
An Edit Operation-Based Approach to Approximate String
Matching in Large DNA Databases

Jiun-Rung Chen and Ye-In Chang +

Dept. of Computer Science and Engineering, National Sun Yat-Sen University
Kaohsiung, Taiwan, R.O.C

Abstract. In DNA related research, due to various environment conditions, mutations occur very often,
where a mutation is defined as a heritable change in the DNA sequence. Therefore, approximate string
matching is applied to answer those queries which find mutations. The problem of approximate string
matching is that given a user specified parameter, k, we want to find where the substrings, which could
have k errors at most as compared to the query sequence, occur in the database sequences. In this paper,
we make use of a new index structure to support the proposed method for approximate string matching. In
the proposed index structure, EII, we map each overlapping q-gram of the database sequence into an
index key, and record occurring positions of the q-gram in the corresponding index entry. In the proposed
method, EOB, we first generate all possible mutations for each gram in the query sequence. Then, by
utilizing information recorded in the EII structure, we check both local order (i.e., the order of characters
in a gram) and global order (i.e., the order of grams in an interval) of these mutations. The final answers
could be determined directly without applying dynamic programming which is used in traditional filter
methods for approximate string matching. From the experiment results, we show that our method could
outperform the (k + s) q-samples filter, a well-known method for approximate string matching, in terms of
the processing time with various conditions for short query sequences.

Keywords: databases, approximate string matching, DNA, mutation, similarity search

1. Introduction
Because of the Human Genome Initiative, an international research program for the creation of detailed
genetic and physical maps of the human genome, enormous quantities of genome data, e.g., DNA and
protein sequences, are generated [7]. DNA sequences, holding the code of life of every living organism,
could be considered as strings over an alphabet of four characters, {A, C, G, T}, called bases [10][28].
DNA sequences could be very long. For example, a human genome (DNA) contains around 3Gbp (giga
base pairs). Searching patterns in the databases of DNA sequences is usually the first and a crucial step in
DNA related research [6][11][18].

String matching methods are usually applied when searching in the databases. The domain of string
matching could be separated into two parts, exact string matching and approximate string matching [8].
For exact string matching, we want to find where the query sequence occurs in the database sequences.

+ Corresponding author. Tel.: +886-7-525 2000 (ext. 4334); fax: +886-7-525 4301.
 E-mail address: changyi@cse.nsysu.edu.tw.

ACG TAC GTA

ACG TACGTA
Fig. 1: An example of local order and global order

For approximate string matching, given a user specified parameter k, we want to find where the sequences,
which could have k errors at most as compared to the query sequence, occur in the database sequences
[14]. In the DNA related research, due to exposure to ultra violet radiation or the other environment
condition, mutations occur very often, where a mutation is defined as a heritable change in the DNA
sequence and is caused by a faulty replication process [5]. There are several kinds of errors which may
occur in the replication process [17]: (1) Replacement: one character of the original sequence is replaced
by another character, for example, ACGT and ACCT; (2) Insertion: one character is inserted into the
original sequence, for example, ACGT and ACGAT; (3) Deletion: one character of the original sequence
is deleted, for example, ACGT and ACT. These errors are kinds of edit operations in the string matching
problem. Therefore, approximate string matching is applied to answer those queries which find mutations.

The genomic databases, GenBank, the DNA Databank of Japan, and the European Molecular Biology
Laboratory database (EMBL), are used to assist molecular biologists to determine the biochemical
function and the chemical structure of query strings, and to investigate the evolutionary history of
organisms [27]. There are several principal database search methods used to compute pairwise
comparisons between a candidate query sequence and each of the sequences stored within a database, e.g.,
Smith-Waterman, FASTA, and BLAST. The Smith-Waterman method [20] uses dynamic programming
to compute the optimal pairwise similarity alignments. It computes all values of a two-dimensional array
with size (m ∗ n) to determine which areas in the database sequence matches the query sequence, where m
and n are the lengths of the query sequence and the database sequence, respectively. However, in DNA
databases, the length of the database sequence may be up to several millions. Computing all values of
such a big array is almost impractical [16]. Although not as optimal as the Smith-Waterman method,
FASTA [12] and BLAST [1] methods provide a trade-off between comparison accuracy versus execution
time. However, these methods may still run inefficiently and need large amounts of memory [13].

On the other hand, filter methods are quite new and currently very active for approximate string
matching. In practice, filter methods are the fastest ones [9]. The basic idea of the filter methods is to
filter out those substrings which are impossible to be the answers in the database sequence. For those
substrings which pass the check of the filter methods (called candidates), they will be verified with the
dynamic programming approach to determine whether they are truly the final answers. To find candidates,
these filter methods usually check whether there are enough q-grams of the query sequence occurring
within an interval of the database sequence, where a q-gram consists of q continuous characters in a
sequence. If there are enough q-grams occurring within an interval, this interval will be a candidate. For
filter methods, considering local order and global order of these q-grams is very important. Local order is
the order of characters in a q-gram, while global order is the order of q-grams in an interval. For those q-
grams within two sequences, they may maintain local order but no global order. For example, in Fig. 1,
the 3-grams in these two sequences maintain local order, while they do not maintain global order.

Among the filter methods, the counting filter [15] considers neither local order nor global order.
Although other methods, e.g., the q-gram filter [25], LET & SET filters [3], the l-tuple filter [4], and the
h-samples filter [24], consider local order, they do not consider global order. So far, only the series of the
(k + s) q-samples [16][21][22][23] considers the global order. Therefore, the (k + s) h-samples filter

generates candidates more accurately than other filter methods, since it generates less number of
candidates than other filter methods. However, it still has several disadvantages. The (k + s) h-samples
filter still needs to apply dynamic programming to verify those generated candidates. When the length of
the database sequence is very long (e.g., a DNA sequence), even though k is small, dynamic programming
still needs a lot of time. Moreover, the (k + s) q-samples filter builds the index based on the query
dynamically. When the query changes, it needs to rebuild the index. It also takes the query time to build
the index, which increases the response time for a query.

Therefore, in this paper, to avoid those disadvantages mentioned above, we make use of a new index
structure to support the proposed method for approximate string matching. In the proposed index structure,
EII, we map each overlapping q-gram of the database sequence into an index key. The occurring positions
of each gram are recorded in the corresponding index entry. Therefore, we could efficiently find the
occurring positions of any q-gram by its index key. The EII structure is also pre-built for the database
sequences, instead of being built for each query at the query time in those previous filter methods. In the
proposed method, EOB, given a query sequence, P, we first generate all possible mutations for each q-
gram in P with up to k errors. Then, by utilizing information recorded in the EII structure, we efficiently
check local order and global order of the mutations of q-grams in P, and determine the answers directly.
That is, different from those filter methods which generate candidates and verify them by dynamic
programming, we utilize the EII structure to help us find the answers. Therefore, we could save the time
for verifying those candidates with the dynamic programming approach. From the experiment results, we
show that for short query sequences, our method could outperform the (k + s) q-samples filter in terms of
the processing time with various conditions.

The rest of this paper is organized as follows. In Section 2, we give a survey of the (k + s) q-samples
filter. In Section 3, we present the proposed index structure and the searching method. In Section 4, we
discuss the performance of the proposed method. Finally, in Section 5, we give the conclusion.

2. The (k + s) q-Samples Filter
Sutinen and Tarhio have proposed several filter methods for approximate string matching
[16][21][22][23]. These methods focus on (k + s) consecutive q-samples, and thus we call these methods
“the (k + s) q-samples filter” in this paper. The (k + s) q-samples filter generalizes the filter of [24], and
improves its filtering efficiency. This is the first filter which takes into account the relative positions of
the pattern pieces that match in the text, while other previous filters match pieces of the pattern in any
order. The generalization is to force s q-grams of the pattern to be matched, not just one. The pieces must
conserve their relative ordering in the pattern, and must not be more than k characters away from their
correct positions; otherwise, the number of errors will be larger than k. This method is illustrated in Fig. 2.

In this case, the sampling step is reduced to h = ⌊(m − k − q + 1) / (k + s)⌋. The reason for this
reduction is that to ensure s pieces matched, we need to cut the pattern into (k + s) pieces. The pattern is
divided into (k + s) pieces, and a hash set is created for each piece so that the pieces are forced not to be
too far away from their correct positions. The set contains the q-grams of the piece and some neighboring
ones, too, because the sample can be slightly misaligned. At the search time, instead of a single q-sample,
they consider text windows of consecutive sequences of (k + s) q-samples. Each of these q-samples is
searched in the corresponding set. If at least s q-grams are found, the area of T [(j − 1) − m’h − 2k − q + 2,
(j − 1) + m − (m’ − 1)h + k − q] is verified, and variable m’ is updated to (k + s). In Fig. 2, it uses an array,
M, with size m’ to implement the Shift Add approach [2], to compute the sum of matches for the (k + s)

1

k = 1
s = 2
q = 2

h4 h5

M
M

M
M

M

0
?
?

1
1

?

2
2

0 1
2

0
1

1
1

T = A C T G T C C T A A T A G T A A C T T C
6 11 16

h3h2

P = A C G C T C C T A A T A G T A
Q1 Q2 Q3

1 6 11

d=

k+q-1

A
B

C

h1

Fig. 2: The (k + s) q-samples filter

consecutive samples. This is a sort of Hamming Distance, and the authors resort to an efficient method for
that distance to process the text.

3. The Proposed Index Structure and Method
In this section, first, we present the proposed index structure, EII. Next, we present the proposed method,
EOB, for approximate string matching in DNA databases.

3.1. The EII Structure
Although the inverted index [28] is a simple approach which does not need large storage space as
compared to the suffix tree, it may lose some information at the end of the target sequence. Therefore, in
this subsection, based on a revised version of the inverted index, we present the EII (Encoded Inverted
Index) structure for efficiently indexing DNA sequences, which could avoid those missing cases. Similar
to the inverted index, the EII structure records a postings list (i.e., a list of occurring positions) for each
overlapping q-gram in DNA sequences. However, to avoid missing cases, we append (q − 1) “$” at the
end of each DNA sequence. Fig. 3 shows an example of the EII structure with q = 3. In this example, we
will append 2 (= 3 − 1) “$” at the end of the DNA sequence, as shown in Fig. 3-(a). Therefore, not only
the original 3-grams, i.e., “ACG”, “CGA”, “GAC”, “ACG”, and “CGT”, but also two more 3-grams,
“GT$” and “T$$”, will be recorded in the EII structure. By appending “$”, we also record the occurring
positions of “GT” and “T”, which will be missed in the original inverted index. To efficiently find the
searched grams, each searched gram in the EII structure is encoded into an index key and stored in an
index array (called IA) in an ascending order, instead of being directly stored as a string in the original
inverted index. The encoding rule is {A → 0, C → 1, G → 2, T → 3, $ → 4}. For example, gram “ACG”
is encoded into (012)5 (i.e., 0 ∗ 52 +1∗ 51 +2∗ 50 = 7 in the decimal form). The postings list of a q-gram
will be recorded in the corresponding entry of IA, as shown in Fig. 3-(b). For example, IA[(012)5] = IA[7]
= {0, 3} means that gram “ACG” occurs at positions 0 and 3 of the DNA sequence. Therefore, the task of
searching q-grams by string comparison in original inverted indexes becomes an efficient array access in
the EII structure. The total size of IA is 5q, since each q-gram consists of some characters of {A, C, G, T,
$}.

AAA
...

ACG
...

CGA
...

CGT
...

GAC
...

GT$
...

T$$

 -
 ...
 0, 3
 ...
 1
 …
 4
 ...
 2
 ...
 5
 …
 6

the index
array (IA)

the
postings list

000
...

012
...

120
...

123
...

201
...

234
...

344

A C G A C G T

A C G

C G A

G A C

A C G

C G T

the DNA
sequence

3-grams

0 1 2 3 4 5 6

$ $

T $

$ $

* *

*

*

*

*

(a) (b)

G

T

Fig. 3: An Example of the EII structure for sequence “ACGACGT” and q = 3: (a) overlapping 3-grams; (b) the EII
structure.

3.2. The EOB Method
In this subsection, we present the EOB (Edit Operation-Based) method for approximate string matching in
DNA databases. The basic idea of the EOB method is that for each query sequence, we separate it into
non-overlapping q-grams, where q is the parameter used in the EII structure. In order to avoid an
exhaustive process, instead of processing the entire query sequence at a time, we process only one q-gram
to obtain a local answer in each round, where a local answer stores a set of occurring positions of those
substrings in the database sequence which have the same local order as the given q-gram. We will
recursively process all q-grams in the query sequence. After processing all q-grams, the global answer is
derived from local answers found in each round, where a global answer maintains the same global order
of the whole q-grams (i.e., all of the local answers) as the query sequence.

Fig. 4 shows the EOB method, which has the following 4 main steps:
(1) Fetch one q-gram from the query sequence, QuerySeq. If the length of QuerySeq is less than q, we

append “#” to QuerySeq, such that the length of QuerySeq equals q, where “#” means that it can be
replaced by any character of {A, C, G, T, $}. For example, assume that q is 3 and QuerySeq is “AC”.
By searching “AC#” from the EII structure, we could obtain all occurring positions of “AC” in the
database sequence. (Note that since we will remove characters from QuerySeq in Steps 3 and 4 in
each round, its length may be less than q in the last round.)

(2) Generate all possible cases of mutations according to the number of errors which could occur in this
gram.

(3) Consider this q-gram and its mutations with Replacement and Insertion operations to derive a local
answer. If there is no local answer found in this round, we do not need to process the rest of
QuerySeq and could terminate the process early.

(4) Consider the mutations with Deletion operations.
These steps will be recursively applied to process all q-grams in the query sequence, and finally the global
answer will be gradually derived from local answers. The details of Steps 2, 3, and 4 will be described in
the following subsections.

procedure EOB(QuerySeq, k, TempAns, RoundNum);
begin

if (|QuerySeq| < q) then append (q − |QuerySeq|) “#” to QuerySeq; // Step 1
CurrentGram := FirstQGram(QuerySeq);
MinKQ := Min(k, q); // Step 2
CombinAll := MathCombin(MinKQ);
CombinRI := FetchRI(CombinAll);
CombinD := FetchD(CombinAll);
ConsiderMutRI(CurrentGram, CombinRI, TempAns, RoundNum); // Step 3
ConsiderMutD(CurrentGram, CombinD, TempAns, RoundNum); // Step 4

end;

Fig. 4: The EOB method

4

Case

(a)

(b)

(c)

(d)

(e)

NI
0
0
1
0
0
2
0
1
0
1
0
3
0
2
1
0
0
1
2

NR
0
1
0
2
0

0

1
3

1
2

NI
0
0
1
0
2

3

1
0

2
1

ND
0
0
0
0
0

0

0
0

0
0

NI
0
0
0
0
1

2

1
1

2
3

NR
0
1
2
3
0

0

1
2

1
0

0
0

0
0

1

1
2
0
0

NR
0
0

1
0

0

0
0
1
2

NI
1
2

1
3

1

2
1
2
1

ND

1
2
3

ND

1

1 1 1

NR + NI + ND
0

1

2

3

NR
0
1
0
0
2
0
0
1
1
0
3
0
0
1
2
1
2
0
0
1

ND
0
0
0
1
0
0
2
0
1
1
0
0
3
0
0
2
1
2
1
1

Case
1

2

3

R1
R2
R3

R0I1
R1I1
R2I1
R0I2
R1I2
R0I3

D1
D2
D3

Fig. 5: All possible cases of mutations for MinKQ = 3 (i.e., NR + NI + ND ≤ 3): (a) set CombinAll; (b) the subset of
CombinAll with ND = 0; (c) the subset of CombinAll with ND ≠ 0; (d) set CombinRI; (e) set CombinD.

3.3. Step 2
In this step, we generate all possible cases of mutations of CurrentGram. This is because we will search
the occurring positions of these possible mutations from the EII structure in the following steps. The
possible number of errors in a q-gram is the minimum value of k and q (denoted as MinKQ). That is, we
consider at most q errors for each gram, even k > q. For the remaining (k − q) errors, they will be
considered in the following grams, if k > q. Fig. 5 shows all possible cases for MinKQ = 3, where NR, NI,
and ND are the numbers of Replacement, Insertion, and Deletion operations, respectively. Since the
possible number of errors in a q-gram is MinKQ at most, we have NR + NI + ND ≤ MinKQ. Fig. 5-(a)
shows the set of all possible solutions (denoted as CombinAll) for NR + NI +ND ≤ 3.

Then, in order to simplify the problem, we consider cases of mutations without Deletion and with
Deletion operations separately. Fig. 6 shows an example of Insertion and Deletion operations in the EOB
algorithm, where Fig. 6-(a) shows the original q-gram before applying any operations. Basically, when
applying any number of Replacement operations, it will not affect the length of the current q-gram for

A C G T C G ... T

A C G T C G ... T
the rest of QuerySeqCurrentGramoriginal:

Tinsertion:

A C G T C G ... T
deletion:

(a)

(b)

(c)

Fig. 6: An example of Insertion and Deletion operations for q = 3: (a) the original gram; (b) the gram after insertion;
(c) the gram after deletion.

data search in the EII structure. For w Insertion operations (w ≤ q), we could simply “push” the last w
characters of the current gram to the front of the next gram, to keep the length of the current gram equal to
q, as shown in Fig. 6-(b). These pushed characters will be processed in the next round (which will be
described in detail later).

However, for Deletion operations, they will result in the decrease of the length of the current gram. If
we directly “pull” those characters which are originally in the next gram to the current gram (as shown in
Fig. 6-(c)), it will cause one problem: all kinds of mutations for those pulled characters should also be
considered, which results in a very complex method for solving this case. For example, in Fig. 6-(c), for
the pulled character, ‘T’, we still need to consider those mutations of applying Replacement, Insertion,
and Deletion operations on ‘T’, in addition to the original remaining gram, “AG”. Therefore, to simplify
the process of the Deletion operations, instead of pulling characters from the next gram, we push the
deleted results of CurrentGram to the front of the next gram, and process them in the next round. This
process is different from the processes of Replacement and Insertion operations. Therefore, we consider
cases of mutations without Deletion and with Deletion operations separately. (We will explain why this
consideration will not result in any missing case later.)

For all cases of mutations stored in set CombinAll (as shown in Fig. 5-(a)), we separate them into two
subsets: one is with ND = 0 and the other is with ND ≠ 0, as shown in Fig. 5-(b) and Fig. 5-(c),
respectively. These two subsets could be further simplified to two sets, CombinRI and CombinD, as
shown in Fig. 5-(d) and Fig. 5-(e), respectively. Set CombinRI stores the cases with Replacement and
Insertion operations, i.e., Case 1 (NI = NR = 0), Case 2 (NI = 0, 1 ≤ NR ≤ MinKQ), and Case 3 (NI ≥ 1, 1
≤ NR + NI ≤ MinKQ). Set CombinD stores the case with Deletion operations, i.e., Case 4 (1 ≤ ND ≤
MinKQ)).

3.4. Step 3
Now, we generate mutations of CurrentGram with Replacement and Insertion operations, and search their
occurring positions from the EII structure to obtain a local answer. We apply procedure ConsiderMutRI
shown in Fig. 7 to do this process. In procedure ConsiderMutRI, we first fetch one pair, (NR, NI), from
CombinRI, and process it according to the conditions of NR and NI.

01 procedure ConsiderMutRI(CurrentGram, CombinRI, TempAns, RoundNum);
02 begin
03 for each (NR,NI) ∈ CombinRI do
04 begin

05 if ((NI = 0) and (NR = 0)) then // Case 1
06 NewTempAns := CheckAns(CurrentGram, TempAns, RoundNum);
07 else if (NI = 0) then // Case 2
08 begin
09 ChooseSet := ChooseR(CurrentGram, NR);
10 MutSet := ReplaceACGT(ChooseSet);
11 for each MS ∈ MutSet do
12 NewTempAns := NewTempAns_CheckAns(MS, TempAns, RoundNum);
13 end
14 else // Case 3
15 begin
16 PreChars := PrefixChars(CurrentGram, q − NI);
17 ChooseSet := ChooseRI(PreChars, NR, NI);
18 MutSet := ReplaceACGT(ChooseSet);
19 for each MS ∈ MutSet do
20 NewTempAns := NewTempAns_CheckAns(MS, TempAns, RoundNum);
21 end;

22 NewQuerySeq := RemoveChars(QuerySeq, q − NI); // remove the first (q − NI) characters
23 NewK := k −NR − NI;
24 if (NewQuerySeq = ““) then
25 FinalAns := FinalAns_NewTempAns
26 else // NewQuerySeq contains any character
27 if (NewTempAns _= φ) then
28 EOB(NewQuerySeq, NewK, NewTempAns, RoundNum + 1);
29 end;
30 end;

Fig. 7: Procedure ConsiderMutRI

For Case 1 (NI = NR = 0), it considers the original gram, i.e., CurrentGram. Therefore, we directly
search the occurring positions of CurrentGram from the EII structure by calling function CheckAns,
which is shown in Fig. 8. Function CheckAns not only searches the occurring positions of CurrentGram,
but also checks whether these positions could meaningfully follow those positions stored in TempAns,
where TempAns is the temporary global answer generated from the previous round. (Since we separate
QuerySeq into many q-grams and find their postings lists independently, we need to ensure the correct
global order of those matched substrings in the DNA sequence by applying such checks.) A position, PL,
is said to meaningfully follow another position, TA, if PL = TA + (RoundNum − 1) ∗ q, where RoundNum
is the number of rounds processed so far. For example, assume that QuerySeq = “ACGTTT”. The first
gram, “ACG”, has been found occurring at position 5 in the first round. Then, gram “TTT” is said to
meaningfully follow “ACG”, if “TTT” is found occurring at position (5 + (2 − 1) ∗ 3) = 8 in the second
round. In function CheckAns, if RoundNum is 1, i.e., the first round, we directly return the postings list of
CurrentGram as the function result. The reason is that CurrentGram is the first gram of the query
sequence. The result of function CheckAns is stored in NewTempAns, i.e., the new TempAns in the next
round. After the first round, we will check whether the occurring positions of CurrentGram could
meaningfully follow those positions in TempAns. For those positions in TempAns which are found to be
followed, they are returned as the function result.

01 function CheckAns(CurrentGram, TempAns, RoundNum) : set;
02 begin
03 PostList := GetPost(IA, CurrentGram); // get the postings list of CurrentGram from IA
04 if (RoundNum = 1) then CheckAns := PostList; // the first round
05 for each TA ∈ TempAns do
06 for each PL ∈ PostList do
07 if (PL = TA + (RoundNum − 1) ∗ q) then // PL could follow TA
08 begin
09 append TA into PassedPos;
10 break;
11 end;
12 CheckAns := PassedPos;
13 end;

Fig. 8: Function CheckAns

Case NR ChooseR(“ACG”, NR)
2-R1 1 *CG, A*G, AC*
2-R2 2 A**, *C*, **G
2-R3 3 ***

*: the replaced character

Fig. 9: An example of the results of function ChooseR

ACA, ACC, ACG, ACT, AC$

Fig. 10: An example of the result of function ReplaceACGT for “AC*”

Next, we consider Case 2 (line 7 of Fig. 7), which is the case of mutations with Replacement
operations only (NI = 0, 1 ≤ NR ≤ MinKQ). To generate all possible mutations for this case, we choose
NR characters from CurrentGram to do Replacement operations. The result of this choosing process,
which is the same as that of C(q, NR) in combination mathematics, is stored in ChooseSet. Fig. 9 shows
an example of the results of function ChooseR with NR = 1, 2, and 3 (i.e., Cases 2-R1, 2-R2, and 2-R3 in
Figure 5-(d)), where symbol “*” means the chosen characters. Then, we call function ReplaceACGT to
replace each “*” in ChooseSet with any character of {A, C, G, T, $} to generate all possible mutations,
and store them in MutSet. Fig. 10 shows an example of the result of function ReplaceACGT. (Note that
we could utilize a simple technique to avoid generating a mutation the same as the original gram.) Finally,
each mutation in MutSet is processed in the same way as the processing of CurrentGram in Case 1. That
is, we call function CheckAns and determine NewTempAns.

For Case 3, we consider those mutations with Insertion operations and with/without Replacement
operations (NI ≥ 1, 1 ≤ (NR + NI) ≤ MinKQ). In this case, if we insert NI characters to CurrentGram, we
need to push the last NI characters of CurrentGram to the front of the next gram, to keep the length of
these mutations equal to q, as shown in Fig. 11. Those pushed characters will be processed in the next
round. That is, in Case 3, among the q characters of a mutation, NI characters are newly inserted
characters, and (q − NI) characters are the original first (q − NI) characters of CurrentGram. Therefore,
we first store the first (q − NI) characters of CurrentGram in PreChars. Then, function ChooseRI is
applied to choose NR characters from PreChars to do Replacement operations, and choose NI positions
from q positions to put the inserted characters. The number of possible mutations will be

GA C

G T

T A

(q - NI)

insert

push

NI

NI

Fig. 11: The illustration for Insertion operations

Case NR NI PreChars ChooseRI(PreChars, NR, NI)
3-R0I1 0 1 AC %AC, A%C, AC%
3-R1I1 1 1 AC %*C, %A*, *%C, A%*, *C%, A*%
3-R2I1 2 1 AC %**, *%*, **%
3-R0I2 0 2 A A%%, %A%, %%A
3-R1I2 1 2 A *%%, %*%, %%*
3-R0I3 0 3 %%%

*: the replaced character %: the inserted character

Fig. 12: The result of function ChooseRI for gram “ACG” with 0 ≤ NR ≤ 3 and 1 ≤ NI ≤ 3

(C(q – NI, NR) * C(q, NI)). Fig. 12 shows an example of all possible results of function ChooseRI for
gram “ACG” with 0 ≤ NR ≤ 3 and 1 ≤ NI ≤ 3, where symbol “%” means the chosen positions for the
inserted characters, and symbol “*” means the chosen characters to be replaced. (Note that each case is
corresponding to one tuple of Case 3 shown in Fig. 5-(d).) In this example, for Case 3-R1I1, first, we
have PreChars = “AC”, since NI is 1. Then, function ChooseRI chooses 1 character from “AC” to be
replaced, i.e., “*C” and “A*”, and inserts 1 character into any position of “*C” and “A*”. That is, the
possible results are “%*C”, “*%C”, “*C%”, “%A*”, “A%*”, and “A*%”, where “%” represents the
inserted character. The number of possible results is (C(2, 1) * C(3, 1)) = 6. For those “*” and “%”, they
are replaced with {A, C, G, T, $} to generate all possible mutations. Finally, we call function CheckAns to
check each mutation and determine NewTempAns.

Up to this point, we have introduced those cases without Deletion operations. Then, to recursively
process the uncompleted part of the query sequence, QuerySeq, we need to update QuerySeq and the
number of allowed errors, k. For QuerySeq, we remove its first (q − NI) characters, and store the result in
NewQuerySeq (line 22 of Fig. 7). By doing such removal, the last NI characters of CurrentGram will be
retained in (or “pushed” to) NewQuerySeq, as shown in Fig. 13. For k, we decrease its value by NR and NI.
Then, if NewQuerySeq does not contain any character, it means that we have completely processed the
query sequence, and those positions stored in NewTempAns are parts of the final answer (i.e., the global
answer). Otherwise, if there is at least one answer in NewTempAns, we recursively apply procedure EOB
with new parameters NewQuerySeq, NewK, NewTempAns, and the new round number, (RoundNum + 1).

3.5. Step 4
In Step 4, we consider each of those ND Deletion operations stored in CombinD, i.e., Case 4. We call
procedure ConsiderMutD to process this case, which is shown in Fig. 14. In this case, we choose ND

A G ... A C T A ... TQuerySeq

the removed characters NewQuerySeq

CurrentGram (length = q)

q - NI NI

Fig. 13: The illustration of the number of removed characters

01 procedure ConsiderMutD(CurrentGram, CombinD, TempAns, RoundNum);
02 begin
03 for each ND ∈ CombinD do // Case 4
04 begin
05 MutSet := ChooseD(CurrentGram, ND);
06 for each MS ∈ MutSet do
07 begin
08 NewQuerySeq := MS + RemoveChars(QuerySeq, q); // concatenate MS and the rest of QuerySeq
09 NewK := k −ND;
10 EOB(NewQuerySeq, NewK, TempAns, RoundNum);
11 end;
12 end;
13 end;

Fig. 14: Procedure ConsiderMutD

characters from CurrentGram to be deleted, and directly push the deleting results to form NewQuerySeq.
That is, NewQuerySeq consists of two parts: (1) the deleting results of CurrentGram, and (2) the rest of
QuerySeq after removing its first q-gram. Therefore, those pushed characters will be processed in the next
round.

We apply function ChooseD to do the choosing process, where function ChooseD returns a set of
possible deleting results with ND Deletion operations for CurrentGram. Fig. 15 shows an example of
possible results with ND = 1, 2, and 3, i.e., Cases 4-D1, 4-D2, 4-D3 in Fig. 5-(e), respectively. The
number of possible results is C(q, ND). The results are stored in MutSet. Then, for each deleted result
stored in MutSet, MS, we will combine it with the rest of QuerySeq after removing the first gram (line 8
of Fig. 14), to form the new query sequence, NewQuerySeq. Fig. 16 shows the illustration of Deletion
operations. Assume that QuerySeq is “ACGTA” and CurrentGram is “ACG”. When considering Case 4-
D1, we combine the mutations of “ACG” with 1 Deletion operations, i.e., “CG”, “AG”, and “AC”, with
the rest of QuerySeq after removing the first 3-gram, i.e., “TA”. Therefore, we have “CGTA”, “ACTA”,
and “AGTA” as NewQuerySeq. After generating new query sequences, we decrease the value of k by ND.
Finally, for each NewQuerySeq, we recursively apply procedure EOB with parameters NewQuerySeq (the
new one), NewK (the new one), TempAns, and RoundNum.

Now, we explain the reason why we will not miss any case when we consider mutations with and
without Deletion operations separately. Up to this point, we have discussed those cases of mutations with
Replacement operations only (i.e., Case 2), with Replacement and Insertion operations (i.e., Case 3), and
with Deletion operations (i.e., Case 4). The other cases that we have not discussed yet are cases of
mutations with the combinations of Deletion and any/both of Replacement and Insertion operations. We

Case NR ChooseD(“ACG”, ND)
4-R1 1 AC, AG, CG
4-R2 2 A, C, G
4-R3 3

Fig. 15: The results of function ChooseD for gram “ACG”

G

C

A C G T

A C G

G

A

Choose
D

CurrentGram
QuerySeq

A C G T

C G T

A G T

A C T
NewQuerySeq

A

C

MutSet

MS

RemoveChars
(QuerySeq, q)

+

A

A

A

A

A

Fig. 16: The illustration of Deletion operations

0
0

0
0

1

1
2
0
0

NR
0
0

1
0

0

0
0
1
2

NI
1
2

1
3

1

2
1
2
1

ND

1 1 1

4-D1
4-D2

4-D3

Case

0
1

1
2
0
0

1
0

0
0
1
2

1
1

2
1
2
1

1 1 1

NR NI ND

2
2

1
2
1
2
2

NewK
(= k - ND)

3-R0I1
2-R1

2-R1
2-R2

3-R0I1
3-R0I2
3-R1I1

Case

(a) (b)

*
*

*
*
*
*
*

the current round the next round

2
2

1
2
1
2
2

k

Fig. 17: The mixed cases of mutations for MinKQ = k = 3: (a) the original cases; (b) the mixed cases and their
equivalent cases in the next round after processing Deletion operations.

call such cases as the mixed cases. Fig. 17 shows the mixed cases for MinKQ = k = 3, where Fig. 17-(a)
shows the original cases of mutations with Deletion operations (which are the same as Fig. 5-(c)), and Fig.
17-(b) shows the mixed cases and their equivalent cases in the next round after processing Deletion
operations. In the EOB method, for each mixed case, there exists an equivalent case (Case 2 or Case 3)
with the updated k in the next round after processing Case 4. That is, these mixed cases will be considered
within two successive rounds: one round for considering Case 4 and updating k, and the next round for
considering Cases 2 or 3 with updated k, as shown in Figure 17-(b). For example, when we consider the
case of NR = NI = ND = 1, it is considered as follows: in the first round, we consider Case 4-D1, and
update k (= 3 − 1 = 2); in the next round, we consider Case 3-R1I1 (NR = NI = 1 in Case 3) with the
updated k (= 2). Therefore, we also consider the mixed cases, and do not miss any case.

Case Name Description Length (base pairs)
1 NT_035113 Homo sapiens chromosome 11 genomic contig 1102759
2 NT_113796 Homo sapiens chromosome 1 genomic contig 201709

Fig. 18: Real DNA sequences used in our experiments

4. Performance
In this section, we study the performance of the proposed EOB method for approximate string matching
by experiments on real biological data. We will make a comparison with the (k + s) q-samples filter
[16][21][22][23] in terms of the processing time.

4.1. Experiment Environment
In our performance study, we use the real DNA sequences downloaded from NCBI
(http://www.ncbi.nlm.nih.gov) as our experiment data. Fig. 18 shows the details of these chosen DNA
sequences. The DNA sequence of Case 1 is a long sequence, which contains over one million base pairs.
The DNA sequence of Case 2 is a short sequence, which contains two hundred thousand base pairs. In the
experiment on approximate string matching, the input data is a query sequence and the number of allowed
errors, k, and the output result will be the matching positions for this query in the DNA sequence. We will
compare the processing time of the EOB method with the total time of processing the (k + s) q-samples
filter to find candidates and processing dynamic programming to verify those candidates. (Note that the
time for building the EII structure in our approach is very short. For the long DNA sequence of Case 1, it
only needs about 500 milliseconds to read from the file and build the index. Therefore, we only measure
the execution time of both methods after the DNA sequence has been stored in the memory.) The
parameter, s, which is used in the (k + s) q-samples filter, is set to 2, as mentioned in [21]. The parameter,
q, which is used to build the proposed EII structure, is set to 6 here. (We will discuss the effect on the
processing time with different values of q later.) Our experiments are performed on a Celeron machine
with one CPU clock rate of 2.66 GHz, 736 MB of main memory, running Windows XP Professional with
SP2 version, and coded in Java.

4.2. Experiment Results on Approximate String Matching
In this subsection, we show the experiment results on different conditions. These conditions include
varied error levels, varied lengths of query sequences, and varied lengths of DNA sequences.

First, we use the DNA sequence of Case 1 to compare the performance of the EOB method with that
of the (k + s) q-samples filter, based on different error levels. The error level, e, is defined as e = k / m,
where k is the number of allowed errors and m is the length of the query sequence. Most of the filter
methods will lose their filtration power at error levels over 30% [17]. Furthermore, the optimal error level
for the filter methods seems to be between 0% and 20% [21]. Therefore, this experiment is based on the
error levels from 0% to 20%. The query sequence, whose length is 20, is randomly generated from the
DNA sequence of Case 1, and we randomly add k (= e * m) errors to this query sequence. That is, we
randomly choose k positions and apply one of Replacement, Insertion, or Deletion operations to each
chosen position. Fig. 19 shows the comparison of the processing time between the EOB method and the
(k + s) q-samples filter. From this figure, we observe that the EOB method needs less processing time
than the (k + s) q-samples filter. This is because the (k + s) q-samples filter generates many candidates
which are false positives, and these candidates also need to be verified by dynamic programming. In the
EOB method, we do not find candidates and verify them. Those found positions in the EOB method are
the final answers for the query. Therefore, the EOB method outperforms the (k + s) q-samples filter in
terms of the processing time.

0

500000

1000000

1500000

2000000

2500000

0 5 10 15 20
Error level (%)

Pr
oc

es
sin

g
tim

e
(m

se
c)

EOB

(k + s) q-samples

Fig. 19: A comparison of the processing time based on different error levels (Case 1)

0
50000

100000
150000
200000
250000
300000
350000

20 30 40 50 60 70
The length of the query sequence

Pr
oc

es
sin

g
tim

e
(m

se
c)

EOB

(k + s) q-samples

Fig. 20: A comparison of the processing time based on different lengths of the query sequence (Case 1)

Second, we use the DNA sequence of Case 1 to compare the performance of the EOB method with
that of the (k + s) q-samples filter, based on different lengths of the query sequence. The error level is set
to 5% here, and query sequences are randomly generated from the DNA sequence with different lengths.
Fig. 20 shows the comparison of the processing time between the (k + s) q-samples filter and the EOB
method. From this figure, we observe that the EOB method needs less processing time than the (k + s) q-
samples filter, when the length of the query sequence is less than 70. When the length of the query
sequence is larger than 70, the proposed method needs to consider too many mutations, which results in
the decrease of the performance. Therefore, from this figure, we show that the proposed method is more
suitable than the (k + s) q-samples filter for short query sequences, while the (k + s) q-samples filter is
more suitable for long query sequences.

Third, we use the DNA sequence of Case 2 to compare the performance of the EOB method with that
of the (k + s) q-samples filter, based on different lengths of DNA sequences. We expand the DNA
sequence of Case 2 to double size, triple size, and so on, by repeatedly appending this DNA sequence to
itself. The error level is set to 10% here, and the query sequence (whose length is 30) is randomly
generated from the DNA sequence. Fig. 21 shows the comparison of the processing time between the (k +
s) q-samples filter and the EOB method. From this figure, we show that the EOB method could provide
better performance than the (k + s) q-samples filter in terms of the processing time, no matter what length
the DNA sequence is. This is because as the length of the DNA sequence increases, the

0

50000

100000

150000

200000

250000

300000

201709 403418 605127 806836 1008545
The length of the DNA sequence

Pr
oc

es
sin

g
tim

e
(m

se
c)

EOB
(k + s) q-samples

Fig. 21: A comparison of the processing time based on different lengths of DNA sequences (Case 2)

0

10000

20000

30000

40000

50000

60000

3 4 5 6 7
The value of q

P
ro

ce
ss

in
g

tim
e

(m
se

c)

Fig. 22: The processing time of the EOB algorithm based on different values of q

number of candidates in the (k + s) q-samples filter also increases. Therefore, the (k + s) q-samples filter
needs to spend much time to verify these candidates. Obviously, as the length of the DNA sequence
increases, the processing time of the EOB method increases linearly. This is because we build the EII
structure in advance and utilize it to answer the query. This index structure is very helpful, when the
length of the DNA sequence is long. Therefore, the EOB method could provide better performance than
the (k + s) q-samples filter in terms of the processing time, no matter what length the DNA sequence is.

4.3. Experiment on Different Values of q
In this subsection, we discuss the effect on the processing time with different values of q, where q is the
parameter which determines the length of each gram for building the EII structure. We use the DNA
sequence of Case 2 as the test database. The error level is set to 5% here, and the query sequence (whose
length is 60) is randomly generated from the DNA sequence. Fig. 22 shows the processing time of the
EOB method based on different values of q. We observe that as the value of q increases, the processing
time decreases. This is because in the EOB method, for a query sequence with length m, we need to
recursively process it by about (m / q) rounds. The larger the value of q is, the less the processing rounds
we need. However, in each round, as the value of q increases, the number of mutations that we need to
consider also increases. Therefore, we could observe that the processing time for q = 7 is longer than the
processing time for q = 6. Moreover, Fig. 23 shows the size of the EII structure based on different values
of q. As the value of q increases, the size of the EII structure increases, since the size is equal to 5q. If the
value of q is too large, it may result in running out of memory. Therefore, in those previous

0
20000
40000
60000
80000

100000

3 4 5 6 7
The value of q

Th
e

si
ze

 o
f t

he
in

de
x

st
ru

ct
ur

e

Fig. 23: The size of the EII structure based on different values of q

experiments, the value of q is set to 6, which is acceptable in both of the processing time and the size of
the used memory space.

5. Conclusion
Searching patterns for approximate string matching in DNA databases is a crucial step in the DNA related
research. In this paper, we have proposed a new index structure and a new method for approximate string
matching. First, we have proposed the EII index structure, which makes use of the mapping technique to
map each q-gram into an index key, and records the occurring positions of this q-gram in the
corresponding index entry. Therefore, we could efficiently find the occurring positions of any q-gram by
its index key. Moreover, the EII index structure avoids missing cases which may occur in the inverted
index. Next, based on the EII structure, we have proposed the EOB method to answer the queries for
approximate string matching. Different from the filter methods, we utilize the pre-built EII structure to
help us check local order and global order of the related mutations for a query sequence, and find the
answers directly without applying dynamic programming. From the experiment results, we have shown
that our method could outperform the (k + s) q-samples filter in terms of the processing time for short
query sequences. How to extend the proposed method to parallel processing is the possible future work.

6. Acknowledgements
This research was supported in part by the National Science Council of Republic of China under Grant
No. NSC-95-2221-E-110-079-MY2. The authors also like to thank “Aim for Top University Plan” project
of NSYSU and Ministry of Education, Taiwan, for partially supporting the research.

7. References
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic Local Alignment Search Tool, Journal of

Molecular Biology 215(3) (1990), pp. 403-410.

[2] R. Baeza-Yates and G. Gonnet, A New Approach to Text Searching, Communications of the ACM 35(10)
(1992), pp. 74-82.

[3] W. Chang and E. Lawler, Sublinear Approximate String Matching and Biological Applications, Algorithmica
12(4) (1994), pp. 327-344.

[4] W. Chang and T. Marr, Approximate String Matching and Local Similarity, Proc. of the 5th Annual Symp. on
Combinatorial Pattern Matching, pp. 259-273, 1994.

[5] E. C. Friedberg, G. C. Walker, and W. Siede, DNA Repair and Mutagenesis, American Society Microbiology,
1995.

[6] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, L. Pietarinen, and D. Srivastava, Using q-
Grams in a DBMS for Approximate String Processing, IEEE Data Engineering Bulletin 24(4) (2001), pp. 28-

34.

[7] J. L. Houle, W. Cadigan, S. Henry, A. Pinnamaneni, and S. Lundahl, Database Mining in the Human Genome
Initiative, http://www.biodatabases.com/whitepaper01.html.

[8] H. Hyyro, Y. Pinzon, and A. Shinohara, Fast Bit-Vector Algorithms for Approximate String Matching Under
Indel Distance, Proc. of the 31st Annual Conf. on Current Trends in Theory and Practice of Informatics, pp.
380-384, 2005.

[9] J. Karkkainen and J. C. Na, Faster Filters for Approximate String Matching, Proc. of Workshop on Algorithm
Engineering and Experiments, pp. 1-7, 2007.

[10] M. S. Kim, K. Y. Whang, J. G. Lee, and M. J. Lee, n-Gram/2L: A Space and Time Efficient Two-Level n-Gram
Inverted Index Structure, Proc. of the 31st Int. Conf. on Very Large Databases, pp. 325-336, 2005.

[11] W. C. Kim, S. Park, J. I. Won, S. W. Kim, and J. H. Yoon, An Efficient DNA Sequence Searching Method
Using Position Specific Weighting Scheme, Journal of Information Science 32(2) (2006), pp. 176-190.

[12] D. J. Lipman and W. R. Pearson, Rapid and Sensitive Protein Similarity Searches, Science 227(4693) (1985),
pp. 1435-1441.

[13] B. Ma, J. Tromp, and M. Li, PatternHunter: Faster and More Sensitive Homology Search, Bioinformatics 18(3)
(2002), pp. 440-445.

[14] A. Mazeika, M. H. Bohlen, N. Koudas, and D. Srivastava, Estimating the Selectivity of Approximate String
Queries, ACM Trans. on Database Systems 32(2) (2007), pp. 1-40.

[15] G. Navarro, Multiple Approximate String Matching by Counting, Proc. of the 4th South American Workshop
on String Processing, pp. 95-111, 1997.

[16] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio, Indexing Text with Approximate q-grams, Proc. of the 11th
Annual Symp. on Combinatorial Pattern Matching, pp. 350-363, 2000.

[17] G. Navarro, A Guided Tour to Approximate String Matching, ACM Computing Surveys 33(1) (2001), pp. 31-
88.

[18] Z. Ning, A. J. Cox, and J. C. Mullikin, SSAHA: A Fast Search Method for Large DNA Databases, Genome
Research 11(10) (2001), pp. 1725-1729.

[19] K. R. Rasmussen, J. Stoye, and E. W. Myers, Efficient q-Gram Filters for Finding All ε-Matches over a Given
Length, Journal of Computational Biology 13(2) (2006) 296-308.

[20] T. F. Smith and M. S. Waterman, Identification of Common Molecular Subsequences, Journal of Molecular
Biology 147(1) (1995), pp. 195-197.

[21] E. Sutinen and J. Tarhio, On Using q-Gram Locations in Approximate String Matching, Proc. of the 3th
Annual European Symp. on Algorithms, pp. 327-340, 1995.

[22] E. Sutinen and J. Tarhio, Filtration with q-Samples in Approximate String Matching, Proc. of the 7th Annual
Symp. on Combinatorial Pattern Matching, pp. 50-63, 1996.

[23] E. Sutinen and J. Tarhio, Approximate String Matching with Ordered q-Grams, Nordic Journal of Computing
11(4) (2004), pp. 321-343.

[24] T. Takaoka, Approximate Pattern Matching with Samples, Proc. of the 5th Int. Symp. on Algorithms and
Computation, pp. 234-242, 1994.

[25] E. Ukkonen, Approximate String Matching with q-Grams and Maximal Matches, Theoretical Computer
Science 92(1) (1992), pp. 191-211.

[26] M. S. Waterman, Sequence Alignments in the Neighborhood of the Optimum with General Application to
Dynamic Programming, Proc. of National Academy of Sciences, pp. 3123-3124, 1983.

[27] H. E. Williams and J. Zobel, Indexing Nucleotide Databases for Fast Query Evaluation, Proc. of Int. Conf. on
Extending Database Technology, pp. 275-288, 1996.

[28] H. E. Williams and J. Zobel, Indexing and Retrieval for Genomic Databases, IEEE Trans. on Knowledge and
Data Eng. 14(1) (2002), pp. 63-78.

