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Abstract
The goal of image mining is to find the useful information hidden in image data-
bases. The 9DSPA-Miner approach uses the Apriori strategy to mine the image 
database, where each image is represented by the 9D-SPA representation. It presents 
a reasoning method to reason the unknown spatial relation that satisfies the spatial 
consistency. However, it may generate invalid candidates with the impossible rela-
tions that cannot be found in the 2D space or in the input database. Moreover, in this 
approach, counting the support of the pattern needs to intersect the associated image 
sets by searching the index structure, taking a long time. Therefore, in this paper, we 
propose an approach with a frequent pattern list, which generates all valid candidates 
of frequent patterns. Based on the frequent pattern list, the proposed approach pre-
sents two conditions in the candidate generation for finding frequent spatial patterns 
to avoid generating impossible candidates. Moreover, the proposed approach uses an 
additional verification step to further avoid generating impossible spatial relations. 
Therefore, the proposed approach generates fewer candidates than the 9DSPA-Miner 
approach, reducing the processing time. The experimental results have verified that 
the proposed approach outperforms the 9DSPA-Miner approach.
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1  Introduction

Spatial data mining [1, 2] is the process of discovering interesting and previously 
unknown, but potentially useful patterns from large spatial databases, which must 
consider spatial data types and spatial relationships. The major accomplishments 
[3–8] only discover the frequent object classes occur together closely from spa-
tial databases. Image mining [9–12] is an extension of the spatial data mining 
to image domain. Image mining deals with the extraction of implicit knowledge, 
image data relationship or other patterns not explicitly stored in the images [10]. 
Recently, there are several researches [13–17] which focus on mining spatial asso-
ciation rules based on the high-level spatial relations (such as the pairwise orien-
tation or topology) among objects from the image databases. The features used in 
content-based image retrieval (CBIR) can be roughly divided into two categories, 
the low-level visual features [18–23] (such as color, texture and shape) and the 
high-level features [24–27] (such as pairwise spatial relations between objects).

In [16], Saritha and Santhosh proposed an intelligent medical image data-
base system to mine the spatial patterns existing in medical images. Their work 
identified the spatial relationships existing between the anatomical structures in 
MRI axial scans of the brain, where a few anatomical structures like the caudate 
nucleus, thalamus, lateral ventricle and putamen are recognized as the prominent 
spatial objects. The spatial relations existing between the anatomical structures in 
normal and pathological situations are different so that the results of the spatial 
association mining in medical images can be used as diagnosis rules for doctors.

Finding frequent spatial patterns in an image database is fundamental to mining 
spatial association rules. The association rules can be easily derived from the fre-
quent spatial patterns. Therefore, in this paper, we focus on mining frequent spatial 
patterns in the image database, where objects are located in the 2D space in images. 
Moreover, an image contains at least two objects so that spatial relations between 
any two objects exist. Figure 1 shows an example of the image database contain-
ing four images I1–I4. Setting the minimum support to 1/2, we can discover implicit 
spatial relations of objects from the image database. If a spatial pattern exists at least 
in two (= 1/2 * 4) images, it is a frequent spatial pattern. For the concern of mining 
spatial relationships, two frequent spatial patterns considering both objects and their 
spatial relations are found out, as shown in Fig. 2.

Mining spatial association rules in image databases is first introduced by Hsu 
et  al. [13] through the viewpoint mining algorithm. In their work, the distance 
and orientation radians among objects in an image are encoded as the represen-
tation for each image in the database, and the concept of the Apriori algorithm 
[28] is adopted. Since human is more sensitive with orientation than distance, to 
mine only spatial orientation, Wei and Shan propose the pattern growth algorithm 
which employs the 2D strings [9] to represent each image in the database. They 
use the concept of the PrefixSpan algorithm [17, 23] to efficiently mine the spa-
tial co-orientation patterns from an image database.

In other way, Lee et  al. [14] propose the 9DLT-Miner approach to mine the 
image database, where each image is represented by the 9DLT representation 
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[24]. In their work, an Apriori-like algorithm is used and the characteristic of 
9DLT representation is exploited to prune most of invalid candidates. However, 
only nine directions can be handled and the mining results are still too detail 
to describe human visual perception. Lee et  al. [15] propose the 9DSPA-Miner 
approach, which employs the 9D-SPA representation [27] to more correctly dis-
criminate the images than the previous approaches. They adopt the Apriori strat-
egy to discover the frequent patterns from the image database. Since there exists 
an unknown spatial relation in the generated candidate when performing the join 
step, they propose a reasoning method to reason the unknown relation. With the 
usage of the reasoning method, they can reason the unknown relation, which 

Fig. 1   An example of the image database

Fig. 2   The result of frequent patterns considering both objects and their spatial relations



2600	 Y.-I. Chang et al.

1 3

satisfies the spatial consistency with known k relations (k ≥ 2). Moreover, they 
scan the index structure to count the support of the discovered patterns. In this 
way, they will intersect the image sets of the spatial relations found in the index 
structure to count the support.

Although the 9DSPA-Miner can reason the unknown relation, it may also gen-
erate the impossible relations, which cannot be found in the 2D space or in the 
input database. That is, they may generate a large number of invalid candidates. 
Moreover, when counting the support of the pattern, they intersect the image sets 
of spatial relations in the pattern. In this way, they will recompute the intersec-
tions of image sets, taking too much time.

Therefore, to solve those problems and improve the performance of the 
9DSPA-Miner, in this paper, we propose an approach based on the frequent pat-
tern list to find all frequent spatial patterns in an image database. The proposed 
approach considers that spatial objects in a 2D image are well recognized via their 
corresponding minimum bounding rectangles (MBRs). The proposed approach 
includes two major conditions to avoid generating candidates that are impossible 
to be frequent whatever the unknown relation is. In the first condition, it is not 
necessary to generate a candidate of size (k + 1) under the case of missing any 
its frequent subset of size k. In the second condition, it is not necessary to gener-
ate a candidate of size (k + 1) under the case of the number of the intersection of 
instances of any two joinable subsets of size k less than the minimum support. 
If either one is satisfied, we then will not generate any candidate. Moreover, if 
both two conditions are not satisfied, we will use the frequent relations of size-2 
frequent patterns to discover the unknown relation and use a verification step 
to avoid generating the impossible spatial relations. Therefore, in our approach, 
every generated candidate will be valid. Moreover, each discovered pattern has an 
associated image set. The image set stores the image identifiers where each image 
contains the discovered patterns. In this way, we do not need to scan the index 
structure to count the support of the patterns. Hence, we will not recompute the 
intersection of the image sets.

We summarize the contributions of this work as follows.

1.	 The proposed approach creates the frequent pattern list to quickly retrieve the 
frequent 2-patterns, which can prune most of impossible candidates while finding 
all frequent spatial patterns in an image database.

2.	 The proposed approach presents two conditions in the candidate generation for 
finding frequent spatial patterns to avoid generating impossible candidates.

3.	 The simulation results have verified that the proposed approach is more efficient 
than the 9DSPA-Miner.

The rest of the paper is organized as follows. In Sect. 2, we describe the related 
researches for mining spatial association rules from the image databases. In 
Sect.  3, we present our proposed approach. In Sect.  4, we compare the perfor-
mance of the proposed approach with that of the 9DSPA-Miner [15]. Finally, in 
Sect. 5, we summarize conclusions.
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2 � Related work

In this section, we describe two related researches for finding spatial association 
rules among objects from the image databases, including the 9DLT-Miner [14] and 
the 9DSPA-Miner [15].

2.1 � The 9DLT miner approach

With an image representing as 2D strings [9], the pattern growth algorithm was pro-
posed [17]. However, the 2D strings representation cannot indicate the directional 
relation between any two objects directly. Directional information is one of the most 
important types of information in an image database, and the 9DLT representa-
tion [24] is fundamental in this method. Lee et al. [14] proposed the 9DLT-Miner 
approach, which employs the 9DLT representation to mine an image database where 
each image is represented by the 9DLT representation. In the 9DLT representation, 
each object in an original image is represented as an icon whose center is used as 
the reference point. The directional codes of the 9DLT representation are shown in 
Fig. 3a, where R denotes the centroid of the referenced object. For a symbolic image 
as shown in Fig. 3b, the corresponding 9DLT matrix is shown in Fig. 3c. The lower-
triangular codes indicate the spatial relations among the objects. For example, the 
spatial relation between A and B is 5. That is, B is to the south of A. The symbolic 
image can be expressed by a 9DLT string (A, B, C, D, 5, 6, 6, 7, 6, 6).

The 9DLT-Miner approach is similar to the Apriori algorithm [28]. Two frequent 
size-k patterns are joinable if the first (k − 1) objects and the corresponding rela-
tions between them are identical in both size-k patterns. The advantage of the 9DLT-
Miner is that it uses the characteristics of the 9DLT representation to prune most of 
impossible candidates when generating a candidate size-(k + 1) pattern by joining 
two joinable frequent size-k patterns (k ≥ 2). For example, when joining two size-2 
frequent patterns (A, B, 3) and (A, C, 4) to generate a candidate (A, B, C, 3, 4, 2), 
there is an unknown relation 2 between B and C. Without exploiting the characteris-
tic of the 9DLT representation, it has to examine all the nine directions. However, by 
considering the relations which exist in (A, B, 3) and (A, C, 4), the possible relations 
between B and C are only (A, B, C, 3, 4, 4), (A, B, C, 3, 4, 5) and (A, B, C, 3, 4, 6). 
Therefore, the 9DLT-Miner approach can reduce the large amount of candidates.

Fig. 3   The 9DLT representation and an example: a the directional codes of 9DLT, b a symbolic image 
and c a 9DLT matrix for the symbolic image in (b)
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2.2 � The 9D‑SPA miner approach

In the 9DLT-Miner approach [14], the 9DLT representation [4] is still too detailed to 
describe the human visual perception. Moreover, only nine directions can be handled 
between any two objects. Huang et  al. [27] proposed the 9D-SPA representation, 
which uses the directional and topological information to capture the spatial rela-
tions among objects in an image. Representing an image with the 9D-SPA represen-
tation can provide much better approximation for spatial relations between objects 
than that with 2D strings [9] or 9DLT representation [24]. Based on the 9D-SPA 
representation, Lee et al. [15] proposed the 9DSPA-Miner approach to mine the spa-
tial association rules from an image database where each image is represented by 
the 9D-SPA representation. The 9DSPA-Miner approach exploits the characteristics 
of the 9D-SPA representation to prune most of impossible candidates. Moreover, it 
applies the anti-monotone strategy used in the Apriori approach [28] to prune the 
candidates whose sub-patterns are not frequent. Moreover, the approach modifies 
the index structure proposed by Huang and Lee [27] to more efficiently determine 
the support count of a candidate.

3 � The proposed approach

Our proposed approach proceeds in two phases. First, we scan the image database 
to create the frequent pattern list and determine the frequent 2-patterns. Next, we 
join two frequent k-patterns to generate candidate (k + 1) patterns and determine the 
support of each candidate. The second phase is repeated until no more frequent pat-
terns found. In the proposed approach, we define two conditions to avoid generating 
impossible candidates during the second phase. Moreover, we use the frequent rela-
tions to discover the unknown spatial relation in the generated candidate. We then 
exploit the result of the reasoning method [15] to prune the frequent relations that do 
not satisfy the spatial consistency. Furthermore, each discovered pattern is associ-
ated with an image set. With this usage, we do not need to scan the index structure 
to count the support and can efficiently count the support of the candidate.

In this section, we use an example image database IDB1 to explain our approach. 
Figure 4 is the image database IDB1 containing eight images, where there are five 
objects extracted and approximated by their MBRs. We consider only the image that 
contains at least two objects such that they could form a spatial relation.

3.1 � The 9D‑SPA representation

To facilitate the image retrieval, the proposed approach expresses each image in the 
image database as the 9D-SPA representation [27]. Suppose an image I contains n 
objects (O1, O2, …, On). Then, the 9D-SPA representation of I can be encoded as a 
set of 4-tuples as follows.

I = {(Oij,Dij,Dji, Tij) |∀Oi,Oj ∈ I, 1 ≤ i < j ≤ n}.
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Oij is the code for the object-pair (Oi, Oj), where Oi is the ith object in the 
image database and i is assigned to object Oi as its object number [15]. Given two 
objects Oi and Oj, Oij can then be easily computed by Eq. (1).

To obtain two numbers i and j from Oij (or to decode Oij), we use Eq. (2)

where a is the largest integer such that a × (a + 1)∕2 < Oij and j = a + 2 [27].
Dij is the code for the directional relation between objects Oi and Oj with Oj as 

the reference object [26]. Each area wk cut by the four boundaries of the MBR of 
object Oj horizontally and vertically, 0 ≤ k ≤ 8, is assigned with a binary code of 8 
bits. For example, for area 6, the binary code is (00100000)2 = 32; that is, the 6th 
bit from the rightmost is turned out. The value of Dij is obtained by Eq. (3).

where bk = 1 if object Oi overlaps area wk; otherwise, bk = 0. Dji is the code for the 
directional relation between objects Oi and Oj with Oi as the reference object [26].

Tij is the code for the topological relation between Oi and Oj. All the pos-
sible topological relations between any two objects are shown in Fig.  5. In 
Fig. 5e, f, although the topological code between “contain” or “inside” is same, 
the directional code between them is different. Figure 5c–f shows the cases for 
dealing with the overlapping spatial objects. With these topological codes, the 

(1)Oij =
[
(j − 1) × (j − 2)

]
∕2 + i.

(2)i = Oij − (a × (a + 1)∕2),

(3)Dij =

8∑

k=1

bkwk,

Fig. 4   An example database IDB1 containing eight images and five objects
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overlapping data issue of spatial objects in images can be efficiently recognized 
and processed in the proposed approach.

We use the image containing O1 and O2 shown in Fig. 6, retrieved from I1 in 
Fig. 4, to illustrate how to organize it with the 9D-SPA representation. First, we 
have O12 = [(2 − 1) × (2 − 2)]∕2 + 1 = 1. The nine rectangular areas based on the 
MBR of O2 are shown in Fig. 6b, and O1 overlaps area 4. Thus, D12 can be cal-
culated as (24−1) = 8. Next, we cut the whole image into nine rectangular areas 
based on the MBR of O1, as shown in Fig. 6c, and O2 overlaps area 8. Thus, we 
have D21 = (28−1) = 128. Finally, since the topological relation of O1 and O2 is dis-
joint, its T12 is 0. As a result, the 9D-SPA representation of the image in Fig. 6a 
is {(1, 8, 128, 0)}. Table 1 lists the corresponding 9D-SPA representations for the 
images in database IDB1 shown in Fig. 4.

Fig. 5   All the topological rela-
tions between any two objects: a 
disjoint (Tij = 0); b meet (Tij = 1); 
c partly overlap (Tij = 2); d 
cover (Tij = 3); e contain (Tij = 4; 
Dij = 255); f inside (Tij = 4; 
Dij = 0)

0 1

234

5

6 7 8

1

234

5

6 7 8

0(00001000)2

(10000000)2

a b c

Fig. 6   An image represented with the 9D-SPA representation: a O1 and O2 in I1; b O2 as the reference 
object; c O1 as the reference object
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3.2 � Problem definitions

Mining spatial association rules for an image database contains two phases, fining 
all frequent spatial patterns and generating spatial association rules from these fre-
quent patterns. After the first phase is processed, the corresponding spatial associa-
tion rules can be easily derived from the frequent patterns [15]. Therefore, finding 
the spatial frequent patterns dominates the overall performance efficiency. There-
fore, the goal of this paper is to efficiently find all the frequent spatial patterns.

In an image, a spatial relation (s-relation) rij between two objects Oi and Oj in 
the 2D is expressed as a 4-tuple of the 9D-SPA representation (Oij, Dij, Dji, Tij). 
A spatial k-pattern X is denoted by X = {Op(1), Op(2),…, Op(k), rp(1)p(2), rp(1)p(3),…, 
rp(k−1)p(k), X.imgs}, where k is the number of objects in pattern X, k ≥ 2, and p(a) is 
the object number for object O, 1 ≤ a ≤ k. The spatial k-pattern X records all s-rela-
tions, r p(b) p(c), of the combinations of any two objects Op(b) and Op(c), p(b) < p(c), 
1 ≤ b ≤ (k − 1), 1 ≤ c ≤ k. X.imgs is an image set containing the images that have all 
the corresponding s-relations.

The support of an s-relation rij, sup(rij), is the fraction of images in the image 
database containing rij. If sup(rij) is not less than the user-specified minimum sup-
port, min_sup, this s-relation is a frequent s-relation. The support of a spatial k-pat-
tern X, sup(X), is the fraction of images in the image database containing this pattern 
[15]. If sup(X) is not less than min_sup, this pattern is a frequent spatial pattern.

3.3 � Data structures

In the proposed approach, two data structures are used, the two-level index structure 
[15] and the frequent pattern (FP) list. The two-level index structure [15] is used to 
find the frequent 2-patterns. We add every s-relation (i.e., the 2-pattern) found in 
each image to build the index structure. Figure 7 shows an index structure built from 
s-relations in Table 1. The first level index is an array of size N * (N − 1)/2, where 
N is the number of distinct objects in the image database [15]. The array index can 
be hashed by the object-pair Oij in the s-relation. Each entry in this array contains 

Table 1   The 9D-SPA representation of database IDB1

Image The 9D-SPA representation

I1 {(1, 8, 128, 0), (2, 8, 128, 0), (3, 48, 3, 0), (4, 8, 128, 0), (5, 28, 193, 2), (6, 6, 96, 0)}
I2 {(1, 16, 131, 0), (2, 56, 1, 0), (3, 131, 16, 0), (4, 8, 128, 0), (5, 7, 112, 2), (6, 8, 128, 0)}
I3 {(1, 16, 131, 0), (2, 8, 128, 0), (3, 12, 192, 0), (4, 4, 224, 0), (5, 2, 32, 0), (6, 1, 56, 0)}
I4 {(1, 8, 128, 0), (2, 8, 128, 0), (3, 48, 3, 0), (4, 8, 128, 0), (5, 7, 112, 2), (6, 2, 32, 0)}
I5 {(1, 16, 131, 0), (2, 56, 1, 0), (3, 56, 1, 0)}
I6 {(1, 16, 131, 0), (2, 8, 128, 0), (3, 12, 192, 0), (4, 4, 224, 0), (5, 2, 32, 0), (6, 1, 56, 0)}
I7 {(1, 16, 131, 1), (7, 32, 2, 0), (8, 32, 2, 0)}
I8 {(7, 32, 2, 0)}
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a pointer to a list of nodes. Each node in the list contains four elements, (1) the 
directional relation-code Dij, (2) the directional relation-code Dji, (3) the topologi-
cal array which is an array of five pointers for five possible topological codes where 
each code points to an image set having directional relation-codes Dij and Dji, and 
(4) a pointer to the next node in the current 9D-SPA code list.

By setting the minimum support, min_sup, to 1/4, we find the frequent 2-pat-
terns when building the index structure. Whenever adding an s-relation to the index 
structure, the size of one of the referenced image set is incremented, and we then 
check whether the size is not less than (min_sup * |D|), where |D| is the number of 
images in our database. In our running example, this value is 2 (= 1/4 * 8). If it is 
true, we then consider that the s-relation is a frequent 2-pattern. Without rescanning 
the index structure, the frequent 2-patterns can be found whenever the construction 
of the index structure is finished. All the frequent 2-patterns for the images shown in 
Fig. 4 are shown in Fig. 8.

The frequent pattern (FP) list is simultaneously built when constructing the 
two-level index structure. The main advantage of the FP list is to quickly retrieve 
the frequent 2-patterns. The FP list has two levels. The first level is an array 
which size is equal to the size of the first level of the two-level index structure. 
The array index can be hashed by the object-pair Oij in the s-relation. Each entry 
in the array contains a pointer to a list of nodes. Each node contains five elements, 

8

8

48

128

128

3 012348 128131 16

16 131

1

2

3

012348 12856 1

012348 12812 192 012348 12856 1

4
8 128 012348 1284 224

5

6

28 193 7 112 012348 1282 32

6 96 8 128 1 56 012348 1282 32

7 012348 12832 2

8 012348 12832 2

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 40 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Fig. 7   The two-level index structure constructed from database IDB1
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(1) the directional relation-code Dij, (2) the directional relation-code Dji, (3) the 
topological code Tij, (4) a pointer to the image set containing the s-relation, and 
(5) a pointer to the next node in the current list. Whenever adding an s-relation 
to the index structure, the size of one of the referenced image set is incremented, 
and we then check whether the size is not less than (min_sup * |D|); in the run-
ning example, this value is 2. If it is true, we will add the s-relation and the refer-
ence of the image set to the FP list. Without rescanning the index structure, the 
FP list can be constructed whenever the construction of the index structure is fin-
ished. Figure 9 shows a completed FP list, which is built from the two-level index 
structure in Fig. 7. The number of 2-patterns in the FP list is always less than the 
two-level index structure, since the FP list stores only the frequent 2-patterns.

Given the object-pair code Oij between two objects Oi and Oj, we can retrieve 
the frequent s-relations between Oi and Oj from the FP list. For example, if we 
want to retrieve the frequent relations between O1 and O2, since its object-pair 
code O12 is 1, we then can retrieve two frequent s-relations {(1, 8, 128, 0), {I1, 
I4}} and {(1, 16, 131, 0), {I2, I3, I5, I6}} from the FP list shown in Fig. 9. During 
generating frequent (k + 1)-patterns from joining two joinable k-patterns, we can 
prune the most impossible candidates by retrieving the frequent s-relations from 
the FP list. The pruning strategy will be discussed later.

a b c d

e f g h

i j k l
{O1, O5, (7, 32, 2, 0), {I7, I8}}{O3, O4, (6, 1, 56, 0), {I3, I6}}{O2, O4, (5, 2, 32, 0), {I3, I6}}{O2, O4, (5, 7, 112, 2), {I2, I4}}

{O2, O3, (3, 48, 3, 0), {I1, I4}}{O2, O3, (3, 12, 192, 0), {I3, I6}}{O1, O4, (4, 8, 128, 0), {I1, I2, I4}}{O1, O4, (4, 4, 224, 0), {I3, I6}}

{O1, O2, (1, 8, 128, 0), {I1, I4}}
{O1, O2, (1, 16, 131, 0), {I2,
I3, I5, I6}}

{O1, O3, (2, 8, 128, 0), {I1,
I3, I4, I6}} {O1, O3, (2, 56, 1, 0), {I2, I5}}

Fig. 8   The frequent size-2 patterns found in database IDB1
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3.4 � Frequent pattern generation with the pruning strategy

When joining two joinable k-patterns to generate (k + 1)-candidate patterns, there exists 
an unknown s-relation in the generated candidates. We propose two conditions to avoid 
generating invalid candidates during frequent pattern generation. When satisfying one 
of the two conditions, we will not generate candidates. Moreover, we describe the prun-
ing strategy used in our approach. The pruning strategy involves two stages, candidate 
generation and verification. In the candidate generation stage, we will find the unknown 
s-relation to generate the candidates when performing joining process. Since some 

1
8 128 0

8 128 0

2

3

16 131 0

56 1 0

48 3 0 12 192 0

8 128 0 4 224 0

7 112 2

4

5

6 1 56 0

2 32 0

7 32 2 0

8

Fig. 9   An FP list built from the two-level index structure
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generated candidates are impossible to exist in the 2D space, we will prune them in the 
verification stage.

3.4.1 � The FPL and IntImage conditions

The proposed approach provides two conditions to avoid generating invalid candidates 
of frequent patterns, the FPL (frequent pattern list) and IntImageSet (intersected image 
set) conditions. If either one is met, no candidate will be generated. According to the 
Apriori property [28], each spatial relation in a frequent pattern is frequent. This indi-
cates that if the candidate pattern is frequent, its unknown s-relation rij should be fre-
quent. Therefore, if the unknown s-relation rij cannot be found in the FP list, no candi-
date will be generated. Then, we have the FPL condition: if |FP[Oij]| = 0, no candidate 
will be generated. Note that |FP[Oij]| returns the number of s-relation nodes attached to 
the object-pair Oij.

For example, from Fig. 8a, l, these two joinable frequent 2-patterns can be possibly 
joined to generate candidate 3-patterns, {O1, O2, (1, 8, 128, 0), {I1, I4}} and {O1, O5, 
(7, 32, 2, 0), {I7, I8}}. In this case, there is an unknown s-relation r25. We can then 
compute that the object-pair O25 is 8 and retrieve frequent s-relation r25 from the FP list 
shown in Fig. 9. However, since |FP[O25]| is 0, no frequent s-relation r25 can be found 
in the FP list. Therefore, in this case, no candidate is generated.

On the other hand, the IntImageSet condition is that two joinable k-patterns will not 
generate any frequent (k + 1)-pattern if the number of the intersection of their associ-
ated image sets is less than (min_sup * |D|). The potential frequent (k + 1)-pattern exists 
at most in all the images that are in the intersected image set of its associated joinable 
k-patterns. If the number of the intersected image set is not less than (min_sup * |D|), 
this (k + 1)-pattern will not be frequent.

For example, from Fig. 8a, d, these two joinable frequent 2-patterns can be possibly 
joined to generate candidate 3-patterns, {O1, O2, (1, 8, 128, 0), {I1, I4}} and {O1, O3, 
(2, 56, 1, 0), {I2, I5}}. In this case, there is an unknown s-relation r23. Then, we have 
the object-pair O23 is 3, and find out that |FP [3]| = 2 > 0, which satisfies the FPL condi-
tion. However, the intersection of the image sets of these two s-relations is empty; this 
implies that there exists no such image containing the generated candidate 3-pattern in 
the database. Therefore, no candidate will be generated.

3.4.2 � Candidate pattern generation

Candidate (k + 1)-patterns are generated by joining two joinable k-patterns, k ≥ 2, where 
the first (k − 1) items and the corresponding s-relations between them must be identical 
[15]. Given two joinable k-patterns A and B,

where Oi ≠ Oj, the candidate (k + 1)-pattern P is generated as follows.

A = {Op(1),Op(2),… ,Op(k−1),Oi, rp(1)p(2), rp(1)p(3),… , rp(k−1)i,A.imgs}

B = {Op(1),Op(2),… ,Op(k−1),Oj, rp(1)p(2), rp(1)p(3),… , rp(k−1)i,B.imgs},

P = {Op(1),Op(2),… ,Op(k−1),Oi,Oj, rp(1)p(2), rp(1)p(3),… , rij,P.imgs},
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where there exists an unknown s-relation rij. p(a) is the object number of the 
object in the joinable k-pattern, p(a) < p(a + 1), 1 ≤ a ≤ (k − 1). P.imgs is the image 
set of pattern P containing the images that have all the corresponding s-relations. 
The image set containing the unknown s-relation rij is rij.imgs. Then, we have 
P.imgs = (A.imgs ∩ B.imgs) ∩ rij.imgs.

Given the unknown s-relation rij, if the frequent s-relation rij exists in the FP list 
and the number of the intersection of two image sets of two joinable patterns is not 
less than (min_sup * |D|), we can then find the unknown s-relation to generate the 
candidate. For example, from Fig. 8b, d, we can join

where there is an unknown s-relation r23. We can then compute that O23 is 3. Since 
|FP[O23]| (= 2) > 0 and the number of the intersection of both image sets, {I2, I5}, is 
not less than 2 (= 1/4 * 8), we can continue to generate the candidate. We can use 
the Apriori property that “any relation in a frequent pattern must be frequent” [26] 
to find the possible values of r23. Since O23 is 3, we can then use the FP list shown 
in Fig. 9 to find it out in an efficient way. From searching in the FP list in Fig. 9, the 
possible values of r23 are (3, 48, 3, 0) and (3, 12, 192, 0). Therefore, we will gener-
ate two candidates

However, the generated candidates may not be valid in the 2D space. In other 
words, some candidates may not be found in the 2D space. For example, one of the 
generated candidates contains the s-relations (1, 16, 131, 0), (2, 56, 1, 0) and (3, 48, 
3, 0). We have to ensure that these three s-relations can coexist within in a pattern 
or in an image. When retrieving the possible values of r23 from the FP list, we have 
to consider the other known s-relations in the candidate. That is, we have to ensure 
that the s-relation from the FP list can coexist with other known s-relations, or the 
s-relations in a pattern are consistent among each other. When the s-relations within 
a pattern cannot coexist, we say that the s-relation from the FP list does not satisfy 
the spatial consistency. That is, no such image containing all these s-relations at the 
same time can be found in the image database. We define this problem as the incon-
sistent problem. When a pattern has the inconsistent problem, it is an impossible 
pattern that cannot be found in the 2D space.

In the current join example, to make the s-relation from the FP list to satisfy 
the spatial consistency, we have to check whether the frequent s-relation r23 can 
coexist with the known s-relations (1, 16, 131, 0) (r12, the s-relation between 
O1 and O2) and (2, 56, 1, 0) (r13, the s-relation between O1 and O3). Figure 10a 
shows these two known s-relations (1, 16, 131, 0) and (2, 56, 1, 0). Figure 10b, c 
shows the two frequent s-relations (3, 48, 3, 0) and (3, 12, 192, 0) from the FP list 
shown in Fig. 9, respectively. For the frequent s-relation (3, 48, 3, 0) in Fig. 10b, 

{
O1,O�

, (1, 16, 131, 0),
{
I2, I3, I5, I6

}}
{
O1,O�

, (2, 56, 1, 0),
{
I2, I5

}}
,

{O1,O2,O3, (1, 16, 131, 0), (2, 56, 1, 0), (3, 48, 3, 0),A.imgs}

{O1,O2,O3, (1, 16, 131, 0), (2, 56, 1, 0), (3, 12, 192, 0),B.imgs}.
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in order to coexist with both known s-relations shown in Fig.  10a, we have to 
locate O1 to form the candidate containing O1, O2 and O3. However, we cannot 
generate both known s-relations (1, 16, 131, 0) and (2, 56, 1, 0) whatever the 
position located with O1. That is, we cannot generate the candidate containing (1, 
16, 131, 0), (2, 56, 1, 0) and (3, 48, 3, 0). For example, Fig. 10d shows one of the 
locations of O1 in Fig. 10b. In Fig. 10d, we can find that the s-relation between 
O1 and O3 is (2, 32, 2, 0). However, the known relation between O1 and O3 is (2, 
56, 1, 0). Therefore, if r23 is (3, 48, 3, 0), it cannot satisfy the spatial consistency. 
Similarly, Fig. 10c shows the other s-relation (3, 12, 192, 0) from the FP list. One 
of possible locations of O1 is shown in Fig. 10e. In Fig. 10e, the relation between 
O1 and O2 is (1, 48, 3, 0), but the known relation between O1 and O2 is (1, 16, 
131, 0). Whatever the location of O1 is, we can deduce that (3, 12, 192, 0) cannot 
coexist with (1, 16, 131, 0) and (2, 56, 1, 0), so (3, 12, 192, 0) does not satisfy the 
spatial consistency.

Therefore, in the verification stage, we need to verify the frequent s-relations 
from the FP list. After the verification, we can prune the frequent s-relations that 
do not satisfy the spatial consistency. Hence, the impossible candidates can be 
pruned.

Fig. 10   The example to illustrate the consistent property: a the known s-relations in the candidate; b one 
of the frequent s-relations r23; c one of the frequent s-relations r23; d the possible location of O1 when 
considering the s-relation r23 shown in (b); e the possible location of O1 when considering the s-relation 
r23 shown in (c)
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3.4.3 � Verification

In our proposed approach, we use a reasoning method [15] to reason the s-relations 
that satisfy the spatial consistency. In the 9DSPA-Miner [15], the reasoning method 
may also discover a lot of the impossible relations when reasoning the unknown 
relation, generating invalid candidates. Therefore, based on the result of the reason-
ing method, we can verify whether that the frequent s-relations from the FP list sat-
isfy the spatial consistency. That is, we can prune a large number of candidates that 
are impossible to be found in the 2D space.

When finding the possible values of the unknown s-relation rij, we need to 
retrieve them from the FP list. However, the values from the FP list may not satisfy 
the spatial consistency. Therefore, there may exist some candidates that are impos-
sible to be found in the 2D space. To further prune these candidates, we need to 
find the values of rij satisfying the spatial consistency. Assume that Of, Oi and Oj 
are within in an image, where f < i < j and the s-relation rij is an unknown relation. 
Let the sets of reasoned valid values of Dij, Dji and Tij in rij are RDij, RDji and RTij, 
respectively. Based on the reasoning method in [15], we can use Dif and Djf to reason 
these three valid sets. If there is more than one Of, all the reasoned valid sets for 
each Of should be obtained, and each final valid set is the intersection of the corre-
sponding reasoned valid sets for all of Of’s. The detail of the reasoning method can 
be found in [15]. The combinations of three valid sets contain the s-relations that 
satisfy the spatial consistency. However, in [15], they reason the unknown relations 
of all combinations of these three valid sets, which may generate impossible rela-
tions that do not exist in the image database. Therefore, in our proposed approach, 
given a frequent s-relation rij = (Oij, Dij, Dji, Tij) from the FP list, if Dij ∈ RDij, Dji ∈ 
RDji and Tij ∈ RTij, rij is a consistent s-relation in the image. Since we use the fre-
quent relation stored in the FP list to discover the unknown relation, we can avoid 
generating the impossible relations, which exist in the 9DSPA-Miner [15].

For example, we take the two joinable 2-patterns shown in Fig. 8b, d to illustrate 
our pruning strategy. Figure 8b shows the frequent 2-pattern containing O1 and O2 
with the s-relation r12 = (1, 16, 131, 0), and Fig. 8d the one containing O1 and O3 
with the s-relation r13 = (2, 56, 1, 0). Whenever joining them, we have to find the fre-
quent s-relations of r23 from the FP list in Fig. 9, and the results are (3, 48, 3, 0) and 
(3, 12, 192, 0), which are the candidates in the candidate generation stage. Among 
these s-relations for r23, some may generate the impossible candidates, since they are 
not consistent with the other s-relations (i.e., (1, 16, 131, 0) and (2, 56, 1, 0)) within 
an image. Therefore, we can use D21 and D31 to reason three valid sets RD23, RD32 
and RT23 to discover the s-relation r23 that satisfies the spatial consistency. After 
that, we will prune the s-relation r23 that does not satisfy the spatial consistency.

In this case, based on the reasoning method in [15], three valid sets for r23 can be 
reasoned, RD23 = {56, 68, 124, 131, 199, 255}, RD32 = {0, 1, 16, 17} and RT23 = {0, 
1, 2, 3, 4}. Moreover, all these possible s-relations for r23 are shown in Fig. 11. Let 
us verify the frequent s-relation r23 = (3, 48, 3, 0). Since D23 is 48 that is not in the 
valid set RD23, it does not satisfy the spatial consistency. In the same way, the other 
s-relation r23 = (3, 12, 192, 0) does not satisfy the spatial consistency, since D23 is 
12 that is not in the valid set RD23. In other words, when joining these two joinable 
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2-patterns from Fig. 8b, d, all candidates generated in the early stage (i.e., the can-
didate generation stage) are pruned, since all the frequent s-relations for r23 do not 
satisfy the spatial consistency. Note that, for the same case, the 9DSPA-Miner [15] 
generates 120 candidates, which is equal to |RD23| * |RD32| * |RT23|.

3.4.4 � The frequent 3‑pattern

From Fig. 8b, c, we can join the following two joinable frequent 2-patterns.

From the FP list shown in Fig. 9, the frequent s-relations of r23 are (3, 48, 3, 0) and 
(3, 12, 192, 0), where r23.imgs for (3, 48, 3, 0) is {I1, I4} and that for (3, 12, 192, 0) 
is {I3, I6}. According to the reasoning method in [13], we can use D21 and D31 to 
reason the following three valid sets, RD23 = {2, 3, 4, 6, 7, 8, 12, 14, 24, 28, 31, 56, 
68, 124, 131, 199, 255}, RD32 = {0, 1, 16, 17, 32, 48, 64, 96, 112, 128, 129, 192, 
193, 224, 241} and RT23 = {0, 1, 2, 3, 4}. After the verification, only the s-relation 

{
O1,O�

, (1, 16, 131, 0),
{
I2, I3, I5, I6

}}
{
O1,O�

, (2, 8, 128, 0),
{
I1, I3, I4, I6

}}
.

a b c

d e f

g h i

Fig. 11   The valid candidates: a r23 = (3, 56, 1, 0); b r23 = (3, 56, 1, 1); c r23 = (3, 56, 1, 2); d r23 = (3, 131, 
16, 0); e r23 = (3, 131, 16, 1); f r23 = (3, 199, 16, 2); g r23 = (3, 68, 16, 2); h r23 = (3, 68, 17, 2); i r23 = (3, 
68, 1, 2)
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(3, 12, 192, 0) satisfies the spatial consistency and the number of intersection of the 
corresponding image sets is not less than (min_sup * |D| = 2). Therefore, the follow-
ing candidate of the frequent 3-pattern is generated, {O1, O2, O3, (1, 16, 131, 0), (2, 
8, 128, 0), (3, 12, 192, 0), {I3, I6}}, as shown in Fig. 12a. In addition, any sub k-pat-
terns in a frequent (k + 1)-pattern must be frequent as mentioned in [26]. In this case, 
any sub 2-patterns in this generated 3-pattern shown in Fig. 12a are all frequent, as 
shown in Fig. 8, so that this 3-pattern is definitely a frequent 3-pattern. In the same 
processing, all the other frequent 3-patterns for the database IDB1 shown in Fig. 4 
are shown in Fig. 12b–e.

3.4.5 � The frequent 4‑pattern

Any two joinable 3-patterns shown in Fig. 12 are joined to generate the candidate 
4-patterns if the number of the intersection of their corresponding image sets is 
not less than (min_sup * |D|). In Fig. 12, only the 3-patterns from Fig. 12a, c are 
processed, since the number of the intersections of the image sets of other joinable 
3-patterns is less than (min_sup * |D|) = 2.

For this joining, there is an unknown s-relation r34. From searching in the FP list 
shown in Fig. 9, the s-relation r34 is (6, 1, 56, 0), and r34.imgs = {I3, I6}. According 
to the reasoning method in [15], for object O1, we can use D31 and D41 to reason 
the following three valid sets, RD’34 = {0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 17, 24, 28, 
31, 32, 48, 56, 64, 68, 96, 112, 124, 128, 129, 131, 192, 193, 199, 224, 241, 255}, 
RD’43 = {0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 17, 24, 28, 31, 32, 48, 56, 64, 68, 96, 112, 

{
O1,O2,O�

, (1, 16, 131, 0), (2, 8, 128, 0), (3, 12, 192, 0),
{
I3, I6

}}
{
O1,O2,O�

, (1, 16, 131, 0), (4, 4, 224, 0), (5, 2, 32, 0),
{
I3, I6

}}
.

{O1, O2, O3, (1, 16, 131, 0), (2, 8,
128, 0), (3, 12, 192, 0), {I3, I6}}

{O1, O2, O3, (1, 8, 128, 0), (2, 8,
128, 0), (3, 48, 3, 0), {I1, I4}}

{O1, O2, O4, (1, 16, 131, 0), (4, 4,
224, 0), (5, 2, 32, 0), {I3, I6}}

{O1, O3, O4, (2, 8, 128, 0), (4, 4,
224, 0), (6, 1, 56, 0), {I3, I6}}

{O2, O3, O4, (3, 12, 192, 0), (5, 2,
32, 0), (6, 1, 56, 0), {I3, I6}}

a b c

d e

Fig. 12   All frequent 3-patterns for the database IDB1 shown in Fig. 5
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124, 128, 129, 131, 192, 193, 199, 224, 241, 255} and RT’34 = {0, 1, 2, 3, 4}. In 
addition, according to the reasoning method in [15], for object O2, we also need to 
use D32 and D42 to reason the following three valid sets, RD”34 = {1, 128, 129, 192, 
193}, RD”43 = {8, 12, 24, 28, 56, 124} and RT”34 = {0, 1, 2}. Then, the three valid 
sets of D34, D43 and T34 are the intersections of their corresponding valid sets in 
aspects of objects O1 and O2, respectively.

After the verification, the frequent s-relation (6, 1, 56, 0) satisfies the spatial con-
sistency, and the number of intersection of the corresponding image sets is not less 
than (min_sup * |D|) = 2. Therefore, this candidate 4-pattern can be generated. Note 
that for this join example, the 9DSPA-Miner [15] will generate 90 candidates, which 
is equal to |RD34| * |RD43| * |RT34|. The generated candidate 4-pattern is {O1, O2, O3, 
O4, (1, 16, 131, 0), (2, 8, 128, 0), (4, 4, 224, 0), (3, 12, 192, 0), (5, 2, 32, 0), (6, 1, 56, 
0), {I3, I6}}, as shown in Fig. 13. Any sub 3-patterns in this frequent 4-pattern are 
all frequent shown in Fig. 12 so that this generated 4-pattern is frequent. Since there 
is only one frequent 4-pattern, it is impossible to generate a size-5 candidate. There-
fore, the mining process can be terminated.

4 � Performance evaluation

In this section, we make a comparison of the performance between our proposed 
approach and the 9DSPA-Miner [15]. We evaluate the performance efficiency on the 
processing time for the following experimental results.

4.1 � Simulation model

The synthetic data generation algorithm in our performance evaluation is similar 
to that in the 9DSPA-Miner [15]. We generate N objects in the synthetic database, 

RD34 = RD�
34
∩ RD��

34
= {1, 128, 129, 192, 193}

RD43 = RD�
43
∩ RD��

43
= {8, 12, 24, 28, 56, 124}

RT34 = RD�
34
∩ RD��

43
= {0, 1, 2}.

Fig. 13   The frequent 4-pattern 
for the database IDB1 shown 
in Fig. 4

{O1, O2, O3, O4, (1, 16, 131, 0), (2, 8,
128, 0), (4, 4, 224, 0), (3, 12, 192, 0),

(5, 2, 32, 0), (6, 1, 56, 0), {I3, I6}}
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where each object has its length and width, which are selected from a uniform dis-
tribution. Since there exist 9D-SPA spatial relations [27] within an image, every 
object, which is randomly selected from N objects, is uniformly distributed in the 
2D space. Therefore, the spatial relations between any two objects can be deter-
mined. We generate rectangular objects that are uniformly distributed in an image of 
size 100 * 100. Every image generated is expressed as the 9D-SPA representation.

N is the number of objects, ranging from 30 to 70. T is the average size of images, 
measured in the number of objects in an image, and its range is from 6 to 14. D is 
the number of images in thousands, ranging from 10 to 100. I is the average size of 
potential frequent patterns, which is set to 4. L is the number of potential frequent 
patterns, which is set to 2000. min_sup is the minimum support threshold, ranging 
from 0.1 to 0.5%. The number of objects for each generated image is determined 
by the Poisson distribution with a mean equal to T. Each image consists of a series 
of potentially large patterns, where those patterns are chosen from a set of L large 
potentially patterns. Each pattern in L has an associated weight generated from the 
Zipf distribution that determines the probability that this pattern will be chosen. The 
size of each potentially large patterns in L is determined from a Poisson distribution 
with a mean equal to I.

4.2 � Computational complexity

For constructing a two-level index structure and an FP list that stores frequent 2-pat-
terns, the proposed approach needs to scan the whole input image database once. 
Consider that there are D images having an average T objects in the input database. 

Each image has 
(
T

2

)
=

T×(T−1)

2
 s-relations. As a result, the computational cost of 

processing this part requires O
(
D ×

T×(T−1)

2

)
.

To generate candidate frequent k-patterns, k ≥ 3, the proposed approach joins 
pairs of joinable frequent (k − 1)-patterns, where the first (k − 2) objects between 
them must be identical. Therefore, each joining operation has at most (− 2) equality 
comparisons [29] and examines at most l unknown s-relations from the FP list. In 
the worst case, for each iteration, the proposed approach needs to join every pair of 
joinable frequent (k − 1)-patterns, Fk − 1 [29]. As a result, the computational cost of 
processing this part requires O

�∑T

k=3
(k − 2 + l)��Fk−1

��
2
�
.

4.3 � Experimental results

In the first experiment, we compare the performance of our proposed approach 
and the 9DSPA-Miner [15] with the synthetic data D50T10L2000I4N36, where 
the number of images D = 50 K, the average size of images T = 10, the number of 
potential frequent patterns L = 2000, the average size of the potential frequent pat-
terns I = 4, and the number of objects N = 36. Figure 14 shows the comparison of the 
processing time under the different values of min_sup from 0.1 to 0.5%. When the 
value of min_sup decreases, the processing time of the 9DSPA-Miner increases dra-
matically, but that of our proposed approach increases slowly. In this figure, we can 
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observe that the proposed approach has a shorter processing time than the 9DSPA-
Miner in all cases. When the value of min_sup is set to 0.1%, the processing time of 
the proposed approach is about 36 times faster than that of the 9DSPA-Miner.

In the second experiment, we evaluate the effect of the different average size 
of images. In this experiment, we generate the dataset D10L2000I4N36sup0.5%, 
where min_sup is set to 0.5% and the average size of images varies from 6 to 14. 
Figure 15 shows the comparison of the processing time with the different average 
size of images. When the average size of images increases, the processing time of 
both algorithms increases. The reason for the increase of the processing time of 
both algorithms is that the number of frequent patterns and candidates increases 
when the average size of images increases. Therefore, both algorithms need long 
time in checking whether the candidates are frequent. However, the processing 
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Fig. 14   A comparison of the processing time under the different minimum support
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time of our approach increases slowly as compared to that of the 9DSPA-Miner. 
Our approach is more scalable than the 9DSPA-Miner, since we can prune a large 
number of invalid candidates.

In the third experiment, we evaluate the effect of the different number of 
objects. In the experiment, we generate the dataset D10T10L2000I4sup0.5%, 
where the number of objects varies from 30 to 70 and min_sup is set to 0.5%. 
Figure 16 shows the comparison of the processing time with the different number 
of objects. Because the average support for the patterns decreases as the number 
of objects increases, the processing time of both algorithms decreases when the 
number of objects increases. Our proposed algorithm is faster than the 9DSPA-
Miner, especially, when the number of objects decreases.

In the final experiment, we evaluate the effect of the different number of 
images. In the experiment, we generate the dataset T10L2000I4N36sup0.5%, 
where the number of images varies from 10 to 100 K and min_sup is set to 0.5%. 
Figure 17 shows the comparison of the processing time with the different num-
ber of images. When the number of images increases, the number of candidates 
increases. Moreover, both approaches need long time in building the index struc-
ture as the number of images increases. Furthermore, since both approaches count 
the support of a candidate by the intersection of image sets, they need long time 
in intersecting when the average support of patterns increases. In the 9DSPA-
Miner, they recompute the intersections of image sets to count the support of the 
discovered patterns. However, since every discovered pattern is associated with 
an image set in our approach, we do not need to scan the index structure to count 
the support and do not recompute the intersections of image sets. Therefore, 
the proposed approach takes less time in counting the support than the 9DSPA-
Miner, as can be seen in Fig. 17.
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5 � Conclusions

In this paper, based on the frequent pattern list, we have proposed an approach 
that can avoid generating the invalid relations which could not be found in the 2D 
space or in the current input database. After creating size-k candidates that satisfy 
the spatial consistency from size-(k − 1) frequent patterns by following the rea-
soning method [15], we will do the verification stage to prune invalid candidates. 
In addition, when performing the join step, the FPL and IntImageSet conditions 
are used. If either one condition is satisfied, we then will not generate any can-
didate that will not be frequent whatever the value of the unknown relation is. 
Furthermore, when counting the support of the candidate, we will not scan the 
index structure. Since each discovered pattern is associated with an image set, we 
will not recompute the intersections of image sets. From our simulation results, 
we have shown that our proposed approach is more efficient than the 9DSPA-
Miner. How to handle uncertain or missing data [30, 31] for image data mining 
is a possible future research direction. How to handle data insertion/deletion for 
incremental mining [32] in image databases is another possible future research 
direction.
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