A Data Mining-Based Method for the Incremental Update of Supporting
Personalized Information Filtering*

Ye-In Chang, Jun-Hong Shen and Tsu-I Chen
Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, R.O.C
E-mail: {changyi} @Qcse.nsysu.edu.tw
Tel: 886-7-5254350
Fax: 886-7-5254301

Abstract

Information filtering is an area of research that develops tools for discriminating between relevant
and irrelevant information. Users first give descriptions about what they need, i.e., user profiles
represented by a set of keywords, to start the services. A profile index is built on these profiles.
Then, the Web page will be recommended to the users whose profiles belong to the filtered results.
Therefore, a critical issue of the information filtering service is how to index the user profiles for an
efficient matching process. Among previous proposed methods, Wu and Chen’s graph-based index
method can expect to minimize the storage space. However, when the users often change their
interests, the index structure of Wu and Chen’s method needs to be reconstructed, resulting in the
high update cost. Therefore, in this paper, we propose a data mining-based method for the incre-
mental update of the index structure, the updatable tree, to reduce the update cost. In fact, each
keyword could have a weight representing the degree of importance to a user. We apply this feature
to distinguish between long-term and short-term interests. By making use of the property that the
short-term interest has a higher probability to be changed than the long-term one, our proposed
method can locally update the short-term interest, resulting in the low update cost. According to
our experimental results, our method really can reduce the update cost as needed by Wu and Chen’s
method.

Keywords: data mining, incremental update, information filtering, personalization, profile.

1. INTRODUCTION

The growth of the Web has brought about the rapid accumulation of data and the increasing
possibility of information sharing. When searching the Web, a user can be overwhelmed by thousands
of results retrieved by a search engine, and few of which are valuable. Therefore, many techniques
have been developed on the Web to retrieve useful information. Information filtering is one of the
techniques to help users find what they want [4, 6, 7, 15]. It is classified into two kinds of approaches,

collaborative filtering and content-based information filtering. Collaborative filtering identifies the

*This research was supported in part by the National Science Council of Republic of China under Grant No. NSC95-
2221-E-110-101 and by National Sun Yat-Sen University. The authors also like to thank “Aim for Top University
Plan” project of NSYSU and Ministry of Education, Taiwan, for partially supporting the research.

relevant users who own similar interests and provides the data they like to each other [3, 8]. However,
it is not well-suited to locating information for a specific content information need [8]. On the other
hand, content-based information filtering identifies and provides the relevant data for the users based
on the similarity between data and their interests [14].

In this paper, we focus on content-based information filtering. Each user has his (her) profile
which stores a set of keywords that can present his (her) interests [1, 12, 15]. For a profile to match
the document, every keyword that it contains must be in the document [13]. The matched Web
pages are also presented with the associated set of keywords. Comparing data with profiles, the
users who are interested in the data are identified and informed. That is, information filtering can
find good matches between the Web pages and the users’ information needs [9, 10, 11, 14].

In order to match data with profiles efficiently, a profile index is built on these profiles. Indexing
user profiles can reduce the costs of storage space and the processing time for comparing the user
profiles with incoming Web pages. We can use a proxy server which is regarded as a mechanism
to produce Web pages. That is, the Web pages fetched by the proxy server will form the incoming
Web pages for the information filtering service [13]. Two kinds of models that index structures are
based on, vector space and boolean models, are used on the information filtering service. In the
vector space model, user profiles and documents are identified by keywords which are associated
with the weight that can represent its statistical importance, such as its frequency in the document.
Since each keyword has a weight, the vector space model can provide the best match with relevance
ranking. On the other hand, the user may use the boolean model to specify keywords that he (she)
wants in documents received [5, 16]. The boolean model is used to provide the exact match, and
simple to implement. Note that, in fact, the boolean model is a special case of the vector space
model in which all the keywords have the same weight. Both models have their applicable problem
domains.

In [15], Yan and Garcia-Molina have proposed three methods based on the vector space model:
the brute force method, the profile indexing method and the selective profile indexing method. In
[16], Yan and Garcia-Molina have proposed four methods based on the boolean model: the brute force
method, the counting method, the key method and the tree method. To improve the performance
in terms of the storage space on storing the index in [16], Wu and Chen [13] have proposed four
methods: index path with path signatures, index graph with path signatures, index path with profile
sets, and index graph with profile sets.

Among these methods for information filtering, Wu and Chen'’s index graph with profile sets [13]
can expect to minimize the storage space at the cost of the processing time. However, their method
does not concern about the issue of updates. With the concern of updates, the reorganization of

an index structure should be locally operated so that the update cost for reorganizing the structure

is minimized. When someone’s interests are changed, Wu and Chen’s graph-based index structure
[13] needs to be reconstructed from the root. That is, their index structure will be affected globally,
resulting in the high update cost.

Therefore, in this paper, in order to reduce the update cost as needed by Wu and Chen’s method
[13], we propose a data mining-based method for constructing the index structure, the updatable
tree, which supports the incremental update. We adopt the vector space model. Each keyword can
be distinguished between the long-term interest which has the weight greater than or equal to the
threshold and the short-term interest which has the weight less than the threshold. Moreover, we
use a revised version of the Apriori algorithm [2], a well-known data mining method for mining
association rules, to get the large itemset, i.e., the long-term interest, by taking weights of keywords
in profiles into consideration. By making use of the property that the probability of modifying the
short-term interests is higher than that of modifying the long-term interests, we can update the
short-term interests locally to reduce the update cost. According to our experimental results, our
method really can reduce the update cost as needed by Wu and Chen’s method [13].

The rest of the paper is organized as follows. Section 2 presents a data mining-based method for
the incremental update. In Section 3, we show the performance study and make a comparison of
the proposed method and Wu and Chen’s method. Finally, Section 4 gives the conclusion.

2. THE DATA MINING-BASED METHOD FOR THE
INCREMENTAL UPDATE

Based on Wu and Chen’s method [13], when someone’s interests are changed, their graph-based
index structure needs to be reconstructed from the root. In this section, we present a data mining-
based method for the incremental update of the index structure for storing keywords to reduce the

update cost.

2.1 The Proposed Method

We adopt the vector space model. Basically, a profile in the vector space model contains a
list of keywords and each keyword is weighted according to its degree of importance. Hence, each
keyword in the profile is given a weight that signifies its statistical importance. The weight of
a keyword is bounded by (0..1] and weights among keywords are independent. For example, in
profile {car,stock} = {0.9,0.2}, keyword car has a weight 0.9, and keyword stock has a weight
0.2. Therefore, in the proposed method, we take the weight of each keyword into consideration.
Furthermore, we assume that user profiles are clustered so that in each cluster, the user profiles have
similar interests. Our proposed method is then applied in a cluster.

A threshold « is given to distinguish how importance of those keywords is. If the weight of the

keyword is greater than or equal to threshold «, it can be regarded as the long-term interests. The

Profile Keywords/Weight Profile Keywords/Weight
P1 |b,e,h={0.2,0.1,0.2} P1 |c,d, g,i={0.9,0.7,0.8,0.6}
P2 |e f,g={0.3,0.1,04} P2 |a,b,c,i,j={0.7,0.9,05,0.6,0.8}
P3 |d,h={0.2,0.2} P3 |a, b,c,ei,j={0.8,0.6,0.6,0.7,0.9 05}
P4 le,h={0.3,0.4} P4 |c,d,f,g={0.8,0.7,0.8,05}
P5 |a,i,j={0.2,0.4,0.3} P5 |c,d,f,g={0.8,0.6,05,0.7}

(a) (b)

Figure 1: Profiles for the running example: (a) the profiles containing those keywords with the weight
< a; (b) the profiles containing those keywords with the weight > a.

long-term interests are interests that result from an accumulation of experiences over a long time.
On the other hand, if the weight of the keyword is less than threshold a, it can be regarded as the
short-term interests. The short-term interests are interests in events on a day-to-day basis which
change over a short period. By making use of the property of the keywords which are assigned with
the weight, we can reduce the update cost in our proposed method.

In our proposed method, we use a revised version of the Apriori algorithm [2] to get large
itemsets. The Apriori algorithm constructs a candidate set of large itemsets, counts the number
of occurrence of each candidate set, and then determines large itemsets based on a predetermined
minimum support. Because the large itemsets in our proposed method represent the long-term
interests which are not often modified, we modify the definition of candidate itemsets in the Apriori
algorithm. That is, the count of the keyword will be increased only when the weight of the keyword
is greater than or equal to threshold a. Moreover, in the original Apriori algorithm, if the value of
the predetermined minimum support is set too large, it may not generate large itemsets. Therefore,
in our revised Apriori algorithm, the minimum support is dynamically decided to guarantee that we
can get large itemsets. It is calculated by %, where C), represents the candidate itemset
in the n’th round, and Sup(C;) represents the number of occurrence of candidate itemset C; among
profiles.

Take an example in Figure 1 to illustrate the way to get the large itemset. In Figure 1, there are
five profiles which contain a list of keywords with weights and the threshold « = 0.5. Those keywords
with the weight < a are shown in Figure 1-(a), and those keywords with the weight > « are shown in
Figure 1-(b). Because the keyword with the weight > a will become the candidate item, we only use
those profiles as shown in Figure 1-(b) to be the input data. That is, as shown in Figure 2, the large
itemset can be chosen from those profiles shown in Figure 1-(b). Those profiles are scanned once

to generate the one-item candidate itemset, C;, with the support that is the number of occurrence
(242454+34+142434342) __
3 = 2.6. So, we

among them. The minimum support of C; is calculated by

1
Itemset | Sup.
Profile P {a} 2 L
Profile |ltems Eb% 2 TomeeT = Sop
PL lcdai C 5 minimum .
p2 [abei j Sgan {d} | 3| support: {ct |5
P3 abceij |— | (& | 1 |239=26] id | 3
P4 |cdfg {f} 2 {9} 3
P5 |cdfg {{%} g 13
{i} 2
C, C, .
ltemset Iltemset | Sup. 2
{cd} Scan cd 3 minimum | Itemset | Sup.
{c g} P {cgt | 3| sueeortt [{cd} | 3
{{g é}} —_— iciy | 3 |146=2.3 {{% QIJ}} 3
(a1} o ©o | 3
{g i} {gi} 1
C
3 Scan C3 minimum L3
Itemset P Itemset | Sup. support: | Itemset | Sup.
{cd g} _— {cdg}| 3 3 {fcdg}| 3

Figure 2: An example of getting the large itemset

choose only those itemsets {c}, {d}, {g}, {i} which have support greater than or equal to 2.6 to
be L;. Next, itemsets in Cy are generated from the combination of any two itemsets in L;. The
similar process is proceeded until no more large itemsets are generated. The final result of the large
itemset is Ly = {c¢,d, g}. We choose the large itemset with the longest length, the same as that in
the Apriori algorithm.

By using our revised Apriori algorithm, we can get the large itemset from the profiles which
have the weight of each keyword greater than or equal to the threshold. After we get the large
itemset, we divide those profiles into two parts according to the result of the large itemset. One
part contains the large itemset and the other part does not contain the large itemset. Next, those
profiles in the two parts keep on getting the large itemset by using our revised Apriori algorithm,
respectively. We use each result of the large itemsets to construct the index structure, the updatable
tree. Those steps are repeated until no keyword is in the profiles which have the weight of each
keyword greater than or equal to the threshold. Note that the construction of the updatable tree
requires a number of iteration on finding the large itemsets. This may be time-consuming, but it
operates in the off-line manner. Finally, we insert the identifiers of the profiles and those keywords
which have the weight less than the threshold to the index structure according to the path from
the root that those profiles own by themselves. By making use of the property that the probability
of modifying the short-term interests is higher than that of modifying the long-term interests, and

that we always put the short-term interests which have the weight less than the threshold to the

[Pa] [P5][P1] [P3]
O: the long-term node
O: the short-term node

Figure 3: The updatable tree

Profile Keywords

does not —

Profile Keywords contain P2 a,b,cij
P1 |c,d,g,i {c.dg [P3labceli]

P2 |a,b,c,ij (a)

. Profile Keywords

P3 |a,b,c, e li]j P1 cd g

P4 [c.d.fg contains | P4 c,dfg

P5 |c,d,f, g {c, d, g} P5 c,d f,g

(b)

Figure 4: The profile division based on the large itemset {c,d, g}: (a) the profiles not containing the
large itemset; (b) the profiles containing the large itemset.

leaf nodes of the tree, we can update the short-term interests locally.

Let’s use an example shown in Figure 1 to illustrate those steps of constructing the updatable
tree. As described above, we divide those profiles into two parts. We use the profiles as shown in
Figure 1-(b), which have the weight of each keyword greater than or equal to the threshold, to get
the large itemset. At the first time, the large itemset is {c, d, g} representing long-term keywords, as
shown in Figure 2. We create a long-term node to contain the large itemset {¢, d, g} to the updatable
tree, following the root node, as shown in Figure 3. Next, we divide those profiles into two parts:
one part does not contain the large itemset {c,d, g} as shown in Figure 4-(a), and the other part
contains it as shown in Figure 4-(b). Note that, in this way, therefore, only one unique path from
the root node will lead to each profile.

Then, we use those profiles P, Py, P5 which have already removed the large itemset {c,d, g} as

does I’?Ot Profile| Keywords
conftaln P1 |
Profile Keyvyords {} (a)
P1 [
P4 f Profile| Keywords
PS5 | T P4 f
contains [_P5 f
{f (b)

Figure 5: The profile division based on the large itemset {f}: (a) the profile not containing the large
itemset; (b) the profiles containing the large itemset.

shown in the left part of Figure 5 to get the large itemset {f} again. We can then divide profiles P,
Py, P5 into two parts again: one part does not contain the large itemset as shown in Figure 5-(a),
and the other part contains it as shown in Figure 5-(b). After that, we create a long-term node to
contain keyword {f} to the updatable tree, following the node containing keywords {¢,d, g}. At this
point, there is no keyword with the weight > a in profiles Py, and Ps. So, we create a short-term
node to contain keywords {e, h} as shown in Figure 1-(a), which have the weight less than the
threshold in profile Py, to the updatable tree, following the long-term node containing keyword {f}.
Moreover, we add the identifier of profile P, to the updatable tree, following the node containing
keywords {e,h}. Note that, obviously when the short-term interest is changed, it can be locally
updated. Similar to the previous step, we also create a short-term node to contain keywords {a,
i, j} as shown in Figure 1-(a), which have the weight less than the threshold in profile Ps, to the
updatable tree, following the node containing keyword {f}. Next, we add the identifier of profile P;
to the updatable tree, following the node containing keywords {a,i,j}.

Then, there is only one profile P; that contains one keyword 4 which has the weight greater
than or equal to the threshold. Therefore, we create a long-term node to contain keyword i to the
updatable tree, following the node containing keywords {c,d, g}. After that, there is no keyword
with the weight > a in profile P;. So, we create a short-term node to contain keywords {b,e, h} as
shown in Figure 1-(a), which have the weight less than the threshold in profile P, to the updatable
tree, following the node containing keyword {i}. Moreover, we add the identifier of profile P; to the
updatable tree, following the node containing keywords {b, e, h}.

Similar to the previous steps, we get the large itemset {a,b,c,i,j} from those profiles as shown
in Figure 4-(a). Next, we create a long-term node to contain the large itemset {a,b,c,i,j} to the
updatable tree, following the root node. After the large itemset {a,b,¢,4,j} is removed from profiles
P, and P, there is only one keyword {e} in profile P;. So, we create a long-term node to contain

keyword {e} to the updatable tree, following the node containing keywords {a,b,¢c,i,7}. Then,

we create a short-term node to contain keywords {d, h} as shown in Figure 1-(a), which have the
weight less than the threshold in profile P3, to the updatable tree, following the node containing
keyword {e}. Moreover, we add the identifier of profile P3 to the updatable tree, following the node
containing keywords {d, h}. Finally, similar to the previous steps, we create a short-term node to
contain keywords {e, f, g} as shown in Figure 1-(a), which have the weight less than the threshold
in profile Py, to the updatable tree, following the node containing keywords {a, b, ¢, i, j}. Moreover,
we add the identifier of profile P, to the updatable tree, following the node containing keywords
{e, f, g}. Consequently, the final result for the input shown in Figure 1 is shown in Figure 3.

2.2 The Matching Process

To find a match for a Web page, the breadth first search from the root in the updatable tree
should be conducted. If all the keywords in a node are completely matched with those of the Web
page, the children of this node are then traversed; otherwise, the children of this node are not further
traversed. If the identifier of a profile is reached, it is a match and this Web page is recommended
to the corresponding user.

For example, a Web page contains keywords {a,c,d, e, f,g,h,i,j}. Since, in Figure 3, keywords
{e,d, g} of the left node of the root are completely contained in this page, its children are then
traversed. On the other hand, keywords {a, b, ¢,, j} of the right node of the root are not completely
contained in this page, its children are not further traversed. Then, the similar process is conducted.

Finally, this page will be recommended to the users having profiles P, and Ps, respectively.

2.3 The Update Process

According to our data mining-based method for the incremental update as described above, we
can reduce the update cost as needed by Wu and Chen’s method [13]. For example, in Figure 1-(a),
the weight of keyword f in profile P, is 0.1, it is one of the short-term interests which have the high
probability to be changed over a short period. According to the updatable tree as shown in Figure
3, if the user with profile P is not interested in keyword f, we can delete keyword f from the node
containing {e, f, g}. That is, the node containing {e, f, g} is changed to the node containing {e, g}.

For the deletion of the long-term keyword (interest), [_key, in profile P;, we use procedure Delete
shown in Figure 6 to deal with it. In procedure Delete, we first use keywords of profile P; to locate
the node, W, containing [_key in the updatable tree. If this node is leading to profile P; and the
other profiles, a new long-term node, X, is created to contain [_key, [_key is deleted from node W,
and the children of node W should be reallocated. Otherwise, keyword [_key is directly deleted from
node W. For example, consider that long-term keyword ¢, referred to as [_key, of profile P, is being

deleted from the tree shown in Figure 3. The node containing {a,b, ¢,4,j}, referred to as node W,

1: procedure Delete (I_key, F;)

2: begin /* l_key is the long-term keyword (interest) for profile P; to be deleted. */

3: locate the node, W, containing keyword I_key of profile P; in the updatable tree by using
keywords of profile P;;

4: if W is the node leading to not only profile P; then

5: begin

6: create a new long-term node X to contain [_key;

7 attach node X to node W;

8: attach the children of node W not leading to profile P; to node X

9: if node X has only one child and this child is a long-term node then

10: combine node X with its child;

11: end;

12: delete |_key from node W,

13: if there is no keyword contained in node W then combine node W with its parent;

14: end;

Figure 6: Procedure Delete

[Pa]| |P5][P1]

Figure 7. The updatable tree: (a) after the deletion of long-term keyword ¢ of profile P, from the tree;
(b) after the deletion of long-term keyword i of profile P; from the tree.

is located. Since this node is leading to not only profile P, but also profile P;, a new node, X, is
created to contain keyword c¢. Then, node X is attached to node W and the child of node W not
leading to profile P, i.e., the node containing {e}, is attached to node X. Since node X has only
one child that is a long-term node, node X is combined with its child. Next, keyword c is deleted
from node W. After that, since node W still contains keywords, no further process is proceeded.
The final result of this deletion is shown in Figure 7-(a).

Another example is that long-term keyword i of profile P; is being deleted from the tree shown
in Figure 7-(a). The node containing {i} leading to profile P, referred to as node W, is located.
Since it is the only node leading to only profile P;, keyword i is directly deleted from node W. After

1: procedure Insert (I_key, P;)

2: begin /* l_key is a new long-term keyword (interest) for profile P;. */

3: locate the last long-term node, W, leading to profile P; in the updatable tree by using
keywords of profile P;;

4: if W is the node leading to only profile P; then
5: insert [_key into node W
6: else
7: begin
8: create a new long-term node X to contain [_key;
9: attach the child of node W leading to profile P; to node X;
10: attach node X to node W,
11: if children of node W except node X contain [_key
and are the long-term nodes then
12: begin
13: delete [_key from these children of node W containing I_key;
14: attach them to node X;
15: if there is no keyword contained in these children of node W then
16: combine them with node X;
17: end;
18: if node X is the only child of node W then combine node X with node W;
19: end;
20: end;

Figure 8: Procedure Insert

that, since there is no keyword contained in node W, this node is combined with its parent. The
final result of this deletion is shown in Figure 7-(b).

In Figure 3, if the user with profile P, is interested in keyword d over a short period, we will
insert keyword d to the node containing the short-term interest. That is, keyword d is inserted to
the node containing {e, f, g}, as shown in Figure 3.

For the insertion of the long-term keyword (interest), I_key, in profile P;, we use procedure Insert
shown in Figure 8 to deal with it. In procedure Insert, the last long-term node, W, leading to
profile P; in the updatable tree is located by using keywords of profile P;. If this node is leading to
only profile P;, keyword l_key is directly inserted into it. Otherwise, a new long-term node is created
to contain [_key, and inserted between node W and its child node leading to profile P;. Moreover,
the other children of node W are further checked whether they contain keyword [_key. If yes, they
will merge with node X. For example, a long-term keyword, g, is inserted into the updatable tree
shown in Figure 7-(b) for profile P;. The last long-term node containing {c, e} leading to profile Ps,
referred to as node W, is located. Since this node is leading to only profile P3, keyword g is directly
inserted into this node. The result of this insertion is shown in Figure 9-(a).

Another example is that a long-term keyword, f, is inserted into the updatable tree shown in
Figure 9-(a) for profile P;. The last long-term node containing {c, d, e} which is leading to profile P,

referred to as node W, is located. Since this node is leading to not only profile P; but also profiles

10

Figure 9: The updatable tree: (a) after the insertion of long-term keyword g into the tree for profile Ps;
(b) after the insertion of long-term keyword f into the tree for profile P;.

Py and Ps, we create a new long-term node X to contain keyword f and check whether the other
child of node W contains keyword f (lines 7-19 in procedure Insert). This process is proceeded as
follows. First, a new long-term node, X, is created to contain keyword f and the node containing
{b, e, h} leading to profile P; is attached to node X. Next, since the other child of node W contains
keyword f and is the long-term node, this child deletes keyword f and is attached to node X. After
that, since there is no keyword contained in this child, it is combined with node X. The combined
result is shown in Figure 9-(b). Finally, since node X is the only child of node W, it is combined
with its parent, node W.

Note that if a number of insertions and deletions are operated on the short-term nodes in the
updatable tree, these operations modify only the keywords of the corresponding profiles and do not
modify the shared keywords in the long-term nodes among the profiles. Therefore, we do not need
to reorganize the updatable tree. If a large number of insertions and deletions are operated on
the long-term nodes in the updatable tree, these operations will cause the long-term nodes to be
split, resulting in the increase in the number of nodes in the tree and the size of the tree. That
will increase the storage space. At this point, to reduce the storage space, we will reorganize the
updatable tree. Since users’ long-term interests are rarely changed as mentioned before, we do not

need to reorganize the updatable tree frequently.

11

3. PERFORMANCE

In this section, we make a comparison of our proposed method and Wu and Chen’s index graph

with profile sets [13].

3.1 The Simulation Model

We generate synthetic profiles to evaluate the performance [16]. The number of profiles is N. To
simplify the study of the effect of the profile size on performance, all profiles have the same length,
K; that is, K is fixed for all profiles. The keywords that all profiles choose are composed of the
set of keywords D. So, keywords in the first profile are chosen randomly from the set of keywords
D. Moreover, the weight of each keyword is chosen with uniform distribution from (0, 1]. The first
profile is called “base profile.” In our assumption, the users with similar interests are clustered into
the same group. Therefore, in order to model the similarity among profiles, the similarity parameter
() controls how similar the new profile and the base profile are. That is, for each keyword in the new
profile, there is a probability @ that it is the same as the corresponding keyword in the base profile.
If it is not, then the keyword in the new profile is picked up at random from the set of keywords
D. There is no duplicated keyword in the profile. Hence, by varying the value of @ from 0 to 1, we
can control the similarity among the profiles. If the value of @ is 0, the keywords in all profiles are

randomly chosen from the set of keywords D.

3.2 Experimental Results

We generate the profiles used in our simulation based on the setting: N = 500, K =5, D = 50,
and @ = 80%. That is, we cluster 500 users with similar interests into the same group. The length
of each profile is 5. The set of keywords is composed of 50 keywords. Moreover, we choose 80%
to decide the similarity among profiles. Furthermore, we have threshold o = 0.5 that is used to
determine whether a keyword is a long-term interest. That is, if the weight of a keyword is greater
than or equal to 0.5, the keyword is a long-term interest; otherwise, it is a short-term interest.

In our simulation, four parameters and their default settings are listed in Table 1. Owing to
that the update process contains the deletion and insertion operations, we can observe the impact
of the ratio between the deletion and insertion operations for the update cost. Moreover, we can
adjust the ratio of the probability of modifying the short-term interests to that of modifying the
long-term interests. Note that in our simulation, there are 100 update operations applied to each
index structure. First, we define a base case, (PD, PI) = (50%,50%) and (PS, PL) = (80%, 20%).
The first pair means that the probability of doing the deletion operation (PD) is 50% and that of
doing the insertion operation (PI) is also 50%. That is, among 100 update operations, there are 50

deletions and 50 insertions. The latter pair means that the probability of modifying the short-term

12

Table 1: Parameters and their default settings used in the simulation

Parameter | Default value

(30%, 70%), (40%, 60%), (50%, 50%),
(PDPI) | (60%. 40%). (70%. 30%)

(20%, 80%), (40%, 60%), (60%, 40%),
(PS, PL) | 080%. 20%). (100%, 0%)

PD: The probability of doing the deletion operation
PI: The probability of doing the insertion operation
PS: The probability of modifying the short-term interests
PL: The probability of modifying the long-term interests

Table 2: A comparison of the update cost (under the base case)

Methods The update cost
Wu and Chen’s method 63
Our method (reduced %) 20 (68%)

interests (PS) is 80% and that of modifying the long-term interests (PL) is 20%. That is, there are
80 out of 100 update operations applied to the short-term interests and the remaining 20 update
operations applied to the long-term ones.

When we do the update operation of the keywords which the user is (not) interested in, first,
we must pass through the index structure to find the profile which the user has. Then, we do the
update operation of the keywords for the user in the index structure. Therefore, the update cost
which we care in the simulation is the number of edges passed through in the index structure during
the update process. According to those parameters in the base case, a comparison of the update
cost in our method and Wu and Chen’s method is shown in Table 2. From this result, we show that
Wu and Chen’s method [13] needs more update cost than our method. On the average, our method
can reduce about the 68% update cost as compared with Wu and Chen’s method.

Next, we study the impact of those parameters on the performance. The first parameter that we
vary is PD, the probability of doing the deletion operation. The range of PD is set to 30%, 40%,
50%, 60%, 70%. The PS and PL parameters are kept as their base values. Under the change of
the value of PD, a comparison of the update cost in our method and Wu and Chen’s method is
shown in Figure 10. From this result, we show that Wu and Chen’s method [13] needs more update
cost than our method. Because the performance result of our method shown in Figure 10 is close to
a straight line, the probability of doing the deletion operation does not influence the performance
in our method. By contrast, when the probability of doing the deletion operation is low, Wu and
Chen’s method needs high update cost. That is, their method needs high update cost when doing
the insertion operation. On the average, our method can reduce about the 64% update cost of Wu
and Chen’s method.

The second parameter that we vary is PS, the probability of modifying the short-term interests.
The range of PS is set to 20%, 40%, 60%, 80%, 100%. The PD and PI parameters are kept as their

13

Ke—e— O~ Our method
i —>¢~ Wu and Chen’ method
_80
2]
8 X
260 | X
@©
©
o
=}
q_)40 1
<
'_
201 O\O—O—/—O//O
0 ‘ ‘ ‘ ‘ ‘
30 40 50 60 70
PD

Figure 10: A comparison of the update cost (under the probability of doing the deletion operation)

(o))
o
|

TN

-~ Our method
—>¢~ Wu and Chen’s method

a
o
|

The update cost
i
o

w
o
|

|

0 20 40 PS 60 80 100

Figure 11: A comparison of the update cost (under the probability of modifying the short-term interests)

base values. Under the change of the value of PS, a comparison of the update cost in our method
and Wu and Chen’s method is shown in Figure 11. From this result, we show that Wu and Chen’s
method [13] needs also more update cost than our method. Because Wu and Chen’s method does not
consider whether the keyword is the long-term interest or the short-term interest, the performance
result of Wu and Chen’s method shown in Figure 11 does not relate to the probability of modifying
the short-term interests. By contrast, as the value of PS increases, the update cost decreases in
our method. In fact, the probability of modifying the short-term interests is higher than that of
modifying the long-term interests. Therefore, our method can reduce a lot of the update cost, when
the probability of modifying the short-term interests is high. On the average, our method can reduce

about the 52% update cost of Wu and Chen’s method.

14

4. CONCLUSION

In this paper, to reduce the update cost as needed by Wu and Chen’s method [13], we have

proposed a data mining-based method for the incremental update. We take the weight of each

keyword into consideration. The long-term interests have the weight greater than or equal to the

threshold and the short-term interests have the weight less than the threshold. By making use of the

property that the probability of modifying the short-term interests is higher than that of modifying

the long-term interests, we can update the short-term interests locally. From our experimental

results, we have shown that our method really requires less update cost than Wu and Chen’s method.

(1]

[2]
[3]
[4]
[5]

[6]

[9]
[10]
[11]
[12]
[13]

[14]

References

G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of Recommender Systems: A Survey
of the State-of-the-Art and Possible Extensions,” IEEE Trans. on Knowledge and Data Eng., Vol. 17,
No. 6, pp. 734-749, June 2005.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,” Proc. of
the 20th Int. Conf. Very Large Data Bases, pp. 490-501, 1994.

J. S. Breese, D. Heckerman and C. Kadie, “Empirical Analysis of Predictive Algorithms for Collaborative
Filtering,” Proc. of the 14th Conf. on Uncertainly in Artificial Intelligence, pp. 43-52, 1998.

B. L. D. Bezerra and F. A. T. Carvalho, “A Symbolic Approach for Content-Based Information Filter-
ing,” Information Processing Letters, Vol. 92, No. 1, pp. 45-52, Oct. 2004.

Y. I. Chang, T. I. Chen and J. H. Shen, “A Large-Itemset-Based Index Structure for Supporting Per-
sonalized Information Filtering on the Internet,” Proc. of the 8th World Multiconference on Systemics,
Cybernetics and Informatics, pp. 194-199, 2004.

E. J. Glover, S. Lawrence, M. D. Gordon, W. P. Birmingham and C. L. Giles, “Web Search—Your
Way,” Communications of the ACM, Vol. 44, No. 12, pp. 97-102, Dec. 2001.

M. Hammami, Y. Chahir, and L. Chen, “Webguard: A Web Filtering Engine Combining Textual,
Structural, and Visual Content-Based Analysis,” IEEE Trans. on Knowledge and Data Eng., Vol. 18,
No. 2, pp. 272-284, Feb. 2006.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An Algorithmic Framework for Performing
Collaborative Filtering,” Proc. of the 22nd Annual Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pp. 230-237, 1999.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating Collaborative Filtering
Recommender Systems,” ACM Trans. on Information Systems, Vol. 22, No. 1, pp. 5-53, Jan. 2004.

S. Jung, J. Kim, and J. L. Herlocker, “Applying Collaborative Filtering for Efficient Document Search,”
Proc. of IEEE/WIC/ACM Int. Conf. on Web Intelligence, pp. 640-643, 2004.

Y. W. Park and E. S. Lee, “A New Generation Method of an User Profile for Information Filtering on
the Internet,” Proc. of IEEE Int. Conf. on Data Eng., pp. 337-347, 1994.

D. H. Widyantoro, T. R. Ioerger and J. Yen, “An Adaptive Algorithm for Learning Changes in User
Interests,” Proc. of the 8th Int. Conf. on Information and Knowledge Management, pp. 405-412, 1999.

Y. H. Wu and Arbee L. P. Chen, “Index Structures of User Profiles for Efficient Web Page Filtering
Services,” Proc. of the 20th IEEE Int. Conf. on Distributed Computing Systems, pp. 644-653, 2000.

Y. H. Wu, Y. C. Chen and Arbee L. P. Chen, “Enabling Personalized Recommendation on the Web
Based on User Interests and Behaviors,” Proc. of the 11th IEEE Workshop Research Issues in Data
Eng., pp. 17-24, 2001.

T. W. Yan and H. Garcia-Molina, “Index Structures for Information Filtering Under the Vector Space
Model,” Proc. of IEEE Int. Conf. on Data Eng., pp. 337-347, 1994.

T. W. Yan and H. Garcia-Molina, “Index Structures for Selective Dissemination of Information Under
the Boolean Model,” ACM Trans. on Database Systems, Vol. 19, No. 2, pp. 322-364, Nov. 1994.

15

