A Complementary Approach to Data Broadcasting in
Mobile Information Systems:

Ye-In Chang, and Che-Nan Yang

Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan
Republic of China
{E-mail: changyi@cse.nsysu.edu.tw}
{Tel: 886-7-5252000 (ext. 4334)}
{Fax: 886-7-5254301}

Abstract

Acharya et al. have proposed the use of a periodic dissemination architecture in the context
of mobile systems, called Broadcast Disks. This strategy can construct a memory hierarchy
where the highest level contains a few items and broadcasts them with high frequency
while subsequent levels contain more and more items and broadcast them with less and less
frequency. In this way, one can establish a trade-off between access time for high-priority
data and that of the low-priority items, where access time means that the time elapsed
from the moment a client submits a query to the receipt of data of his (her) interest on
the broadcast channel. However, based on Acharya et al.’s algorithm, some broadcast slots
may be unused, which results in the waste of bandwidth and the increase of access time.
Therefore, in this paper, we propose an efficient broadcast program, the complementary
approach, in which no empty slot is wasted. The basic idea of the complementary approach
is to move some pages which are located near the end of a broadcast cycle to those empty
slots which occur before those pages. Therefore, finally, the total number of slots in a
broadcast cycle is equal to the one computed from Acharya et al.’s algorithm minus the
number of empty slots. Obviously, our complementary approach generates a small number
of slots in one broadcast cycle and shorter mean access time than Acharya et al.’s algorithm.

(Key Words: bandwidth, broadcast disks, broadcast schedule, mobile databases, mobile
information systems.)

! This research was supported in part by the National Science Council of Republic of China under Grant
No. NSC-89-2218-E-110-004, and by National Sun Yat-Sen University.

1 Introduction

The emergence of powerful portable computers, along with advances in wireless commu-
nication technologies, has made mobile computing a reality [2, 9]. In the evolving field of
mobile computing, there is a growing concern to provide mobile users with timely access
to large amounts of information [19]. Examples of such services include weather, highway
conditions, traffic directions, news and stock quotes.

Although a wireless network with mobile clients is essentially a distributed system, there
are some characteristic features that make the system unique and a fertile area of research
[2]. These features include asymmetry in the communications, frequent disconnections,
power limitations and screen size [2]. Among them, asymmetry in the communications
means that the bandwidth in the downstream direction (servers-to-clients) is much greater
than that in the upstream direction. The communication asymmetry, along with the re-
striction in power that the mobile units have, have made the model of broadcasting data
to the clients, an attractive proposition.

In traditional client-server information systems, clients initiate data transfers by sending
requests to a server [1, 10]. Such systems are pull-based, which has the advantage of
allowing clients to play a more active role in obtaining the data they need. However, pull-
based systems are a poor match for asymmetric communications environments, as they
require substantial upstream communications capabilities. Therefore, another push-based
architecture that exploits the relative abundance of downstream communication capacity
in asymmetric environments is proposed [13].

In a push-based information system, servers broadcast the desired data items in the
broadcast channel continuously and repeatedly. The main advantage of broadcast delivery
is its scalability: it is independent of the number of users the system is serving. In the
simplest scenario, given an indication of the data items that are desired by each client
listening to the broadcast, the server would simply take the union of the requests and
broadcast the resulting set of data items cyclicly, as was done in Datacycle [5, 7]. Therefore,
retrieving data pages from the broadcast channel can be viewed as sequentially accessing
the broadcast data, where access time is the amount of time a client has to wait for an

information item that it needs. It is important to minimize the access time so as to decrease

the idle time at the client [6]. Alternatively, the server can broadcast different items with
differing frequency [1, 10]. Such a broadcast program can emphasize the most popular items
and de-emphasize the less popular ones, which was proposed in Acharya et al.’s Broadcast
Disks [1, 10].

There have been many strategies proposed for efficient broadcast delivery. Basically,
those strategies can be classified into two types: static and dynamic. By “static broadcast “,
we mean that a broadcast where the schedule of programs is fixed and even though the
contents of a program can change with time [1, 10]. In contrast, in “dynamic broadcast*,
both the schedule of programs and its contents can change and there exists limited support
to handle user’s requests [12, 14, 15, 19]. Also, there have been some researches on reducing
access time [1, 10], nonuniform broadcast [1, 10, 16, 17], fault-tolerance [3, 4], and broadcast
data on multiple wireless channels [18].

Among those strategies for efficient broadcast delivery, Acharya et al.’s Broadcast Disk
strategy [1, 10] is one of well-known static algorithms. Based on Broadcast Disks, the
server can construct a memory hierarchy in which the highest level contains a few items
and broadcasts them with high frequency while subsequent levels contain more and more
items and broadcast them with less and less frequency. However, based on Acharya et al.’s
approach, some broadcast slots may be unused, which results in the waste of bandwidth
and the increase of access time. Therefore, in this paper, we propose an efficient broadcast
program, the complementary approach, in which no empty slots is wasted. The basic idea
of the complementary approach is to move some pages which are located near the end of
a broadcast cycle to those empty slots which occur before those pages. Therefore, finally,
the total number of slots in a major cycle is equal to the one computed from Acharya et
al.’s algorithm minus the number of empty slots. Obviously, our complementary approach
generates a small number of slots in one broadcast cycle and shorter mean access time than
Acharya et al.’s algorithm.

The rest of paper is organized as follows. In section 2, we give a brief description of
Acharya et al.’s algorithm and show an example of the empty slot problem in Acharya et
al.’s algorithm. In section 3, we present our complementary approach to solve the empty

slot problem. In section 4, we study the performance of our complementary approach, and

Ratabase HoT [2]z][z]4a]s]s]7][8]ohdhi] coLD

Disks la]s]e[7z[s8]ohohi]
K1 Kz Ksa
Chunks la]ls] [elz] [sle] [1da4]
Ci11 C21 Co22 Cs1 Csz2 Css Csa

MaJ or Q/Cle

-zm------nm

\C11C21 C31\ C11C22 Cszz C11Cz1 Cszz Cii1 Czz Csza

Minor Cycle

Figure 1: A broadcast program based on Acharya et al.’s algorithm

make a comparison with Acharya et al.’s algorithm. Finally, section 5 gives the conclusion.

2 Background

In Acharya et al.’s Broadcast Disks strategy [1, 10], the broadcast is created by assigning
data items to different “disks“ of various sizes and speeds, and then multiplexing the disks
on the broadcast channel. Figure 1 shows an example of the broadcast program generation.
Assume a list of pages that has been partitioned into three disks, in which pages in disk 1
are to be broadcast twice as frequently as pages in disk 2, and four times as frequently as
pages in disk 3. Therefore, R = 4, R, = 2, and R3 = 1, where R; is the relative broadcast
frequency of disk i. Each disk 7 is split into NC; chunks by first calculating L as the LCM
(Least Common Multiple) of the relative frequencies and then being split into NC; = L/R;
chunks. That is, L is 4 (=LCM(4, 2, 1), so NC; = 1, NCy = 2, and NC3 = 4. Finally,
we create the broadcast program by interleaving the chunks of each disk in the following
manner, where Cj; denotes the j'th chunk in disk

02 o = 16 8 do begin

03 k= ((i- 1) mod NC;) + 1

04 Broadcast chunk Cj; end.

The resulting broadcast consists of 4 minor cycles (containing one chunk from each disk)
which is the LCM of the relative frequencies, and has a period of 16 pages. This broadcast
produces a three-level memory hierarchy in which disk one is the smallest and fastest level

and disk three is the largest and slowest level. Thus, the multi-level broadcast corresponds

to the traditional notion of a memory hierarchy.

Rstabase HOT [1]z2[3]a]s]e[7][8][ohohihiz CcOLD

Disks [2]3] [a]s]e][7][s8]od1i12]
K1 Kz Ksa
Shunks =l [a]s] [e]7] [elo] hohal h2]g] [e]g]
C11Caz2 C21C22Cz23 Csza Caz2 Casz Csza Cas Cse

Major Cycle

BEEEEE R EEE R R RS S EE)
L(;EJ; E:Z.l (_:73.(17\ C12C22 Cs32z Ci11Cz23 Cs33 Ci2 Cz2a1 Csza C11C22 Css Ci2 Cz23 Csse

Minor Cycle

. Empty Slot

Figure 2: A broadcast program with 8 empty slots based on Acharya et al.’s algorithm

Figure 2 shows an example of a broadcast program generated by Acharya et al.’s al-
gorithm, in which several empty slots can occur. Assume a list of pages that has been
partitioned into three disks, and we have Ry = 3, Ry = 2, and R3 = 1. These disks are
split into chunks according to Acharya et al.’s algorithm. That is, we have L is 6, so NC
=2, NCy = 3, and NC3 = 6. The resulting broadcast program consists of 6 minor cycles,
and has a period of 24 slots with 8 empty slots.

3 A Complementary Approach

The basic idea of the complementary approach is to move some pages which are located near
the end of a broadcast cycle to those empty slots which occur before those pages. Therefore,
finally, the total number of slots in a broadcast cycle is equal to the one computed from

Acharya et al.’s algorithm minus the number of empty slots.

3.1 Assumptions

This paper focuses on wireless broadcast environment. Some assumptions should be re-
stricted in order to make our work feasible. These assumptions include: (1) The client
population and their access patterns do not change. (2) Data is read-only. (3) There is no
prefetching, and no cache scheme on the clients. (4) Clients make no use of their upstream
communications capability. (5) When a client switches to the public channel, it can re-
trieve data pages immediately. (6) A query result contains only one page. (7) The server

broadcasts pages over a single channel. (8) The broadcast infrastructure is reliable. (9)

Major Oyole
= ,_3,*&,_ - - S-F--= TS T T30 Tda az as aa “d57i8" s -as-ae 2a_2i1 22 2c

%I-_-u _ -mlﬁE-_

<=a === Ca= == = F== | == caz Cza Cae

evore

. Empty Slot

(a)

Major Cycle

Ca.a C=.a <s=.a Ca=2C== == CaaC== <=3 Ca=z C=a <=.a

(b)

Figure 3: A broadcast program based on the complementary approach: (a) deciding the
cutline; (b) the result after the complementary approach.

The length of each page is fixed.

3.2

The Algorithm

Now, we present the proposed algorithm which partitions D pages into S broadcast disks

such that no empty slot occurs. In the proposed algorithm, the following variables are used:

1.

© N o vk W

10.
11.
12.

D: the number of pages;

P;: the i'th page in a decreasing order of demand frequency, 1 <i < D;

S: the number of disks;

R;: the relative frequency of disk i, 1 <i < S}

L: the least common multiple of R;, 1 <7 < S, i.e., L = LCM (Ry, Ra, ..., Rs);
K;: the number of pages in disk i, 1 <¢ < S, and Ele K; = D;

NC;: the number of chunks in disk 4, and NC; =L / R;; 1 <i < S,

NS;: the number of slots in a chunk of disk i, 1 <i < S| i.e.,

NS = T3] =] = [l

Cj: the jth chunk in disk 4, 1 <17 < S

Moved][]: an array to store the pages after the cutline;

Broadcast[]: an array to store the data for broadcast;
Oyji: the kth slot of the jth chunk in disk ¢, 1 < < S.

For the example shown in Figure 2, S =3, D = 12 and we let Ry = 3, Ry = 2, and Rj
= 1. Therefore, we have L = LCM (3, 2, 1) = 6, NC;, =2, NCy =3, NC3 =6, NS; =1,
NSy, =1, and NS; = 2.

In the complementary approach, we first compute the total number of slots in a major

cycle, which is 24 in this example. Second, we compute the total number of empty slots in

such a major cycle, which is 8. Therefore, we can determine a cutline, as shown in Figure
3-(a), which is 8 slots away from the end of the major cycle. Third, we find those slots
which are not empty after the cutline, which are slots 17, 18 and 19. Forth, we find the
empty slots before the cutline, which are slots 5, 10 and 13. Finally, we move data page

from slots 17, 18 and 19 to those empty slots 5, 10 and 13, respectively. The final result is

sk«

shown in Figure 3-(b), where, the symbol denotes those moved pages.

The main step in this strategy is how to detect whether a slot O;; is empty or not by
checking the values of 4, j, k only. Basically, we must consider two cases: (1) a fully wasted
chunk, and (2) a partial wasted chunk. We now consider these two cases in details as

follows:
1. For a fully wasted chunk in disk i:

o Let FW; = NC; — [AI,(—S], which is the number of chunks with fully wasted slots.

o If FW; > 1, then the fully wasted chunk j in disk ¢ will occur in the range Cj; as follows:
NC; —FW;+1< 35 <NC,.

e For such a fully wasted chunk C;;, the number of wasted slots in C; is equal to N.S;. Moreover,
the fully wasted chunk Cj; will occur in the (j x u)’th minor cycle, 1 < u < R;, and Oyjy, is
an empty slot, 1 < k < NS;.

2. For a partially wasted chunk in disk 4:

e If there exists a chunk which contains w empty slots, 1 < w < NS;, then the following
condition is satisfied: PW; = [AI,(—S] — LAI,(SJ =1

e If PW; = 1, then the partially wasted chunk j in disk ¢ will occur in Cy;, where j = NC;—FW;.

e For such a partially wasted chunk C;;, the number of wasted slots in C;; is equal to (IVS; x
NC; — K;— FW; x NS;). Moreover, the partially wasted chunk C;; will occur in the (j x v)’th
minor cycle, 1 <wv < R;, and Oyji, is an empty slot, NS; — (NS; x NC; —K; —FW; x NS;)+1 <
k< NS;.
The complete algorithm is described as follows:

1. Calculate the total slots (denoted as T'S) and total wasted slots (denoted as TW.S) in one major
broadcast cycle generated by Acharya et al.’s broadcast disks program.

2. Find out the cutline (denoted as C'L) which equals to (T'S - TWS).
3. Find out the nonempty slots after the cutline and record them in the array Moved.

4. Let’s use a sequence number (SN) to denote the sequence of those slots in a major cycle as
1,2,..,TS. Find out the corresponding O;j; of a SN before the cutline and record the corre-
sponding Oy, in an array Broadcast. If the corresponding O;j1, is empty then replace it with the
data recorded in M owved.

5. Broadcast the contents of the Broadcast array in sequence.
for a :== 1 to C'L do Broadcast Broadcast[a).

In step 1, the total number of slots (7'S) is equal to
TS =LxY; NS =Lxy K]

Input: A schedule created from Acharya et al.’s Algorithm, which contains a

sequence of pages p; in one major cycle, 1 <i <T'S.
Output: One major cycle without empty slots and the length = TS — TWS.
1. Procedure Complementary (TS, TW S: integer);
2. begin

(* phase 1: find nonempty slots after the cutline *)
3. forp:=(TS-TWS+1)toTS
4. begin
5 Call FindChunk(p,i,j,k);
(* find the corresponding O,y for slot p *)

6 if (Not FindEmpty(i, j, k)) then (* a nonempty slot *)
7. begin
8. count := count + 1;
9. Moved[count] := Ojjg;
10. end;
11. end;
(* phase 2: find empty slots before the cutline *)
12. q:=0;
13. for p:=1to (T'S - TWS)
14. while (¢ < count) do
15. begin
16. Call FindChunk(p,i,j, k);
17. if (FindEmpty(i, j, k)) then (* an empty slot *)
18. begin
19. Q= qtl;
20. Broadcast[p] := Moved|[q];
21. end
22. else
23. Broadcast[p] := Ojji;
24. end;

25. end;
Figure 4: The Complementary procedure

The total number of wasted slots (TWS) in one major cycle is
TWS =¥ ((NS; x NC; — K;) x R;)
= L((NS; x ¢ — K;) x R;)
= Y9 (NS;x L — K; X Ry).

Instep 2, welet CL =TS -TWS. For steps 3 and 4, we call Procedure Complementary
as shown in Figure 4 which calls Procedure FindChunk and Function Find Empty as shown
in Figure 5 and Figure 6, respectively. The purpose of procedure FindChunk is to find
the corresponding O;;;, for a given sequence number. The purpose of the boolean function
FindEmpty is to check whether the input O;;;, is an empty slot or not, which is decided
based on the observation as described before; that is, the decision is based on the values of
FW;, PW;, 5 and k.

Note that, since the performance of how to decide the best match (which provides the

optimal access time) between those moved pages after the cutline and those empty slots

Input: SN is the sequence number of O;jy.

Output: i, 7, k.
1. Procedure FindChunk(SN: integer; var 4, 7, k: integer);
2. begin
3. i :=0;
4. 0
5. fora:-ltoSdo
6. y:=y+ NSy (* y is the length of a minor cycle, y = Zle NS; %)
7. a:= SN div y;
8. b:= SN mod y; (* Step A *)

*a=(G-1)+ (cdivy)+(NC’i><z)c—Z " NS, +k *)
9. if (b= 0) then (* Step B *)

*c=y,i=8,k=NS; *)
10. begln
11. a:=a—1;
12. b:=y;
13. end;
14 while (b > 0) d (*b=S""" NS, +k¥
15 begin
16. =i+ 1
17. k .= b;
18. b:=b—NS;;
19. end;

(* if (b < 0) then SN € disk i *)
(* @ means the number of minor cycles which occurs before Oy, *)

20. j:=(a+1) mod NCj; * Step C' *)
21. if (j =0) then j := NC; * Step D *)
22. end;

Figure 5: The Findchunk procedure

Input: 4,4,k (* Ojjp is the chunk corresponding to the sequence number SN *)
Output: return True when Oy is an empty slot.

1 Function FindEmpty(i, j, k: integer): Boolean;

2 begin

3 FindEmpty := False;

4. FW; := NC; - [%&1;

5. PW; =[] — &1

6 if (FW; >=1) then (* a fully wasted chunk *)

7 begin

8 if ((NC; — FW;+1)<j)and (j < NC;)) then

9. FindEmpty = True; (* Oyjr is an empty slot *)
10. end;

11. if (PW; = 1) then (* a partially wasted chunk *)
12. begin

13. if (] = (NCZ - FWZ)) then

14. begin

15. num = (NS; x NC; — K; — FW; x NS;);

16. it ((NS; —num +1) <k) and (kK < NS;)) then

17. FindEmpty = True; (* Oyjr is an empty slot *)
18. end;

19. end;

20. end;

Figure 6: The FindEmpty function

Table 1: Parameters used in the simulation

the number of disks

the number of distinct pages to be broadcast
the number of pages in disk i

the relative frequency of disk i

the broadcast shape parameter

the Zipf factor for partition size

the Zipf factor for frequency of access

=2 ||| I =T

before the cutline is O(N!), where N is the number of those empty slots before the cutline,
we apply the simplest way to deal with this match problem. In step 5, we construct the
final broadcast program. To achieve this, we need a mapping procedure which maps a
sequence number SN into the corresponding O;j;; that is, we call procedure FindChunk.
Basically, the sequence number for O, is

(yx (j—1)+ L NS, + k) + (T'S/R;) x 2,
where y is the total number of slots in a minor cycle, i.e., y = Ziszl NS;,0<z<R; — 1.

4 Performance Evaluation

In this section, we study the performance of our complementary approach and make a
comparison with Acharya et al.’s algorithm. Our experiments were performed on a Pentium

[IT 500 MHz, 128 MB of main memory, running Windows 98.

4.1 The Performance Model

The parameters used in the model are shown in Table 1. When we simulate the process of
Acharya et al.’s algorithm, we need to decide the values of R;’s, which can be dependent on
A. Using A, the frequency of broadcast R; of each disk i, can be computed relative to Ryg,
the broadcast frequency of the slowest disk (disk S) as follows [1, 10, 17]: & = (S—i)A+1,
and Rg = 1,1 <1 < §. For example, for a 3-disk broadcast, when A = 3, the relative
frequencies are 7, 4, and 1 for disks 1, 2, and 3, respectively.

Moreover, when we simulate the process of Acharya et al.’s algorithm, we need to decide

the values of K;’s, which can be decided based on the Zipf distribution [1, 10, 16, 17].

The Zipf distribution is typically used to model nonuniform access patterns [1, 10]. The

Zipf distribution for a specific M can be expressed as p; = 21&1/729/],)9, 1 <11 < M, where
j=1
0 is a parameter named access skew coefficient or Zipf factor and M € N. That is, it

produces access patterns that become increasingly skewed as 6 increases — the probability

of accessing any page numbered i is proportional to (1/i)?. For example, when M = 3, 0 =

3
11’

1 6
be decided based on the Zipf-like distribution as follows [1, 10, 17]: K; = D x ﬁ
j=1

Here, K has the fewest pages, K5 has the next fewest pages, and K has the most number

1, we have p; = %, D2 = and p3 = 1—21 Therefore, K; in Acharya et al.’s algorithm can

of pages.

When we consider the demand frequency of data access for page i (denoted as DF P;),
we also apply the Zipf distribution with a Zipf factor . Here, we partition the pages into
regions (= number of disks) of K; pages each, where 1 < i < S, and we assume that the
probability of accessing any page within a region is uniform; that is, the Zipf distribution
is applied to these regions [1, 10]. Therefore, we model the demand frequency of access of

the ith disk (DF D;) using the Zipf distribution as follows: DFD; = %, where ~
is the Zipf factor of the Zipf distribution. In this case, the first disk (K7), which has the
least number of records, is the most frequently accessed, the second disk (K3) is next, and
so on. Since each page w in disk ¢ has the same demand frequency DF P,,, we have DF P,
= DFP,i<i<S§S.

Two performance measures are considered in this comparison:

1. The total number of slots in one broadcast cycle.

2. The mean access time (or the expected time delay) denoted as AccessT, which equals
to multiply the probability of access for each page i (DF P;) with the expected delay
for that page (EDP;) and sum the results. That is, AccessT = X2 EDP; x DFP,.

4.2 Performance Analysis

Let SP; denote the distance (i.e., the number of slots) between the same page ¢ in disk k
occurring in a major cycle, where SP, = T'S/Ry. For the mean access time (EDPFP;) for
page ¢ in disk k£ in Acharya et al.’s algorithm, it can be computed as follows: EDP; =
(1/SP) x (SP,—0.5) + (SP,—1—-0.5)+ ...+ (SP,— (SP,— 1) — 0.5)) = SP,;/2

10

For the mean access time in the complementary approach, it can be computed as follows.

When Ry, = 1, EDP, = (TS —TWS) /2= CL /2.

When Ry, # 1, there are two cases to be considered:
(1) Ya € D, a ¢ Moved, i.e., page a does not need to be moved.
(2) Va € D, a € Moved, i.e., page a must be moved.

Let newSNZ-j denote the new sequence number of the jth occurrence of page ¢ in disk &
after executing procedure Complementary, 1 < j < R;.
For case (1), EDP; = (1/CL) x ((Ry — 1) x SP?/2 + (SP, — TWS)?/2)).
For case (2), EDP; = (1/CL) x (%7 (newSN/*" — newSN})2/2 + (CL — newSN/* +
newSN})?/2).

4.3 Simulation Results

In this simulation, we let § = 0.8, v = 0.9. We consider 12 test samples which include the
combinations of S = 2, 3, and 4 and A = 2, 3, 4 and 5, respectively, for a fixed D that
is a random value between 4000 and 5000. For each test sample, we compute the average
result for 1000 values of D.

The total number of slots in the complementary approach is equal to (the total number of
slots - the wasted slots) in Acharya et al.’s algorithm. Therefore, obviously, the total number
of slots in the complementary approach is less than that in Acharya et al.’s algorithm.

When A =2, 3, 4 and 5, the detailed simulation results about the total number of slots in
one broadcast cycle in the complementary approach and Acharya et al.’s algorithm for 1000
executions are shown in Tables 2, 3, 4 and 5, respectively. Obviously, our complementary
approach always generates a smaller number of slots than Acharya et al.’s algorithm. As A
is increased, the total number slots is increased in both the complementary approach and
Acharya et al.’s algorithm. As S is increased, the total number of slots and the percentage
of the total number of wasted slots are also increased in both the complementary approach
and Acharya et al.’s algorithm.

A comparison of the mean access time (in terms of the time units) in the Acharya et al.’s

algorithm and the complementary approach for 1000 executions is shown in Table 6. From

11

Table 2: A=2 R;=(S—i)x2+1,1<i<§

S | Complementary | BD TWS of BD | Mazimum TW S
2 7792 7793 1.0 (0.012%) 2 (0.026%)
3 10866 10884 | 18.4 (0.169%) 36 (0.331%)
4 13803 15540 | 201.4 (1.438%) 346 (2.471%)

Complementary: the total number of slots in the complementary approach.
BD: the total number of slots in Acharya et al.’s broadcast disk approach.
TWS of BD: the total number of wasted slots in Acharya et al.’s broadcast disk approach.

Mazimum TW S: the maximum number of wasted slots in Acharya et al.’s broadcast disk approach.

Table 3: A=3, R,=(S—i) x3+1,1<i<S

S | Complementary | BD TWS of BD | Maxzimum TWS

2 9436 9437 1.5 (0.016%) 3 (0.032%)

3 14046 14082 | 36.2 (0.257%) 70 (0.497%)

4 18451 18721 | 269.6 (1.440%) 511 (2.730%)
Table 4: A =4, Ri:(S—i) x44+1,1<:1< S

S | Complementary | BD TWS of BD Mazimum TW S

2 11079 11081 2.0 (0.018%) 4 (0.036%)

3 17226 17286 | 60.0 (0.346%) 115 (0.665%)

4 23100 24335 | 1235.6 (5.077%) 1943 (7.984%)
Table 5: A =5, Ri:(S—z‘)x5+1,1§z’§S

S | Complementary | BD TWS of BD Mazimum TW S

2 12722 12725 2.5 (0.032%) 5 (0.039%)

3 20406 20496 | 89.6 (1.382%) 179 (0.873%)

4 27748 28755 | 1006.6 (3.501%) 1597 (5.554%)

12

Table 6: A comparison of the mean access time

Complementary BD
A= A=3|A=4| A= A= A= A= A=
1172 1326 1491 1662 1172 1326 1491 1662
798 941 1089 1241 800 943 1093 1245
613 738 874 1000 619 746 909 1027

| ool vo| tn

this result, we show that the mean access time in our complementary approach is always
smaller than or equal to that in Acharya et al.’s algorithm. As S is increased, the access
time is decreased in both the complementary approach and Acharya et al.’s algorithm.
As A is increased, the access time is increased in both the complementary approach and

Acharya et al.’s algorithm.

5 Conclusion

Broadcast data delivery is rapidly becoming the method of choice for disseminating infor-
mation to a massive user population in many new application areas where client-to-server
communication is limited. The main advantage of broadcast delivery is its scalability: it
is independent of the number of users the system is serving. Based on Acharya et al.’s ap-
proach, some broadcast slots may be unused, which results in the waste of bandwidth and
the increase of access time. In this paper, we have presented a complementary approach
to solve the empty slot problem. From our performance analysis and simulation, we have
shown that our complementary approach generates a small number of slots in one broad-
cast cycle and shorter mean access time than Acharya et al.’s algorithm. In environment
where different clients may listen to different number of broadcast channels, the schedules
on different broadcast channel should be coordinated so as to minimize the access time
for most clients [18]. Therefore, how to design efficient broadcast programs for the case of

broadcasting over multiple channels is one of the possible future research directions.

References
[1] S. Acharya, M. Franklin, S. Zdonik, and R. Alonso, “Broadcast Disks : Data Management for Asym-

metric Communications Environments,* Proc. ACM SIGMOD Int’l Conf. Management of Data, pp.
199-210, San Jose, May 1995.

13

2]
3]

[4]

D. Barbara, “Mobile Computing and Database-A Survey,” IEEE Trans. on Knowledge and Data Eng.,
Vol. 11, No. 1, pp. 108-117, 1999.

S. Baruah and A. Bestavros, “Pinwheel Scheduling for Fault-Tolerant Broadcast Disks in Real-Time
Database Systems,“ Proc. 13th Int’l Conf. Data Eng., pp. 543-551, London, March 1997.

A. Bestavros, “AIDA-Based Real-Time Fault-Tolerant Broadcast Disks,“ Proc. Real-Time Technology
and Applications Symp., pp. 49-58, Boston, May 1996.

T. Bowen, et al. “The Datacycle Architecture®, CACM, Vol. 35, No. 12, pp. 71-81, Dec. 1992.

S. Hameed, N. Vaidya, “Efficient Algorithm for Scheduling Data Broadcast,*“ Wireless Networks, Vol.
5, No. 3, pp. 183-193, 1999.

G. Herman, G. Gopal, K. Lee, A. Weinrib, “The Datacycle Architecture for Very High Through-
put Database Systems,“ Proc. ACM SIGMOD Int’l Conf. on Management of Data, pp. 97-103, San
Francisco, May, 1987.

T.Imielinski and B.R. Badrinath, “Querying in Highly Mobile and Distributed Environments,“ Proc.
18th Int’l Conf. on Very large Data Bases, pp. 41-52 , Vancouver, B.C., Canada, Aug. 1992.

T.Imielinski and B. Badrinath, “Mobile Wireless Computing : Challenges in Data Management,“
CACM, Vol. 37, No. 10, pp. 18-28 , Oct. 1994.

T. Imielinski and H.Korth, ”Mobile Computing,“ Kluwer Academic Publishers, Chapter 12, pp. 331-
361, 1996.

T.Imielinski and S. Viswanathan, and B.R. Badrinath, “Data on Air : Organization and Access,*
IEEE Trans. Knowledge and Data Eng., Vol. 9, No. 3, pp. 353-371, May/June, 1997.

R. Kaza, “Adaption and Mobility in Wireless Information Systems,“ IEEE Personal Comm., 1st
Quarter, pp. 6-17 , 1994.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The Information Bus — Architecture for Extensible
Distributed Systems,“ Proc. 14th SOSP Conf., pp. 58-68, Asheville, N.C., Dec. 1993.

C. J. Su, L. Tassiulas, and V. Tsotras, “Broadcast Scheduling for Information Distribution,“ Wireless
Networks, Vol. 5, No. 2, pp. 137-147, 1999

K. L. Tan, J. X. Yu, “A Dynamic Schedule for the Infinite Air-Cache,“ Data and Knowledge Eng.,
Vol. 24, No. 1, pp. 97-112, 1997.

K. L. Tan, L. X. Yu, “Generating Broadcast Programs that Support Range Queries,“ IEEE Trans.
Knowledge and Data Eng., Vol. 10, No. 4, pp. 668-672, July/August, 1998.

K. L. Tan, J. X. Yu, and P. K. Enk, “Supporting Range Queries in a Wireless Environment with
Nonuniform broadcast,* Data and Knowledge Eng., Vol. 29, No. 2, pp. 201-221, 1999.

N. H. Vaidya, S. Hameed, “Scheduling Data Broadcast in Asymmetric Communication Environments,
Wireless Networks, Vol. 5, No. 3, pp. 171-182, 1999.

P. Xuan, S. Sen, O. Gonzalez, J. Fernandez, K. Ramamritham, “Broadcast on Demand: Efficient
and Timely Dissemination of Data in Mobile Environments,“ Proc. 1997 Real-Time Technology and
Applications Symp., pp- 38-48, June 1997.

14

