
Enhancing Fine-Grained Medical Image Classification Accuracy
Via Test-Time Object Detection

Po-Chun Chuang
Department of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan

Kaohsiung, Taiwan
Department of Emergency Medicine

Kaohsiung Chang Gung Memorial Hospital
Kaohsiung, Taiwan

zhungboqun@gmail.com

Ye-In Chang
Department of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan

Kaohsiung, Taiwan
changyi@cse.nsysu.edu.tw

Abstract
Deep learning (DL) models often struggle to maintain accuracy
when transitioning from validation datasets to real-world applica-
tions due to variations in image quality and object diversity. This
study explores snake species identification as a case study, utilizing
the Swin Transformer V2 model to address these challenges. The
model, fine-tuned through transfer learning, achieved a validation
accuracy of 96.29%. However, its accuracy declined to 83.29% when
tested on user-submitted images collected via the LINE chatbot
and social media platforms. To mitigate this issue, a Test-Time
Object Detection and Cropping method was introduced, using the
OWLv2 zero-shot object detection model to preprocess images by
detecting and cropping snake regions. This approach improved
the external test set accuracy to 89.75%, closely aligning with the
human-annotated baseline accuracy of 90.25%. These findings un-
derscore the significance of preprocessing techniques in enhancing
the reliability and practical applicability of DL models. Future
research should focus on expanding datasets and addressing chal-
lenges associated with underrepresented species to further improve
performance.
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1 Introduction
Deep learning (DL) models often exhibit performance discrepancies
between internal validation and external test datasets due to varia-
tions in population demographics and environmental settings [1].
This underscores the need for rigorous external testing to ensure
model generalizability and reliability in real-world applications.
For instance, models trained on a specific dataset may perform
suboptimally when applied to different contexts. To address this
challenge, this study explores the issue of snakebites as a use case,
focusing on developing a DL model for snake species identification
to minimize performance gaps across datasets.

Snakebites are a major global health concern, causing approx-
imately 100,000 fatalities annually and affecting millions world-
wide [2]. Accurate snake species identification is crucial for ef-
fective antivenom administration, which remains the cornerstone
of snakebite management [3]. However, identifying snake species
presents significant challenges for healthcare providers, with global
data indicating that only 53% of snakebite cases are correctly iden-
tified [4]. Recent advancements in DL have shown promise, with
some studies achieving accuracy rates of approximately 94% in
snake species classification at the country level [5, 6].

This study aimed to develop a DL model designed for both public
and clinical use, enabling accurate snake species identification from
user-submitted images. By leveraging real-world images, we as-
sessed the model’s performance and proposed strategies to enhance
its robustness and reliability, bridging the gap between experimen-
tal conditions and practical applications.

2 METHODS
2.1 Ethics Approval
This study was conducted in compliance with the ethical stan-
dards and approved by the Chang Gung Medical Foundation Insti-
tutional Review Board (IRB approval numbers: 202201210B0 and
202301246B0A3).

2.2 Classification of Snake Species in Taiwan
To ensure clinical relevance, snake species native to Taiwan were
categorized into 11 classes. Ten of these classes represent venomous
species with documented envenomation cases, while the ”Others”
category includes nonvenomous species or those without recorded
envenomation incidents. The defined classes are as follows:

• Trimeresurus stejnegeri
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Table 1: Image Collection and Sampling in Training, Validation, and External Test Sets

Training and Validation Set External test Set
Collected Sampled Training Validation

Trimeresurus stejnegeri 3,166 1,000 793 207 230
Protobothrops mucrosquamatus 1,952 1,000 787 213 302
Naja atra 1,950 1,000 796 204 97
Bungarus multicinctus 1,160 1,000 810 190 131
Deinagkistrodon acutus 3,588 1,000 797 203 96
Daboia siamensis 1,891 1,000 804 196 43
Trimeresurus gracilis 960 960 771 189 30
Ovophis makazayazaya 1,394 1,000 803 197 80
Sinomicrurus spp. 677 500 399 101 31
Rhabdophis formosanus 418 418 350 68 23
Others 13,417 3,122 2,490 632 1,337
Total images 30,573 12,000 9,600 2,400 2,400

• Protobothrops mucrosquamatus
• Naja atra
• Bungarus multicinctus
• Deinagkistrodon acutus
• Daboia siamensis
• Trimeresurus gracilis
• Ovophis makazayazaya
• Sinomicrurus spp.
• Rhabdophis formosanus
• Others

2.3 Data Sources and Labeling
Training and validation datasets were compiled from publicly avail-
able platforms, including Flickr, iNaturalist, the Taiwan Reptile
Report Program, and the Taiwan Roadkill Observation Network.
External test images were sourced from a LINE chatbot and Face-
book groups between November 2023 and April 2024 (Table 1).
To ensure data quality, expert herpetologists from the National
Pingtung University of Science and Technology Herpetology Labo-
ratory meticulously labeled the images, excluding any that were
unidentifiable.

2.4 Preprocessing Workflow
Data preprocessing varied by dataset type:

• Training Set: Extensive augmentation techniques, including
random flipping, perspective transformations, rotation, and
center cropping, were applied to improve model generaliza-
tion.

• Validation Set: Minimal transformations were used to main-
tain consistency with real-world conditions.

• External Test Set: The Test-Time Object Detection and Crop-
ping method was implemented to handle real-world image
variability.

All images were resized to 224 × 224 pixels and normalized to the
RGB channels for model input consistency.

2.5 Model Architecture and Training
2.5.1 Transfer Learning with Swin Transformer. Swin Transformer
v2, specifically the swinv2-base-patch4-window12-192-22k variant
pretrained on ImageNet-21k, served as the backbone for this study
[7, 8]. This model leverages hierarchical vision prior to performing
tasks such as classification and detection.

2.5.2 Deployment and User Interface: Line Chatbot. The trained
model was deployed through a LINE chatbot to enhance real-world
accessibility. The Django framework managed image submission
and storage. The chatbot processed submitted images using the
Swin Transformer model to predict snake species and delivered the
results directly to users.

2.5.3 Test-Time Object Detection and Cropping. To address real-
world challenges, images sourced from external platforms often
exhibited reduced quality and poorly framed snake regions, lead-
ing to decreased classification accuracy. To mitigate this issue,
this study introduces a Test-Time Object Detection and Cropping
technique.

Among the various zero-shot object detection models tested,
Google’s owlv2-large-patch14-finetuned variant demonstrated su-
perior performance (Table 2). The model identified snake regions
using the query ”snake,” and the detected area was cropped for clas-
sification. If multiple regions were detected, the largest region was
selected for analysis. When no region was identified, the original
image was processed without modifications.

This method significantly improved the classification accuracy
on external test datasets, bridging the gap between experimental
and real-world performances.

2.5.4 Cropping Methods for Test-Time Image Processing. To im-
prove classification performance and account for variability in
real-world snake images, three distinct cropping methods were
implemented during the preprocessing stage for the external test
dataset:

• Top-Left Crop: In this approach, the bounding box coordi-
nates obtained from the object detection model were utilized
to crop a 224 × 224 pixel region starting from the top-left
corner of the detected area. This straightforward method
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Table 2: Accuracies for Different Cropping Methods in Validation and External Test Sets.

Validation Set (n=2400)
Left top crop Box-Center Crop No Adjustment

no_object_detection 95.58%
grounding_dino_tiny 81.54% 95.92% 92.58%
grounding_dino_base 83.75% 96.25% 92.67%
omdet_turbo_swin_tiny_hf 85.04% 96.04% 93.50%
owlvit_base_patch16 92.46% 95.92% 95.29%
owlvit_base_patch32 86.67% 95.88% 93.54%
owlvit_large_patch14 88.71% 95.88% 93.58%
owlv2_base_patch16 87.71% 95.92% 93.21%
owlv2_base_patch16_ensemble 88.04% 95.71% 92.71%
owlv2_base_patch16_finetuned 87.33% 96.08% 93.58%
owlv2_large_patch14 88.62% 95.46% 93.33%
owlv2_large_patch14_ensemble 88.38% 95.83% 93.33%
owlv2_large_patch14_finetuned 86.96% 96.29% 93.25%
detr_resnet_50 95.58% 95.58% 95.58%

External Test Set (n=2400)
Left top crop Box-Center Crop No Adjustment

human_anotated 62.21% 72.38% 90.25%
grounding_dino_tiny 57.33% 70.08% 86.17%
grounding_dino_base 60.62% 70.29% 87.42%
omdet_turbo_swin_tiny_hf 63.17% 71.17% 88.17%
owlvit_base_patch16 77.96% 79.96% 83.92%
owlvit_base_patch32 67.17% 75.08% 84.88%
owlvit_large_patch14 61.79% 73.04% 88.67%
owlv2_base_patch16 64.12% 73.62% 88.29%
owlv2_base_patch16_ensemble 64.88% 73.83% 88.58%
owlv2_base_patch16_finetuned 66.12% 74.50% 87.12%
owlv2_large_patch14 64.21% 73.96% 89.00%
owlv2_large_patch14_ensemble 64.04% 73.12% 88.83%
owlv2_large_patch14_finetuned 64.33% 73.29% 89.75%
detr_resnet_50 83.29% 83.29% 83.29%

a The training and validation sets originally contained 30,573 images, of which 12,000 were randomly sampled within each group to ensure
even distribution. The external set included 2,400 images, all of which were used without adjusting for group proportions.

ensures that the detected object remains within the cropped
region; however, it may occasionally miss key features if the
object is not optimally positioned.

• Box-Center Crop: A custom proportional cropping method
was developed to dynamically adjust the crop size based on
the image dimensions. Using the Center Crop Proportional
class, the image was cropped around its center in a randomly
selected proportion (e.g., 40% to 60% of the original size). This
approach provides flexibility and preserves more contextual
information when a snake occupies a smaller portion of the
image. The implementation leverages the Python Imaging
Library (PIL) to calculate and apply the crop based on the
specified proportions.

• No Adjustment: When object detection was unavailable or
failed to identify a region, the original image was directly

resized to 224 × 224 pixels without additional cropping. Al-
though this method simplifies preprocessing, it risks irrele-
vant background information, potentially affecting classifi-
cation accuracy.

2.6 Article Writing
This manuscript was initially written in a mix of Chinese and Eng-
lish (especially for technical terms) and was later translated using
ChatGPT-4. The first author promptly reviewed the translation for
accuracy and clarity, making necessary revisions.

3 RESULTS
3.1 Model Training Performance
The swine transformer V2 model was fine-tuned using transfer
learning on the training dataset over 20 epochs. The highest valida-
tion accuracy of 95.58% was achieved at epoch 7, corresponding to
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Figure 1: Transfer Learning with the Swin Transformer: (a)
Loss and (b) Accuracy.

the lowest test loss of 0.0395 (Fig. 1(a)). This suggests efficient opti-
mization in the early stages of training while maintaining strong
generalization to the validation dataset.

3.2 Loss and Accuracy Trends
The loss trends during training and validation, as shown in Fig.
1(a), revealed a steady decrease in training loss, which stabilized
after the initial epochs. In contrast, the test loss exhibited minor
fluctuations, reflecting the model’s adaptation to the validation
dataset, with the lowest test loss observed at epoch 7. Notably, at
epoch 15, the model achieved its highest test accuracy of 95.92%
despite a slightly higher test loss of 0.0418.

The accuracy trends over epochs (Fig. 1(b)) demonstrated a rapid
increase in both training and validation accuracy during the early
epochs, converging after epoch 10. From epoch 7 onward, themodel
consistently maintained a test accuracy above 95%, highlighting its
reliability and strong performance on the validation dataset.

3.3 Real-World Deployment and Dataset
Creation

To evaluate the real-world applicability of the model, it was de-
ployed through a LINE chatbot, which attracted more than 4,000
users. Between November 2023 and April 2024, 730 unique images.

Identifiable images were submitted after filtering out duplicates
and unidentifiable images. Additionally, 1,670 images were col-
lected from Facebook groups, resulting in a 2,400-image external
test set representing real-world scenarios. The initial evaluation of
this dataset revealed an accuracy of 83.29%, which was significantly
lower than the validation accuracy.

3.4 Analysis of Misclassifications
Two main factors contributed to the reduced accuracy of the exter-
nal test set:

3.4.1 Underrepresentation of Rare Variants: Some species, such as
the cyan-blue variants of Trimeresurus stejnegeri, were not included
in the training or validation datasets. These rare variants differ
significantly from the typical green-bodied, red-tailed specimens,
posing challenges for accurate classification.

3.4.2 Small Snake Proportions: Many images featured snakes occu-
pying only a small portion of the frame, which lowered the model’s
classification accuracy (Fig. 2a).

3.5 Preprocessing with Test-Time Object
Detection and Cropping

To address these challenges, a Test-Time Object Detection and
Cropping method was implemented. The OWLv2 zero-shot object
detection model, which required no prior training on snake-specific
datasets, was used to identify snake regions in the images. Of the
2,400 external test images, 2,289 (95.38%) successfully had snake
regions detected, which were then cropped and passed to the clas-
sification model. For the remaining images, in which no snake
regions were detected, the original images were used directly for
classification.

This preprocessing method improved the external test set accu-
racy from 83.29% to 89.75%, while maintaining the validation set
accuracy at 96.29%. Table 2 highlights the performance improve-
ment achieved by applying this method, with accuracy approaching
the human-annotated cropping baseline of 90.25%. Fig. 2b presents
examples of the detected and cropped images used in this process.

3.6 Cropping Methods and Model Performance
Table 2 presents the accuracy results of various cropping methods
applied during test-time processing, including the top-left crop, box-
center crop, and no adjustment. These accuracies were evaluated
across different object detection models used to identify and crop
snake regions.

The external dataset processed with the owlv2_large_patch14
fine-tuned model achieved the highest overall performance, with
accuracies of 64.33% for top-left crops, 73.29% for box-center crops,
and 89.75% for no adjustment. This performance closely matches
the human-annotated cropping baseline of 90.25%, demonstrating
its robustness and practical utility for real-world image processing.

Some models, such as owlvit_base_patch16, performed well in
specific scenarios but were less consistent across diverse test cases.
These findings highlight the importance of selecting appropriate
object detection models and cropping methods to maximize classi-
fication accuracy.

3.7 Impact Assessment of Preprocessing
To further assess the effectiveness of Test-Time Object Detection
and Cropping, confusion matrices were generated to compare clas-
sification accuracy before and after preprocessing (Fig. 3). The
results demonstrated significant improvements across nearly all
snake species, confirming the proposed method’s ability to enhance
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Figure 2: Examples of Cropping Preprocessing. (a) Original images from the external test set; (b) images after object detection,
cropping, and resizing.

Figure 3: Confusion Matrices Showing Classification Accuracy in the External Test Set. (a) Without Test-Time Object De-
tection and Cropping, and (b) With Test-Time Object Detection and Cropping. Each matrix shows the percentage of correct
and incorrect classifications. Species labels: 0, Trimeresurus stejnegeri; 1, Protobothrops mucrosquamatus; 2, Naja atra; 3,
Bungarus multicinctus; 4, Deinagkistrodon acutus; 5, Daboia siamensis; 6, Trimeresurus gracilis; 7, Ovophis makazayazaya; 8,
Sinomicrurus spp.; 9, Rhabdophis formosanus; 10, other.

model performance on challenging real-world datasets. This high-
lights the potential of preprocessing techniques in bridging the
gap between controlled experimental conditions and real-world
applications.

4 DISCUSSION
4.1 Impact of Test-Time Object Detection and

Cropping
This study underscores the importance of preprocessing techniques
in enhancing model performance for real-world applications. While
traditional training and validation workflows prioritize achieving
high accuracy within controlled datasets, real-world deployment

often exposes performance gaps due to variations in image quality,
framing, and object proportions. By introducing Test-Time Ob-
ject Detection and Cropping, this study demonstrated a tangible
improvement in classification accuracy for real-world images, in-
creasing from 83.29% to 89.75%. This advancement highlights the
potential of object detection and preprocessing methods in bridging
the gap between experimental conditions and practical challenges.

The integration of the OWLv2 zero-shot object detection model
enabled effective identification and cropping of snake regions with-
out requiring additional training on snake-specific datasets. This
adaptability makes the approach suitable for diverse scenarios and
datasets. By refining the input to the classification model, the
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preprocessing method not only improves accuracy but also miti-
gates the influence of irrelevant image features, such as background
clutter or poorly framed subjects.

These findings establish Test-Time Object Detection and Crop-
ping as a valuable tool for overcoming the challenges associated
with real-world deployment, particularly in applications where
user-submitted images exhibit significant variability in quality and
framing. This approach sets the study apart from others that primar-
ily emphasize achieving high validation accuracy within controlled
datasets, demonstrating its broader applicability in practical set-
tings.

4.2 Clinical and Real-World Applicability
A key strength of this study lies in its emphasis on clinical and
real-world applicability rather than solely optimizing validation ac-
curacy. Deploying the model on a LINE chatbot allowed for perfor-
mance evaluation on user-submitted images, which often presented
challenging conditions, such as uncommon snake variants and
poorly framed subjects. By addressing these limitations through
preprocessing, this study demonstrated a practical approach to
enhancing the utility of DL models in real-world applications.

Although the model’s validation accuracy of 96.29% across 11
categories is comparable to existing benchmarks such as Snake-
CLEF competitions, the true value of this study lies in its emphasis
on improving the performance in realistic scenarios [9, 10]. This ap-
proach aligns with the broader goal of enhancing clinical decision
making, particularly in identifying medically significant venomous
snakes.

4.3 Limitations and Future Directions
Although the Test-Time Object Detection and Cropping methods
showed promising results, several limitations remain. First, the
study relied on a single external test set sourced from the LINE
chatbot and Facebook groups. To validate the broader applicability
of this method, additional datasets from other real-world or open
sources are required. Future research should focus on collecting
diverse real-world datasets to compare performance across various
scenarios and further establish the generalizability of the method.

Secondly, as shown in Fig. 3, the model performance remained
suboptimal for specific species, including T. stejnegeri, N. atra, Si-
nomicrurus spp., and R. formosanus. The reduced accuracy for T.
stejnegeri and N. atra likely reflects the significant variability in
coloration and patterns, which were underrepresented in the train-
ing data. For Sinomicrurus spp. and R. formosanus, limited training
images contributed to the lower accuracy. Addressing these issues
requires expanding the dataset to include a more diverse range of
images of these species.

Lastly, a notable limitation of snakebite envenomation cases is
the frequent absence of images of the causative snake. In such
situations, alternative methods, such as wound image classification,
may be critical. However, the collection and accurate labeling of
wound images present significant logistical challenges, highlighting
an important direction for future research.

5 CONCLUSION
This study highlighted the importance of addressing real-world
challenges when deploying DL models for practical applications.
Although achieving high validation accuracy remains essential,
bridging the performance gap between experimental datasets and
real-world scenarios is critical for clinical and public utility. By
introducing the Test-Time Object Detection and Cropping method,
we demonstrated a significant improvement in model accuracy on
user-submitted images, increasing from 83.29% to 89.75%. This ap-
proach effectively mitigated issues related to image quality, framing,
and underrepresented snake variants, demonstrating its potential
as a robust preprocessing solution. Despite its limitations, includ-
ing the need for broader dataset validation and challenges with
specific species, this study provides a foundation for future research
aimed at enhancing the reliability and applicability of AI models in
real-world and clinical settings.
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