
www.ietdl.org

6
&

Published in IET Software
Received on 28th November 2012
Revised on 7th August 2013
Accepted on 15th August 2013
doi: 10.1049/iet-sen.2012.0188
2
The Institution of Engineering and Technology 2014
ISSN 1751-8806
Dual-expansion indexing for moving objects
Jun-Hong Shen1, Ye-In Chang2, Fang-Ming Chang2

1Department of Information Communication, Asia University, Taichung 41354, Taiwan
2Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

E-mail: shenjh@asia.edu.tw

Abstract: With the development of wireless communications and mobile computing technologies, the applications of moving
objects have been developed in many topics, for example, traffic monitoring. Such applications need to track the current
and near-future locations of the moving objects. This motivates the development of spatial-temporal indices to support
efficient querying about such locations of the moving objects. Therefore, in this study, the authors propose a dual-expansion
indexing (DEI) to support the current and near-future prediction of the moving objects. To filter out more number of the
data blocks that do not contain the final result, the query region can be expanded in each of eight directions individually.
To further reduce the number of the data blocks that should be examined, the qualified data blocks can be expanded
according to the direction towards the query region. Moreover, only the objects moving to the query region will be checked
in the query process of DEI. Therefore our method can reduce more number of retrieved data blocks and that of input/output
operations than the existing method. Experimental results show that the query process of DEI is more efficient than that of
the existing method.
1 Introduction

With the development of wireless communication and mobile
computing, the interest in the application of moving objects
increases gradually, including traffic monitoring, navigation
systems and geographic information systems. For example,
a driver may want to know the traffic condition ahead of
his current position during the next 30 min. Such
applications need to track the current and near-future
locations of the moving objects. The feature of the moving
objects is that objects change their locations continuously
[1]. Conventional spatial databases cannot support to store
the moving objects efficiently, because the databases will be
updated frequently. Spatial–temporal databases deal with
objects that change their locations continuously. By location
detection devices (e.g. global postioning system devices),
the moving objects can get their current locations [2]. Then,
this information is reported to the server via wireless
network or other communication network. The server stores
the update from the moving objects. This scenario enables
location-based services, such as querying the current or
near-future locations of the mobile devices [3, 4]. Each
moving object has spatial and temporal attributes [5].
Therefore it is important to index moving objects for
efficiently answering queries about the moving objects, that
is, spatial–temporal indices.
In this paper, we focus on time slice queries for the current

and near-future prediction of the moving objects. The time
slice query is one kind of the predictive query that finds all
objects that cross a certain area at time tq. For example, in
the traffic management system, the time slice queries can
find out the areas with predicted traffic jam in the next
10 min. For location-based advertising, the time slice query
can find out customers with mobile phones around the
department store in the next 5 min and then advertisements
can be sent to them via the short message service. To
predict the current and future positions of the moving
objects, extra information (e.g. the velocity and the
destination) should be provided. The motion of a moving
object in the d-dimensional space is modelled by a
reference location xref = (x1, x2, …, xd) at a reference time
tref and a velocity vector v = (v1, v2, …, vd) [5]. The
predicted location xq of the moving object at any instance
time tq can be computed by xq = xref + v × (tq − tref).
Many spatial–temporal access methods are proposed to

support spatial–temporal queries for the current and
predicted future positions of the moving objects. Among
the existing methods, the Bx

r−tree [6] improves the CPU
performance of the TPR-tree [7] by expanding the query
region first, and improves the input/output (I/O)
performance of the Bx-tree [8] by expanding data blocks
additionally. For the problem of the current and future
prediction of the moving objects, the Bx

r−tree can reduce
more number of I/O operations in the query process than
those methods by expanding the query region and data
blocks. In the Bx

r−tree method, it partitions the data space
into uniform blocks. Each object is inserted into a block.
Then, the same index structure of the Bx-tree, which is an
extension of the B+-tree, is used to index these blocks. The
query process of the Bx

r−tree contains three steps: the query
expansion, the filtration and object checking. The query
expansion step expands the query region such that it covers
all possible data blocks. Next, the filtration step filters out
the impossible blocks. Then, for those passed data blocks,
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188



www.ietdl.org

objects are checked for deciding whether they really should
be in the result. The step of object checking is correlated
with the I/O performance. However, there are some
disadvantages in the Bx

r−tree. First, data blocks whose
objects jump over the query region will be checked in the
query expansion step and the filtration step. Second, the
objects moving far away from the query region are
considered in the answer in the step of object checking.
Third, unrelated directions are considered in the expansion.
Therefore, in this paper, we propose a dual-expansion

indexing (DEI) containing an auxiliary data structure,
‘velocity histogram’ and a new query process strategy to
solve those problems mentioned above. The information in
the velocity histogram is used to find out the candidate
blocks containing the result objects. Thus, unnecessary
accessing the unqualified objects in the disk can be avoided.
To filter out unqualified objects for the query result as more
as possible, in our proposed method, each block records the
maximum and minimum velocities of each of eight directions
inside, instead of recording only those of each of four
directions in the Bx

r−tree method. Based on the proposed
data structure, the query region can be expanded in each of
eight directions individually, instead of being expanded in
four directions once in the Bx

r−tree method. Moreover, in
our DEI method, the data blocks can be expanded according
to the direction towards the query region, instead of being
expanded in four directions in the Bx

r−tree method. In this
way, the query process of DEI checks less number of data
blocks because it considers the minimum velocity of each of
eight directions. That is, by fully exploiting the information
provided in the velocity histogram, our proposed method
can avoid accessing unqualified objects in the pruned blocks
from the disk. Furthermore, in the qualified blocks, only
the objects moving to the query region will be checked in
the query process of DEI, instead of all objects in the
Bx
r−tree method. Therefore our method can reduce more

number of retrieved data blocks and that of I/O operations
than the Bx

r−tree. From our simulation study, we have shown
that the query process of the DEI method is more efficient
than that of the Bx

r−tree in terms of the average number of
retrieved data blocks and that of I/O operations.
The rest of this paper is organised as follows. In Section 2,

we gives the related work of spatial–temporal access methods
that answer queries about the current and future prediction of
the moving objects. In Section 3, we present our proposed
method, DEI, to answer queries about current and future. In
Section 4, we compare the performance of the proposed
method with that of the Bx

r−tree by simulation. Finally, in
Section 5, we give the conclusion.
2 Related work

The spatial–temporal access methods for current and future
data are categorised into three categories [5, 9].

† The original space-time space: The main idea of the
original space-time space is to transform moving objects in
the original space to lines in the time-space domain.
Assuming that the objects move in d-dimensional space (d
= 1, 2, 3), the future trajectories of those methods in this
category may be indexed as lines in the (d + 1)-dimensional
space. The methods in this category are PMR-quadtree [10]
and MOVIES [11]. Using the methods in this category to
index moving objects has a main drawback: it needs large
amount of space to preserve line segments [5].
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188
† Transformation methods: The main idea of transformation
methods is to transform moving objects in the original space
to the points in the dual space (the velocity-space domain). To
overcome the drawbacks of spatial–temporal indexing in the
time-space domain, the time-space domain is transformed
into another space. The main idea is that it is easier to
represent and query the data in this new space
representation [5]. The methods in this category include
duality transformation [12], SV-Model [13] and PSI [14].
The transformation techniques suffer from two drawbacks:
(i) there is no guarantee that objects that are near to each
other in the primal space will still be near to each other in
the dual space; (ii) rectangular range queries in the primal
space are always transformed into polygonal range queries
in the dual space, which calls for complicated algorithms
for evaluation [5, 9].
† Parametric spatial access methods: The main idea is to
make the bounding rectangles functions of time so that the
enclosed moving objects will be in the same rectangle [5].
Assuming that the objects move in the d-dimensional space,
this category indices data in its native d-dimensional space,
which is possible by parameterising the index structure
using velocity vectors and thus enables the index to be
viewed at any future time. The methods in this category
include the PR-tree [15], the STAR-tree [16], the TPR-tree
[7], the TPR*-tree [17], the Bx-tree [8] and the Bx

r−tree [6].

Among the existing methods, the parametric spatial access
methods have been applied largely, since they need little
memory space to preserve parametric rectangles, and still
provide a good performance. Therefore, in this paper, our
research belongs to this category. The parametric spatial
access methods index the objects at some reference time
points. To reduce the computing time, the parametric
rectangles are expanded first, instead of the motion of all
moving objects. These kinds of methods are classified into
two classes: (i) the expansion of data blocks and (ii) the
expansion of the query region. The methods for the
expansion of data blocks include the PR-tree, the STAR-
tree, the TPR-tree and the TPR*-tree, and the methods for
the expansion of the query region include the Bx-tree
and the Bx

r−tree. According to the query time, the forward
or the backward expansion is used in data blocks and the
query region. If the query time tq is earlier than the
reference time tref (Case 1, the ‘past’ query), the query
region is expanded using the actual velocities, termed as a
forward expansion, and data blocks are expanded using the
opposite directions of velocities, termed as a backward
expansion. If the reference time tref is earlier than the query
time tq (Case 2, the ‘future’ query), the query region is
expanded using the backward expansion, and data blocks
are expanded using the forward expansion.
The TPR-tree employs the idea of parametric bounding

rectangles in the R*-tree with velocities to index linear
functions of time [7]. The TPR*-tree uses the same data
structure as the TPR-tree, and integrates a new set of
insertion and deletion algorithms that aim at minimising a
certain cost function [17]. Since the bounding rectangles in
the R*-tree tend to overlap, the R*-tree-based methods are
prone to low update efficiency. To improve update
efficiency of the moving objects, the first B+-tree-based
index, the Bx-tree [8], has been proposed. In the Bx-tree,
each object position is mapped to a point in the
one-dimensional space by a space-filling curve. These
points are then indexed in a B+-tree. In the query process,
the Bx-tree uses the query-window enlargement to guarantee
63
& The Institution of Engineering and Technology 2014



www.ietdl.org

a correct answer. The Bx

r−tree extends the Bx-tree and
proposes a new query processing algorithm for the Bx-tree,
which fully exploits the available data statistics to reduce
the query enlargement. Zhang et al. [3] extends the Bx-tree
[8] to support uncertain moving objects. Considering
skewed velocity distributions, the velocity partitioning
technique [4] is applied in the TPR*-tree and the Bx-tree to
speed up query processing.

3 Dual-expansion indexing

In this section, we present our proposed DEI, which answers
queries about the current and future prediction of moving
objects. First, we introduce the data structure used in DEI.
Second, we present the insertion algorithm for inserting a
new moving object into the index. Third, the query process
is described.

3.1 Data structure

In the time axis, we set n future reference time points tref to
store the positions of the moving objects at those time
points. The update interval between the adjacent reference
time points is set to UI. When the index at the reference
time becomes out-of-date, that index will be deleted and a
new index will be constructed at the next reference time.
At each reference time point, a data space is partitioned into

uniform data blocks, and moving objects are inserted into the
corresponding blocks. That means, DEI has a record of the
data space at each reference time. DEI stores the blocks as
the index that is a set of two-dimensional arrays, the
velocity histogram. That means, DEI can store the whole
velocity histogram into the main memory. Similar to the
Bx-tree [8] and the Bx

r−tree [6], at each reference time, the
data blocks in the two-dimensional space are linearised by
the space-filling curve. The space-filling curve is a
continuous path, which passes through every point in the
two-dimensional space once to map it to a one-dimensional
sequence number on the curve. A sub-tree of the B+-tree is
reserved for indexing moving objects at each reference
time. For an object, the value indexed by the B+-tree is the
concatenation of its partition number for the reference time
and the sequence number of the space-filling curve of the
data block containing it.
In the blocks and the global region, to preserve the

maximum and minimum velocities of moving objects in
each direction, DEI records the absolute values of the
maximum and minimum velocities of each of eight
directions, L (left), R (right), U (up), D (down), LU
Fig. 1 Structure of a block

a Absolute maximum and minimum velocities in each direction in a block
b Definition of a unit vector

64
& The Institution of Engineering and Technology 2014
(left-up), RU (right-up), LD (left-down) and RD
(right-down) directions, as depicted in Fig. 1a. We define
the absolute value of the velocity (AbsV), such that we can
easily explain the process of the insertion without
considering that the value of the velocity is positive or
negative. The absolute value of the maximum velocity
(Max_AbsV) and that of the minimum velocity (Min_AbsV)
in the direction mean the maximum value and the minimum
value of AbsV in each direction, respectively. For example,
there are two moving objects with velocity vectors (− 5, 1)
and (3, − 4) in the two-dimensional space. (Note that in
form (a, b), a and b represent the velocity in the x-axis and
that in the y-axis, respectively.) That means that AbsVs are
(5, 1) and (3, 4), respectively. Therefore Max_AbsV is (5, 4)
and Min_AbsV is (3, 1). Fig. 1a shows the absolute
maximum and minimum velocities in each direction in a
block. For example, LU.Max_AbsV and LU.Min_AbsV store
the absolute maximum and minimum velocity vectors of the
LU direction in the block, respectively.
The objects in the LU, LD, RU and RD directions must be

considered in the two corresponding directions: L, R, U and
D. For example, the objects in the LU direction will be
considered for Max_AbsVs and Min_AbsVs of the L and U
directions. The reason is that the objects in the LU direction
have the components of L and U directions. That is, these
objects will impact the expansion of the blocks in L and U
directions. In addition, the absolute maximum and
minimum velocities among the moving objects in the global
region are recorded in gMax_AbsV and gMin_AbsV,
respectively. To preserve the positive or negative value of
the original velocity, we define the unit vector (UV) as
shown in Fig. 1b. Moreover, we let Pw(x, y) be the endpoint
of the query region or the data block, w∈ LU, LD, RU, RD.
Furthermore, we let PL = PD = PLD and PR = PU = PRU. In
DEI, each block has four lists: ListLU, ListLD, ListRU and
ListRD. Each object indexed in the block is linked by one of
the lists according to the direction of its velocity. The
objects moving towards the L and R directions are linked
by ListLU and ListRU, respectively. In this way, we can
check only the objects in the lists moving towards the query
region. The objects in the lists can be retrieved from the
disk with the help of the index structure of the B+-tree.
3.2 Insertion algorithm

In DEI, the information about a new moving object is
processed by procedure InsertObject shown in Algorithm 1
(see Fig. 2), where the corresponding variables used are
listed in Table 1. In procedure InsertObject, the object is
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188



Table 1 Variables used in the insertion algorithm

Notation Description

Obj the identifier of the object
obj.vel the velocity of the object
obj.loc the location of the object
RefList the array which stores all reference times
t_now the time of the insertion

Fig. 2 Procedure InsertObject(obj, t_now)

www.ietdl.org
inserted into all records of the data space at all reference time
points. At each reference time point, the block which the
object should be inserted into will be found out. The
location NewLoc of the object at the reference time point is
computed by function FindNewLocation. Then, function
FindBlock finds out the data block BlockId which the new
location is located in. Finally, procedure InsertBlock
shown in Algorithm 2 (see Fig. 3) is provoked to insert the
object into that block.
Fig. 3 Procedure InsertBlock(BlockId, obj, newLoc)

Fig. 4 Index information in a block

a Block recording the information of three directions
b Result after inserting an object

IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188
In procedure InsertBlock, the velocity of the object is first
transformed into the absolute value AbsV by function
AbsoluteV. According to the direction of the object,
function FindDirection obtains the information (i.e.
MaxAbsV and MinAbsV) about the direction which is the
same as that of the object (DirId). Then, the information
about the corresponding directions of the object (corDirsId)
(i.e. those directions which have the component of the
velocity of the object) is found out by function
FindCorrespondingDirection. For each corresponding
direction, function FindMax and function FindMin find out
the new Max_AbsV and Min_AbsV by comparing the
original Max_AbsV and Min_AbsV with AbsV of the object,
respectively. For example, we have the original Max_AbsV
= (5, 4) and Min_AbsV = (3, 1), and the new inserted
object with AbsV = (2, 6). The new Max_AbsV and
Min_AbsV will be (5, 6) and (2, 1), respectively. Finally,
function FindList finds out which list the object is linked to
according to the direction of the object, and function
LinkObject adds this object to that list.
For example, Fig. 4a shows a block with the information

about three directions. When a new object with velocity
vector (− 1, − 7) is inserted into this block, function
AbsoluteV transforms (− 1, − 7) into AbsV (1, 7).
According to the velocities of the x- and y-axes, we know
that DirId is LD (the left-down direction) and corDirIds
contains LD, L and D. Then, LD is compared with (1, 7),
and L and D are compared with the x and y components of
(1, 7), respectively. Since LD.Max_AbsV.y = 4 is smaller
than 7, LD.Max_AbsV.y is changed from 4 to 7. Under the
same circumstance, LD.Min_AbsV.x, L.Min_AbsV.x and
LD.Max_AbsV.y are also changed. Fig. 4b shows the result
65
& The Institution of Engineering and Technology 2014



Fig. 6 Example of the expansion of the query region

a Case 2 (the future case)
b Expanded query region
c Locations of the objects at the query time

www.ietdl.org

after the insertion of the object. Finally, the object is added to
list ListLD in the block according to its direction.

3.3 Query process

Similar to that in the Bx
r−tree, the query process in DEI

contains three steps: (i) the query expansion, (ii) the
filtration and (iii) object checking. Step 1 expands the query
region such that it covers all possible data blocks. Step 2
expands those possible data blocks to check if they cover
with the query region to filter out the impossible data
blocks. Step 3 checks the qualified data blocks processed
by Steps 1 and 2 to find out the final result.
In Step 1, the index with the reference time point tref close

to the query time point tq is selected. Then, the query region,
QR, is expanded in each of eight directions with the global
maximum and minimum speeds, and the difference of the
query time point and the reference time point by procedure
ExpandQueryRegion shown in Algorithm 3 (see Fig. 5).
There are two cases of the expansion of the query region:
(i) tq≤ tref (Case 1, the past case); (ii) tq > tref (Case 2: the
future case). If tq≤ tref, the query region is expanded with
the global maximum and minimum AbsVs of the current
expanding direction ED (lines 4–6). The reason is that the
reference time goes back to the query time. Therefore the
expanding direction of the query region is forward. If tq >
tref, the query region is expanded with the global maximum
and minimum AbsVs of the opposite direction OD of
direction ED (lines 7–9). The reason is that the reference
time goes forward to the query time. Therefore the
expanding direction of the query region is backward. No
matter in Case 1 (the past case) or Case 2 (the future case),
we expand the point of the expanding direction with
Max_AbsV and the point of the opposite direction with
Min_AbsV. After expanding the query region in each of
eight directions, those expanded query regions are recorded
in set EQR (line 11).
Take Fig. 6a as an example of Case 2 (the future case),

where tref = 10, tq = 11, R.gMax_AbsV = 3 and R.gMax_
AbsV = 2. Consider that the query region is expanded in
direction L in Fig. 6a, that is, ED = L and OD = R. Since
this is the future case, the query region is expanded in
direction L with the global maximum and minimum AbsVs
of opposite direction R, that is. R.gMax_AbsV and
R.gMin_AbsV, respectively. Therefore the left edge of the
query region is expanded with speed R.gMax_AbsV = 3 and
the right edge is expanded with speed R.gMin_AbsV = 2.
Fig. 6b shows the corresponding expanded query region
(EQR). For block A, it means that all objects in block A
cannot move to the query region at the query time tq = 11.
The reason is that the left edge of the query region moving
Fig. 5 Procedure ExpandQueryRegion

66
& The Institution of Engineering and Technology 2014
with speed gMax_AbsV cannot reach block A. For block D,
it means that all objects in block D will jump over the
query region at the query time. The reason is that the right
edge of the query region moving with speed gMin_AbsV
still jump over block D. Fig. 6c shows the locations of the
objects at the query time tq, where the objects are really not
in the query region.
In Step 2, each data block intersected with the expanded

query regions (set EQR) is expanded with the maximum
and minimum speeds of a certain direction by procedure
ExpandBlock shown in Algorithm 4 (see Fig. 7). Then,
those expanded blocks that do not overlap with query
region QR are filtered out. Similar to Step 1, there are two
cases of the expansion of the data block: (i) tq≤ tref (Case
1, the past case); (ii) tq > tref (Case 2: the future case). If
tq≤ tref, data blocks are expanded in the directions against
the query region (lines 3–4). The data blocks are expanded
with the maximum and minimum AbsVs of the direction
that is opposite to the expanding direction (lines 9–11). The
reason is that the reference time goes backward to the query
time. Therefore the expansion of data blocks is backward. If
tq > tref, data blocks are expanded in the directions towards
the query region (lines 5–6) The data blocks are expanded
with the maximum and minimum AbsVs of the direction
that is the same as the expanding direction (lines 12–14).
The reason is that the reference time goes forward to the
query time. Therefore the expansion of data blocks is
forward. As Step 1, the point of the expanding direction
and that of the opposite direction are expanded with speed
Max_AbsV and Min_AbsV, respectively. The reason is the
same as it in Step 1. The direction considered in Step 2 is
opposite to that in Step 1. This is because they have the
opposite view to the query. After the expansion of the data
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188



Fig. 7 Procedure ExpandBlock

www.ietdl.org
blocks, if the expanded data block is intersected with the
query region, this block is recorded in set CDB that will be
examined in Step 3 (lines 16–18).
In Step 3, only those objects linked into the lists whose

directions towards the query region from tref to tq are
checked to find out the final result. If tq≤ tref (the past
case), the lists in the examined data block whose direction
is moving away to the query region are checked. Since the
lists in the block are constructed at tref that is after the
query time point tq, the objects in the lists whose direction
is moving away the query region may be in the query
region at tq. If tq > tref (the future case), the lists in the
examined data block whose direction is moving towards the
query region are checked. Since the lists in the block are
constructed at tref that is before the query time point tq, the
objects in the lists whose direction is moving towards the
query region may move in the query region at tq.

3.4 Query example

Fig. 8a shows an example of a one-dimensional space, where
seven moving objects o1–o7 are inserted into three blocks A,
B and C with the reference time tref = 10. Fig. 8b shows the
corresponding index transformed by DEI. For example, in
block A, the maximum and minimum absolute velocities of
the R direction, R.Max_AbsV and R.Min_AbsV, are 3 and 2,
which are from objects o3 and o2, respectively. Since only
object o1 is moving in the L direction, the maximum
and minimum absolute velocities of the L direction,
L.Max_AbsV and L.Min_AbsV, are 1 and 1, which are from
object o1, respectively. The maximum absolute velocity of
the global region in the R direction, R.gMax_AbsV, is 3,
which is the maximum value among R.Max_AbsV’s in
blocks A, B and C. The minimum absolute velocity of the
global region in the R direction, R.gMin_AbsV, is 2, which
is the minimum value among R.gMin_AbsV’s in blocks A,
B and C. L.gMax_AbsV and L.gMin_AbsV are processed in
the similar way.
Consider that someone asks ‘find all objects that cross the

query region at tq = 11’. First, the query region is expanded.
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188
Since the query time tq = 11 is after the reference time tref =
10 (tq > tref, the future case), the query region is expanded
with gMax_AbsV and gMin_AbsV of the opposite direction
of the expanding direction. Therefore, the query region is
expanded in direction L with speed gMax_AbsV and
gMin_AbsV, and in direction R with speed L.gMax_AbsV
and L.gMin_AbsV, respectively. Fig. 8c shows the process
and the result of Step 1. According to line 8 of procedure
ExpandQueryRegion shown in Algorithm 3 (see Fig. 5), in
the expansion of direction L, the expanded left endpoint of
the query region QR is equal to QR.PL – R.UV ×
R.gMax_AbsV × (tq – tref) = 3 − 1 × 3 × 1 = 0. According to
line 9 of procedure ExpandQueryRegion, in the expansion
of direction L, the corresponding expanded right endpoint
of QR is equal to QR.PR− R.UV × R.gMin_AbsV × (tq−
tref) = 4− 1 × 2 × 1 = 2. The expansion of the query region
in direction R is processed in the similar way. In Fig. 8c, it
is obvious that blocks A, B and E are covered with the
EQR. Therefore blocks A, B and E will be checked in Step 2.
Since tq = 11 > tref = 10 (the future case), the filtered data

blocks are expanded in the direction towards the query
region with the maximum and minimum absolute velocities
of the direction that is the same as the expanding direction.
In Step 2, blocks A and B are expanded in direction R with
their corresponding R.Max_AbsV and R.Min_AbsV, and
block E is expanded in direction L with its L.Max_AbsV
and L.Min_AbsV. Fig. 8d shows the expanded region of
block A. According to line 13 of procedure ExpandBlock
shown in Algorithm 4 (see Fig. 7), the right endpoint of the
expanded region of block A is equal to A.PR + R.UV ×
A.R.Max_AbsV × (tq − tref) = 1 + 1 × 3 × 1 = 4. According to
line 14 of procedure ExpandBlock, its corresponding left
endpoint is equal to A.PL + R.UV × A.R.Min_AbsV × (tq −
tref) = 0 + 1 × 2 × 1 = 2. Blocks B and E are expanded in the
similar way. Their corresponding expanded regions are
shown in Figs. 8e and f, respectively. It is obvious that only
the expanded region of block A covers with the query
region. In Step 3, since this example is of the future case,
the lists in the examined data block whose direction is
moving towards the query region are checked. In this
67
& The Institution of Engineering and Technology 2014



Fig. 8 Query example

a Moving objects at tref = 10
b Index transformed by DEI at tref = 10
c Query expansion
d Expanded region of block A
e Expanded region of block B
f Expanded region of block E
g Checked objects

Table 3 Parameters and their settings used in the simulation

Parameter Setting

SF 2%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, 98%

UI 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
OI 100, 200, 300, 400, 500, 600, 700, 800, 900,

1000 (×103)
SE 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9,

10 × 10 (km2)

Table 2 Parameter settings used in the generation of the
simulation

Parameter Description

SF The fraction of objects with speed 200 m/s
UI The update interval between two reference

time points
OI The number of objects inserted in the index
SE The average spatial extent of the queries

www.ietdl.org
example, only the objects in lists ListRU and ListRD in block A,
which move towards the query region, are checked, that is,
objects o2 and o3 in Fig. 8g.

4 Performance evaluations

In this section, we study the performance of our proposed DEI
for the current and future prediction of moving objects. First,
the performance model is presented briefly. Second, we
compare the performance of DEI with that of the Bx

r−tree [6].

4.1 Performance model

Our simulation applies the same generator used in the
Bx
r−tree [6]. The parameters used in our simulation are

listed in Table 2, and their settings are listed in Table 3.
The total data space is 512 × 512 km2. The index contains
two partitions at two future time points. The data space is
partitioned into 512 × 512 equal-sized data blocks, that is,
the size of a data block is 1 × 1 km2. Objects are assigned
either speed 25 or 200 m/s. The fractions of objects with
speed 200 m/s are: 2, 10, 20, 30, 40, 50, 60, 70, 80, 90 and
98%. Parameter SF is used to control the fraction of objects
with speed 200 m/s. Parameter UI is used to control the
update interval between two reference time points, whose
68
& The Institution of Engineering and Technology 2014
value is from 2 to 20 min in increments of 2 min. Parameter
OI represents the number of objects inserted into the index.
The number of objects, OI, is from 100 × 103 to 1000 × 103
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188



www.ietdl.org

in increments of 100 × 103. Queries have an average spatial
extent, SE, from 1 × 1 to 10 × 10 km2. We consider the
average number of retrieved data blocks and that of I/O
operations per query as our performance measures.

4.2 Experimental results

In our simulation, we will change one of the four parameters
listed in Table 3 at one time in the first four experimental
results. In each experimental result, 1000 queries are
executed. We define a default setting for the base case as
follows. The fraction of objects with speed 200 m/s, SF, is
50%. The update interval, UI, between two reference time
points is 2 min. The number of objects inserted into the
index, OI, is 500 × 103, and the data distribution is uniform.
The average spatial extent, SE, of the queries is 5 × 5 km2.
In the fifth experimental result, we evaluate the effect of
data distributions. In the last experimental result, we
evaluate the effect of the update cost.
In the first experimental result, we vary parameter SF, the

fraction of objects with speed 200 m/s, and the other
parameters are set to the base case. Figs. 9a and b show the
average number of retrieved data blocks and that of I/O
operations, respectively, with the increase of the value of
SF. In Fig. 9a, we can observe that the average number of
retrieved blocks based on DEI increases slightly as the
fraction of high-speed objects increases. On the other hand,
the average number of retrieved blocks based on the
Bx
r−tree increases dramatically as the fraction of high-speed
Fig. 9 Comparison of changing the value of SF

a Average number of retrieved data blocks
b Average number of I/O operations

Fig. 10 Comparison of under changing the value of UI

a Average number of retrieved data blocks
b Average number of I/O operations

IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188
objects increases. The reason is that the minimum velocities
of eight directions in the blocks are considered in DEI.
Therefore DEI can reduce the impact of the maximum
velocities of eight directions in the blocks. This means that
DEI can filter out more number of data blocks that do not
contain the final answers than the Bx

r−tree. In Fig. 9b, the
difference between DEI and the Bx

r−tree is obvious. In
Fig. 9a, the results are almost the same when the fractions
of objects with speed 200 m/s are 2 and 10%. However,
they can be distinguished clearly in Fig. 9b. The reason is
that the objects are partitioned into four lists in DEI.
Therefore only the objects in the lists moving to the query
regions will be checked. That is, the I/O performance of
DEI will be improved substantially. In this experimental
result, DEI has average improvements of 28 and 56% on
the average number of retrieved data blocks and that of I/O
operations over the Bx

r−tree, respectively. Note that the
percentage of the improvement from our proposed DEI to
the Bx

r−tree is computed as

Bx
r−tree− DEI

Bx
r−tree

× 100

In the second experimental result, we vary the parameter
UI, the update interval between two reference time points.
Figs. 10a and b show the average number of retrieved data
blocks and that of I/O operations, respectively, with the
increase of the value of UI. The average number of
69
& The Institution of Engineering and Technology 2014



Fig. 11 Comparison of under changing the value of OI

a Average number of retrieved data blocks
b Average number of I/O operations

www.ietdl.org
retrieved blocks and that of I/O operations based on DEI
increase slightly as the update interval increases. On the
other hand, the average number of retrieved blocks and that
of I/O operations based on the Bx

r−tree increase a lot as the
update interval increases. That is, the I/O performance of
DEI is better than that of the Bx

r−tree. In this experimental
result, DEI has average improvements of 72 and 84% on
the average number of retrieved data blocks and that of I/O
operations over the Bx

r−tree, respectively.
In the third experimental result, we vary the parameter OI,

the number of objects inserted in the index. Figs. 11a and b
show the average number of retrieved data blocks and that
of I/O operations, respectively, with the increase of the
value of OI. Although the number of the objects increases,
the average number of retrieved data blocks and that of I/O
operations based on DEI do not increase obviously. On the
contrary, the average number of retrieved data blocks and
that of I/O operations based on the Bx

r−tree increase
substantially as the number of the objects increases. DEI
has average improvements of 31 and 61% on the average
number of retrieved data blocks and that of I/O operations
over the Bx

r−tree, respectively.
In the fourth experimental result, we vary the parameter

SE, the spatial extent of the query. Figs. 12a and b show
the average number of retrieved data blocks and that of I/O
operations, respectively, with the increase of the value of
SE. In Fig. 12a, the results of DEI are always better than
those of the Bx

r−tree. As the size of the spatial extent
increases, the frequency of overlaps between the query
Fig. 12 Comparison of under changing the value of SE

a Average number of retrieved data blocks
b Average number of I/O operations

70
& The Institution of Engineering and Technology 2014
region and data blocks increases, resulting in the increase of
the average number of retrieved data blocks. In Fig. 12b,
we can observe that the performance of I/O operations
based on DEI is better than that of the Bx

r−tree. The reason
is that only the objects moving to the query region will be
checked in DEI. Therefore, DEI can filter out more number
of useless objects than the Bx

r−tree, resulting in the
decrease of the number of I/O operations to retrieve those
useless objects. In this experimental result, DEI has average
improvements of 33 and 62% on the average number of
retrieved data blocks and that of I/O operations over the
Bx
r−tree, respectively.
In the fifth experimental result, to evaluate the effect of data

distributions, we generate datasets to simulate scenarios
where moving objects cluster around certain locations of
interest (hotspots). To generate such datasets, a set of
hotspots are randomly picked. Around each hotspot, the
moving objects cluster within a certain distance [18]. In this
experimental result, we vary the number of hotspots from
10 to 10 000. When the number of hotspots is 10, the data
distribution is heavily skewed. When the number of
hotspots is 10 000, the data distribution is near uniform.
The number of objects inserted into the index, OI, is set to
1000 × 103, and the other parameters are set to the base
case. Figs. 13a and b shows the average number of
retrieved data blocks and that of I/O operations,
respectively, with the increase of the number of hotspots.
From both figures, we can observe that the performance of
DEI is better than that of the Bx

r−tree. When the number of
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188



Fig. 13 Comparison of under changing the number of hotspots

a Average number of retrieved data blocks
b Average number of I/O operations

Fig. 14 Comparison of update cost

a Effect of changing the update ratio
b Effect of changing the fractions of objects affecting velocities in blocks

www.ietdl.org
hotspots is small, the moving objects cluster in few blocks.
Therefore the average number of retrieved data blocks is
small. However, in this case, each block may index a large
number of the moving objects, resulting in the increase of
the average number of I/O operations. On the other hand,
for the same value of OI, when the number of hotspots is
large, the moving objects cluster in many blocks. Therefore
the average number of retrieved data blocks is large.
However, each block indices a few number of the moving
objects, resulting in the decrease of the average number of
I/O operations. In this experimental result, DEI has average
improvements of 38 and 42% on the average number of
retrieved data blocks and that of I/O operations over the
Bx
r−tree, respectively.
In the last experimental result, we evaluate the effect of the

update cost. The update cost amortised over insertion and
deletion is measured by the number of I/O operations. First,
we evaluate the impact on the update ratio of the updated
moving objects to the whole moving objects, UR. Second,
we evaluate the impact on the fraction of updated objects
that affect the maximum or minimum absolute velocity in
blocks, AF. If the updated object contributes to the
maximum or minimum absolute velocity in a block, the
corresponding moving objects in this block should be
retrieved to recompute the maximum or minimum absolute
velocity. Otherwise, only I/O operations for that updated
object are needed. The number of objects inserted into the
index, OI, is set to 1000 × 103. Fig. 14a shows the average
number of I/O operations with the increase of the value of
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188
UR from 10 to 50% and AF = 50%. Both DEI and the
Bx
r−tree have stable performance with the increase of the

value of UR. The average number of I/O operations based
on DEI is less than that on the Bx

r−tree. The reason is as
follows. In DEI, if the updated object affects the maximum
or minimum absolute velocity in the block, only the
moving objects stored in the same list in the block are
retrieved to recompute that velocity. On the contrary, in the
Bx
r−tree, all the moving objects in the block are retrieved to

recompute that velocity. In Fig. 14a, DEI has an average
improvement of 12% on the average number of I/O
operations over the Bx

r−tree. Fig. 14b shows the average
number of I/O operations with the increase of the value of
AF from 10 to 50% and UR = 50%. As the value of AF
increases, the average number of I/O operations based on
DEI and that on the Bx

r−tree increase. The reason is as
follows. As value of AF increases, the number of the
updated objects affecting the maximum or minimum
absolute velocity in blocks increases. This increases the
number of I/O operations to retrieve the corresponding
moving objects indexed in blocks to recompute the
maximum or minimum absolute velocity. In Fig. 14b, DEI
has an average improvement of 8% on the average number
of I/O operations over the Bx

r−tree.

5 Conclusions

In this paper, we focus on the problem of the current and
future prediction for moving objects in spatial–temporal
71
& The Institution of Engineering and Technology 2014



www.ietdl.org

databases. We have proposed a DEI to answer the predictive
query from current to future. In our method, the data space is
divided into blocks, and each block preserves the maximum
and minimum velocities of eight directions. Based on the
proposed data structure, the three steps of the query process
are improved substantially. In the query expansion step, the
query region can be expanded in eight directions
individually, instead of being expanded in four directions
once in the Bx

r−tree method. In the filtration step, the data
blocks can be expanded according to the direction towards
the query region, instead of being expanded in four
directions in the Bx

r−tree method. In the step of object
checking, only the objects moving to the query region will
be checked in the query process of DEI. That is, the query
process of DEI can filter out the useless data efficiently.
Our experimental results have shown that the query process
of DEI is more efficient than that of the Bx

r−tree in terms of
the average number of retrieved data blocks and that of I/O
operations.

6 Acknowledgment

This research was supported in part by the National Science
Council of Republic of China under Grant No. NSC
99-2221-E-468-019.

7 References

1 Chen, S., Nascimento, M.A., Ooi, B.C., Tan, K.L.: ‘Continuous online
index tuning in moving object databases’, ACM Trans. Database Syst.,
2010, 35, (3), pp. 17:1–52

2 Chen, H.L., Chang, Y.I.: ‘Nine-areas-tree-bit-patterns-based method for
continuous range queries over moving objects’, IET Softw., 2011, 5, (1),
pp. 54–69

3 Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: ‘Effectively
indexing uncertain moving objects for predictive queries’. Proc.
VLDB Endowment, 2009, vol. 2, no 1, pp. 1198–1209
72
& The Institution of Engineering and Technology 2014
4 Nguyen, T., He, Z., Zhang, R., Ward, P.: ‘Boosting moving object
indexing through velocity partitioning’. Proc. VLDB Endowment,
2012, vol. 5, no 9, pp. 860–871

5 Mokbel, M.F., Ghanem, T.M., Aref, W.G.: ‘Spatio-temporal access
methods’, IEEE Data Eng. Bull., 2003, 26, (2), pp. 40–49

6 Jensen, C.S., Tiesyte, D., Tradisauskas, N.: ‘Robust B+-tree-based
indexing of moving objects’. The Seventh Int. Conf. Mobile Data
Management, 2006, pp. 12–21

7 Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: ‘Indexing the
positions of continuously moving objects’. Proc. ACM SIGMOD Int.
Conf. Management of Data, 2000, pp. 331–342

8 Jensen, C.S., Lin, D., Ooi, B.C.: ‘Query and update efficient B+-tree
based indexing of moving objects’. Proc. 30th VLDB Conf., 2004,
pp. 768–779

9 Nguyen-Dinh, L.V., Aref, W.G., Mokbel, M.F.: ‘Spatio-temporal access
methods: part 2 (2003–2010)’, IEEE Data Eng. Bull., 2010, 33, (2),
pp. 46–55

10 Tayeb, J., Ulusoy, O., Wolfson, O.: ‘A quadtree-based dynamic attribute
indexing method’, Comput. J., 1998, 41, (3), pp. 185–200

11 Dittrich, J., Blunschi, L., Salles, M.A.V.: ‘Indexing moving objects
using short-lived throwaway indexes’. Proc. 11th Int. Symp. Advances
in Spatial and Temporal Databases, 2009, pp. 189–207

12 Kollios, G., Gunopulos, D., Tsotras, V.J.: ‘On indexing mobile objects’.
Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp. Principles of
Database Systems, 1999, pp. 261–272

13 Chon, H.D., Agrawal, D., Abbadi, A.E.: ‘Storage and retrieval of
moving objects’. Proc. Second Int. Conf. Mobile Data Management,
2001, pp. 173–184

14 Porkaew, K., Lazaridis, I., Mehrotra, S.: ‘Querying mobile objects in
spatio-temporal databases’. Proc. Int. Symp. Advances in Spatial and
Temporal Databases, 2001, pp. 59–78

15 Cai, M., Revesz, P.: ‘Parametric R-tree: an index structure for moving
objects’. Proc. Int. Conf. Management of Data, 2000, pp. 57–64

16 Procopiuc, C.M., Agarwal, P.K., Peled, S.H.: ‘STAR-tree: an efficient
self-adjusting index for moving objects’. Proc. Workshop on
Algorithm Engineering and Experimentation, 2002, pp. 178–193

17 Tao, Y., Papadias, D., Sun, J.: ‘The TPR*-tree: an optimized
spatio-temporal access method for predictive queries’. Proc. 29th
VLDB Conf., 2003, pp. 790–801

18 Chen, S., Jensen, C.S., Lin, D.: ‘A benchmark for evaluating moving
object indexes’. Proc. VLDB Endowment, 2008, vol. 1, no 2,
pp. 1574–1585
IET Softw., 2014, Vol. 8, Iss. 2, pp. 62–72
doi: 10.1049/iet-sen.2012.0188


