than the threshold to the5



1
1
 : the long-term node

1
 : the short-term node


1
root


a

b

c

i

j


c

d

g


P2


P1
P5


a

i

j


P4
 P3


1
1
f


e

h


1
1
i


b

e

h


1
1
e


d

h


e

f

g


Figure 3: The updatable tree
Profile


P1


P2


P3


P4


P5


does not

contain

{c, d, g}


c, d, g, i


c, d, f, g

c, d, f, g
contains


{c, d, g}


Profile
 Keywords


Profile
 Keywords


(a)


(b)


P1

P4

P5


a, b, c, e, i, j

a, b, c, i, j
P2


P3

Keywords


 c, d, g, i


 a, b, c, i, j


 a, b, c, e, i, j


 c, d, f, g


 c, d, f, g
Figure 4: The pro�le division based on the large itemset f
; d; gg: (a) the pro�les not 
ontaining thelarge itemset; (b) the pro�les 
ontaining the large itemset.leaf nodes of the tree, we 
an update the short-term interests lo
ally.Let's use an example shown in Figure 1 to illustrate those steps of 
onstru
ting the updatabletree. As des
ribed above, we divide those pro�les into two parts. We use the pro�les as shown inFigure 1-(b), whi
h have the weight of ea
h keyword greater than or equal to the threshold, to getthe large itemset. At the �rst time, the large itemset is f
; d; gg representing long-term keywords, asshown in Figure 2. We 
reate a long-term node to 
ontain the large itemset f
; d; gg to the updatabletree, following the root node, as shown in Figure 3. Next, we divide those pro�les into two parts:one part does not 
ontain the large itemset f
; d; gg as shown in Figure 4-(a), and the other part
ontains it as shown in Figure 4-(b). Note that, in this way, therefore, only one unique path fromthe root node will lead to ea
h pro�le.Then, we use those pro�les P1, P4, P5 whi
h have already removed the large itemset f
; d; gg as6
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ontaining the largeitemset; (b) the pro�les 
ontaining the large itemset.shown in the left part of Figure 5 to get the large itemset ffg again. We 
an then divide pro�les P1,P4, P5 into two parts again: one part does not 
ontain the large itemset as shown in Figure 5-(a),and the other part 
ontains it as shown in Figure 5-(b). After that, we 
reate a long-term node to
ontain keyword ffg to the updatable tree, following the node 
ontaining keywords f
; d; gg. At thispoint, there is no keyword with the weight � � in pro�les P4 and P5. So, we 
reate a short-termnode to 
ontain keywords fe, hg as shown in Figure 1-(a), whi
h have the weight less than thethreshold in pro�le P4, to the updatable tree, following the long-term node 
ontaining keyword ffg.Moreover, we add the identi�er of pro�le P4 to the updatable tree, following the node 
ontainingkeywords fe; hg. Note that, obviously when the short-term interest is 
hanged, it 
an be lo
allyupdated. Similar to the previous step, we also 
reate a short-term node to 
ontain keywords fa,i, jg as shown in Figure 1-(a), whi
h have the weight less than the threshold in pro�le P5, to theupdatable tree, following the node 
ontaining keyword ffg. Next, we add the identi�er of pro�le P5to the updatable tree, following the node 
ontaining keywords fa; i; jg.Then, there is only one pro�le P1 that 
ontains one keyword i whi
h has the weight greaterthan or equal to the threshold. Therefore, we 
reate a long-term node to 
ontain keyword i to theupdatable tree, following the node 
ontaining keywords f
; d; gg. After that, there is no keywordwith the weight � � in pro�le P1. So, we 
reate a short-term node to 
ontain keywords fb; e; hg asshown in Figure 1-(a), whi
h have the weight less than the threshold in pro�le P1, to the updatabletree, following the node 
ontaining keyword fig. Moreover, we add the identi�er of pro�le P1 to theupdatable tree, following the node 
ontaining keywords fb; e; hg.Similar to the previous steps, we get the large itemset fa; b; 
; i; jg from those pro�les as shownin Figure 4-(a). Next, we 
reate a long-term node to 
ontain the large itemset fa; b; 
; i; jg to theupdatable tree, following the root node. After the large itemset fa; b; 
; i; jg is removed from pro�lesP2 and P3, there is only one keyword feg in pro�le P3. So, we 
reate a long-term node to 
ontainkeyword feg to the updatable tree, following the node 
ontaining keywords fa; b; 
; i; jg. Then,7



we 
reate a short-term node to 
ontain keywords fd; hg as shown in Figure 1-(a), whi
h have theweight less than the threshold in pro�le P3, to the updatable tree, following the node 
ontainingkeyword feg. Moreover, we add the identi�er of pro�le P3 to the updatable tree, following the node
ontaining keywords fd; hg. Finally, similar to the previous steps, we 
reate a short-term node to
ontain keywords fe; f; gg as shown in Figure 1-(a), whi
h have the weight less than the thresholdin pro�le P2, to the updatable tree, following the node 
ontaining keywords fa; b; 
; i; jg. Moreover,we add the identi�er of pro�le P2 to the updatable tree, following the node 
ontaining keywordsfe; f; gg. Consequently, the �nal result for the input shown in Figure 1 is shown in Figure 3.2.2 The Mat
hing Pro
essTo �nd a mat
h for a Web page, the breadth �rst sear
h from the root in the updatable treeshould be 
ondu
ted. If all the keywords in a node are 
ompletely mat
hed with those of the Webpage, the 
hildren of this node are then traversed; otherwise, the 
hildren of this node are not furthertraversed. If the identi�er of a pro�le is rea
hed, it is a mat
h and this Web page is re
ommendedto the 
orresponding user.For example, a Web page 
ontains keywords fa; 
; d; e; f; g; h; i; jg. Sin
e, in Figure 3, keywordsf
; d; gg of the left node of the root are 
ompletely 
ontained in this page, its 
hildren are thentraversed. On the other hand, keywords fa; b; 
; i; jg of the right node of the root are not 
ompletely
ontained in this page, its 
hildren are not further traversed. Then, the similar pro
ess is 
ondu
ted.Finally, this page will be re
ommended to the users having pro�les P4 and P5, respe
tively.2.3 The Update Pro
essA

ording to our data mining-based method for the in
remental update as des
ribed above, we
an redu
e the update 
ost as needed by Wu and Chen's method [13℄. For example, in Figure 1-(a),the weight of keyword f in pro�le P2 is 0.1, it is one of the short-term interests whi
h have the highprobability to be 
hanged over a short period. A

ording to the updatable tree as shown in Figure3, if the user with pro�le P2 is not interested in keyword f , we 
an delete keyword f from the node
ontaining fe; f; gg. That is, the node 
ontaining fe; f; gg is 
hanged to the node 
ontaining fe; gg.For the deletion of the long-term keyword (interest), l key, in pro�le Pi, we use pro
edure Deleteshown in Figure 6 to deal with it. In pro
edure Delete, we �rst use keywords of pro�le Pi to lo
atethe node, W , 
ontaining l key in the updatable tree. If this node is leading to pro�le Pi and theother pro�les, a new long-term node, X , is 
reated to 
ontain l key, l key is deleted from node W ,and the 
hildren of node W should be reallo
ated. Otherwise, keyword l key is dire
tly deleted fromnode W . For example, 
onsider that long-term keyword 
, referred to as l key, of pro�le P2 is beingdeleted from the tree shown in Figure 3. The node 
ontaining fa; b; 
; i; jg, referred to as node W ,8



1: pro
edure Delete (l key, Pi)2: begin /* l key is the long-term keyword (interest) for pro�le Pi to be deleted. */3: lo
ate the node, W , 
ontaining keyword l key of pro�le Pi in the updatable tree by usingkeywords of pro�le Pi;4: if W is the node leading to not only pro�le Pi then5: begin6: 
reate a new long-term node X to 
ontain l key;7: atta
h node X to node W ;8: atta
h the 
hildren of node W not leading to pro�le Pi to node X ;9: if node X has only one 
hild and this 
hild is a long-term node then10: 
ombine node X with its 
hild;11: end;12: delete l key from node W ;13: if there is no keyword 
ontained in node W then 
ombine node W with its parent;14: end; Figure 6: Pro
edure Delete
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(a) (b)Figure 7: The updatable tree: (a) after the deletion of long-term keyword 
 of pro�le P2 from the tree;(b) after the deletion of long-term keyword i of pro�le P1 from the tree.is lo
ated. Sin
e this node is leading to not only pro�le P2 but also pro�le P3, a new node, X , is
reated to 
ontain keyword 
. Then, node X is atta
hed to node W and the 
hild of node W notleading to pro�le P2, i.e., the node 
ontaining feg, is atta
hed to node X . Sin
e node X has onlyone 
hild that is a long-term node, node X is 
ombined with its 
hild. Next, keyword 
 is deletedfrom node W . After that, sin
e node W still 
ontains keywords, no further pro
ess is pro
eeded.The �nal result of this deletion is shown in Figure 7-(a).Another example is that long-term keyword i of pro�le P1 is being deleted from the tree shownin Figure 7-(a). The node 
ontaining fig leading to pro�le P1, referred to as node W , is lo
ated.Sin
e it is the only node leading to only pro�le P1, keyword i is dire
tly deleted from node W . After9



1: pro
edure Insert (l key, Pi)2: begin /* l key is a new long-term keyword (interest) for pro�le Pi. */3: lo
ate the last long-term node, W , leading to pro�le Pi in the updatable tree by usingkeywords of pro�le Pi;4: if W is the node leading to only pro�le Pi then5: insert l key into node W6: else7: begin8: 
reate a new long-term node X to 
ontain l key;9: atta
h the 
hild of node W leading to pro�le Pi to node X ;10: atta
h node X to node W ;11: if 
hildren of node W ex
ept node X 
ontain l keyand are the long-term nodes then12: begin13: delete l key from these 
hildren of node W 
ontaining l key;14: atta
h them to node X ;15: if there is no keyword 
ontained in these 
hildren of node W then16: 
ombine them with node X ;17: end;18: if node X is the only 
hild of node W then 
ombine node X with node W ;19: end;20: end; Figure 8: Pro
edure Insertthat, sin
e there is no keyword 
ontained in node W , this node is 
ombined with its parent. The�nal result of this deletion is shown in Figure 7-(b).In Figure 3, if the user with pro�le P2 is interested in keyword d over a short period, we willinsert keyword d to the node 
ontaining the short-term interest. That is, keyword d is inserted tothe node 
ontaining fe; f; gg, as shown in Figure 3.For the insertion of the long-term keyword (interest), l key, in pro�le Pi, we use pro
edure Insertshown in Figure 8 to deal with it. In pro
edure Insert, the last long-term node, W , leading topro�le Pi in the updatable tree is lo
ated by using keywords of pro�le Pi. If this node is leading toonly pro�le Pi, keyword l key is dire
tly inserted into it. Otherwise, a new long-term node is 
reatedto 
ontain l key, and inserted between node W and its 
hild node leading to pro�le Pi. Moreover,the other 
hildren of node W are further 
he
ked whether they 
ontain keyword l key. If yes, theywill merge with node X . For example, a long-term keyword, g, is inserted into the updatable treeshown in Figure 7-(b) for pro�le P3. The last long-term node 
ontaining f
; eg leading to pro�le P3,referred to as node W , is lo
ated. Sin
e this node is leading to only pro�le P3, keyword g is dire
tlyinserted into this node. The result of this insertion is shown in Figure 9-(a).Another example is that a long-term keyword, f , is inserted into the updatable tree shown inFigure 9-(a) for pro�le P1. The last long-term node 
ontaining f
; d; eg whi
h is leading to pro�le P1,referred to as node W , is lo
ated. Sin
e this node is leading to not only pro�le P1 but also pro�les10
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(a) (b)Figure 9: The updatable tree: (a) after the insertion of long-term keyword g into the tree for pro�le P3;(b) after the insertion of long-term keyword f into the tree for pro�le P1.P4 and P5, we 
reate a new long-term node X to 
ontain keyword f and 
he
k whether the other
hild of node W 
ontains keyword f (lines 7-19 in pro
edure Insert). This pro
ess is pro
eeded asfollows. First, a new long-term node, X , is 
reated to 
ontain keyword f and the node 
ontainingfb; e; hg leading to pro�le P1 is atta
hed to node X . Next, sin
e the other 
hild of node W 
ontainskeyword f and is the long-term node, this 
hild deletes keyword f and is atta
hed to node X . Afterthat, sin
e there is no keyword 
ontained in this 
hild, it is 
ombined with node X . The 
ombinedresult is shown in Figure 9-(b). Finally, sin
e node X is the only 
hild of node W , it is 
ombinedwith its parent, node W .Note that if a number of insertions and deletions are operated on the short-term nodes in theupdatable tree, these operations modify only the keywords of the 
orresponding pro�les and do notmodify the shared keywords in the long-term nodes among the pro�les. Therefore, we do not needto reorganize the updatable tree. If a large number of insertions and deletions are operated onthe long-term nodes in the updatable tree, these operations will 
ause the long-term nodes to besplit, resulting in the in
rease in the number of nodes in the tree and the size of the tree. Thatwill in
rease the storage spa
e. At this point, to redu
e the storage spa
e, we will reorganize theupdatable tree. Sin
e users' long-term interests are rarely 
hanged as mentioned before, we do notneed to reorganize the updatable tree frequently.
11



3. PERFORMANCEIn this se
tion, we make a 
omparison of our proposed method and Wu and Chen's index graphwith pro�le sets [13℄.3.1 The Simulation ModelWe generate syntheti
 pro�les to evaluate the performan
e [16℄. The number of pro�les is N . Tosimplify the study of the e�e
t of the pro�le size on performan
e, all pro�les have the same length,K; that is, K is �xed for all pro�les. The keywords that all pro�les 
hoose are 
omposed of theset of keywords D. So, keywords in the �rst pro�le are 
hosen randomly from the set of keywordsD. Moreover, the weight of ea
h keyword is 
hosen with uniform distribution from (0; 1℄. The �rstpro�le is 
alled \base pro�le." In our assumption, the users with similar interests are 
lustered intothe same group. Therefore, in order to model the similarity among pro�les, the similarity parameterQ 
ontrols how similar the new pro�le and the base pro�le are. That is, for ea
h keyword in the newpro�le, there is a probability Q that it is the same as the 
orresponding keyword in the base pro�le.If it is not, then the keyword in the new pro�le is pi
ked up at random from the set of keywordsD. There is no dupli
ated keyword in the pro�le. Hen
e, by varying the value of Q from 0 to 1, we
an 
ontrol the similarity among the pro�les. If the value of Q is 0, the keywords in all pro�les arerandomly 
hosen from the set of keywords D.3.2 Experimental ResultsWe generate the pro�les used in our simulation based on the setting: N = 500, K = 5, D = 50,and Q = 80%. That is, we 
luster 500 users with similar interests into the same group. The lengthof ea
h pro�le is 5. The set of keywords is 
omposed of 50 keywords. Moreover, we 
hoose 80%to de
ide the similarity among pro�les. Furthermore, we have threshold � = 0:5 that is used todetermine whether a keyword is a long-term interest. That is, if the weight of a keyword is greaterthan or equal to 0:5, the keyword is a long-term interest; otherwise, it is a short-term interest.In our simulation, four parameters and their default settings are listed in Table 1. Owing tothat the update pro
ess 
ontains the deletion and insertion operations, we 
an observe the impa
tof the ratio between the deletion and insertion operations for the update 
ost. Moreover, we 
anadjust the ratio of the probability of modifying the short-term interests to that of modifying thelong-term interests. Note that in our simulation, there are 100 update operations applied to ea
hindex stru
ture. First, we de�ne a base 
ase, (PD;PI) = (50%; 50%) and (PS; PL) = (80%; 20%).The �rst pair means that the probability of doing the deletion operation (PD) is 50% and that ofdoing the insertion operation (PI) is also 50%. That is, among 100 update operations, there are 50deletions and 50 insertions. The latter pair means that the probability of modifying the short-term12



Table 1: Parameters and their default settings used in the simulationParameter Default value(PD, PI) (30%, 70%), (40%, 60%), (50%, 50%),(60%, 40%), (70%, 30%)(PS, PL) (20%, 80%), (40%, 60%), (60%, 40%),(80%, 20%), (100%, 0%)PD: The probability of doing the deletion operationPI: The probability of doing the insertion operationPS: The probability of modifying the short-term interestsPL: The probability of modifying the long-term interestsTable 2: A 
omparison of the update 
ost (under the base 
ase)Methods The update 
ostWu and Chen's method 63Our method (redu
ed %) 20 (68%)interests (PS) is 80% and that of modifying the long-term interests (PL) is 20%. That is, there are80 out of 100 update operations applied to the short-term interests and the remaining 20 updateoperations applied to the long-term ones.When we do the update operation of the keywords whi
h the user is (not) interested in, �rst,we must pass through the index stru
ture to �nd the pro�le whi
h the user has. Then, we do theupdate operation of the keywords for the user in the index stru
ture. Therefore, the update 
ostwhi
h we 
are in the simulation is the number of edges passed through in the index stru
ture duringthe update pro
ess. A

ording to those parameters in the base 
ase, a 
omparison of the update
ost in our method and Wu and Chen's method is shown in Table 2. From this result, we show thatWu and Chen's method [13℄ needs more update 
ost than our method. On the average, our method
an redu
e about the 68% update 
ost as 
ompared with Wu and Chen's method.Next, we study the impa
t of those parameters on the performan
e. The �rst parameter that wevary is PD, the probability of doing the deletion operation. The range of PD is set to 30%, 40%,50%, 60%, 70%. The PS and PL parameters are kept as their base values. Under the 
hange ofthe value of PD, a 
omparison of the update 
ost in our method and Wu and Chen's method isshown in Figure 10. From this result, we show that Wu and Chen's method [13℄ needs more update
ost than our method. Be
ause the performan
e result of our method shown in Figure 10 is 
lose toa straight line, the probability of doing the deletion operation does not in
uen
e the performan
ein our method. By 
ontrast, when the probability of doing the deletion operation is low, Wu andChen's method needs high update 
ost. That is, their method needs high update 
ost when doingthe insertion operation. On the average, our method 
an redu
e about the 64% update 
ost of Wuand Chen's method.The se
ond parameter that we vary is PS, the probability of modifying the short-term interests.The range of PS is set to 20%, 40%, 60%, 80%, 100%. The PD and PI parameters are kept as their13
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Figure 10: A 
omparison of the update 
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Figure 11: A 
omparison of the update 
ost (under the probability of modifying the short-term interests)base values. Under the 
hange of the value of PS, a 
omparison of the update 
ost in our methodand Wu and Chen's method is shown in Figure 11. From this result, we show that Wu and Chen'smethod [13℄ needs also more update 
ost than our method. Be
ause Wu and Chen's method does not
onsider whether the keyword is the long-term interest or the short-term interest, the performan
eresult of Wu and Chen's method shown in Figure 11 does not relate to the probability of modifyingthe short-term interests. By 
ontrast, as the value of PS in
reases, the update 
ost de
reases inour method. In fa
t, the probability of modifying the short-term interests is higher than that ofmodifying the long-term interests. Therefore, our method 
an redu
e a lot of the update 
ost, whenthe probability of modifying the short-term interests is high. On the average, our method 
an redu
eabout the 52% update 
ost of Wu and Chen's method.14



4. CONCLUSIONIn this paper, to redu
e the update 
ost as needed by Wu and Chen's method [13℄, we haveproposed a data mining-based method for the in
remental update. We take the weight of ea
hkeyword into 
onsideration. The long-term interests have the weight greater than or equal to thethreshold and the short-term interests have the weight less than the threshold. By making use of theproperty that the probability of modifying the short-term interests is higher than that of modifyingthe long-term interests, we 
an update the short-term interests lo
ally. From our experimentalresults, we have shown that our method really requires less update 
ost than Wu and Chen's method.Referen
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