
A Condition-Enumeration Tree Method for

Mining Biclusters from

DNA Microarray Data Sets

Jiun-Rung Chen, Ye-In Chang ∗

Dept. of Computer Science and Engineering, National Sun Yat-Sen University

No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C.

Abstract

Biclustering, which performs simulataneous clustering of rows (e.g., genes) and

columns (e.g., conditions), has proved of great value for finding interesting patterns

from microarray data. To find biclusters, a model called pCluster was proposed. A

pCluster consists of a set of genes and a set of conditions, where the expression

levels of these genes have a similar variation under these conditions. Based on this

model, most of the previous methods need to compute MDSs (Maximum Dimension

Sets) for every two genes in the microarray data. Since the number of genes is far

larger than the number of conditions, this step is inefficient. Another method called

MicroCluster was proposed. This method does not compute MDSs for every two

genes, and transforms the problem into a graph problem. However, it needs to solve

the Maximal Clique problem, which is NP-Complete. To avoid the above disadvan-

tages, in this paper, we propose a new method, CE-Tree (Condition-Enumeration

Tree), for finding pClusters. Instead of generating MDSs for every two genes, we

generate only MDSs for every two conditions. Then, based only on these MDSs, we

expand the CE-Tree in a special local breadth-first within global depth-first manner

Preprint submitted to Elsevier 24 March 2009

to efficiently find all pClusters. We also utilize the idea of the traditional hash join

approach to efficiently support the CE-Tree. From the simulation results, we show

that the CE-Tree method could find pClusters more efficiently than those previous

methods.

Key words: Bicluster, bioinformatics, expression level, microarray, pCluster

1 Introduction

Microarrays are one of the breakthroughs in experimental molecular biol-

ogy, providing a powerful tool by which the expression patterns of thousands

of genes can be monitored simultaneously and are already producing huge

amount of valuable data (Yang et al., 2005). The gene expression data gener-

ated from microarrays are organized as matrices, where rows represent genes,

columns represent various samples such as tissues or experimental conditions

(one microarray per column), and values in each cell characterize the expres-

sion level of the particular gene in the particular sample (Yang et al., 2005).

Figure 1 shows an example of a gene expression matrix, where the number

of genes, N , is usually from 103 to 104, and the number of conditions, M , is

usually less than 102. Due to the large number of genes and the complexity

of the underlying biological networks, extracting information from microarray

data is a formidable task (Tan et al., 2008). Analysis of such data is becoming

one of the major bottlenecks in the utilization of the microarray technology

(Yang et al., 2005).

∗ Corresponding author. Tel.: +886-7-5252000 (ext. 4334); Fax: +886-7-5254301.
Email addresses: jiunrung@gmail.com (Jiun-Rung Chen),

changyi@cse.nsysu.edu.tw (Ye-In Chang).

2

Since the microarray data which come from biological experiments are usu-

ally large, the techniques of data mining could be applied to analyze the

data efficiently (Merz, 2003). As a data mining task, clustering groups objects

into classes of similar objects according to some distance measurement, in a

large, multidimensional data set (Chen et al., 1996). Clustering of microar-

ray data can lead to molecular classification of disease states, identification

of co-fluctuation of functionally related genes, functional groupings of genes

and logical descriptions of gene regulation, among others (Aguilar-Ruiz, 2005).

Discovery of such clusters is essential in revealing the significant connections

in gene regulatory networks (Yang et al., 2005).

Traditional clustering methods work in the full dimensional space, which con-

sider the value of each object in all the dimensions and try to group the similar

objects together (Zhao and Zaki, 2005). Moreover, they can only be applied to

either the rows or the columns of the data matrix, separately (Aguilar-Ruiz,

2005). Biclustering (Cheng and Church, 2000), however, does not have such a

strict requirement. It performs simultaneous clustering of rows and columns. If

some objects are similar in several dimensions (a subspace), they will be clus-

tered together in that subspace. This is very useful, especially for clustering in

a high dimensional space where often only some dimensions are meaningful for

some subsets of objects. Moreover, investigations show that more often than

not, several genes contribute to the same pathway, which motivates researchers

to identify a subset of genes whose expression levels rise and fall coherently

under a subset of conditions; that is, they exhibit the fluctuation of a similar

shape when conditions change (Yang et al., 2005). Therefore, biclustering has

proved of great value for finding the interesting patterns in microarray data

(Zhao and Zaki, 2005).

3

condition�
gene�

a� b� c� d� e�

0� 3� 11� 13� 2� 3�

1� 5� 9� 6� 7� 5�

2� 2� 4� 3� 1� 2�

3� 5� 6� 1� 9� 9�

4� 7� 13� 19� 21� 27�

5� 1� 15� 2� 0� 1�

6� 17� 19� 3� 5� 7�

M� conditions�

N�
genes�

Fig. 1. A gene expression matrix

There have been several types of biclusters proposed (Madeira and Oliveira,

2004). Among these types, biclusters with coherent values define a bicluster

as a subset of genes and a subset of conditions of the microarray data which

have coherent values of expression levels on both rows and columns (Madeira

and Oliveira, 2004). Figure 2 shows an example of biclusters with coherent

values in the microarray data shown in Figure 1. Gene set {1, 2, 5} under

condition set {a, c, e} forms a bicluster, as shown in Figure 2-(a), while gene

set {0, 2, 5} under condition set {a, d, e} forms another bicluster, as shown in

Figure 2-(b). Both of these two biclusters consist only a subset of all genes

and a subset of all conditions. Moreover, their gene sets have an overlap, so

do their condition sets. Furthermore, in Figure 2-(a), gene 1 is not close to

other genes, if measured by distance functions such as Euclidean, Manhattan,

or Cosine often used in traditional clustering methods. However, we could

see that in Figure 2-(a), the expression levels of these three genes exhibit

the fluctuation of a similar shape, which shows an interesting cluster (i.e.,

4

condition�

expression level�

a c e�

gene 1�

gene 2�
gene 5�

(a)�

condition�

expression level�

a d e�

gene 0�
gene 2�
gene 5�

(b)�

6�

5�

4�

3�

2�

1�

0�

6�

5�

4�

3�

2�

1�

0�

Fig. 2. An example of biclusters: (a) a bicluster consisting of gene set {1, 2, 5}
and condition set {a, c, e}; (b) another bicluster consisting of gene set {0, 2, 5} and

condition set {a, d, e}.

a correlation cluster). Due to the above properties, it is difficult to apply

traditional clustering methods to the problem of biclustering.

Therefore, to mine biclusters with coherent values, there have been many

methods proposed. Most of these methods are based on one of the following

two models: δ-bicluster and pCluster. Figure 3 shows the methods based on

these two models. The δ-bicluster model was proposed by Cheng and Church

(Cheng and Church, 2000). They proposed a term, the mean squared residue,

to define a δ-bicluster. The mean squared residue is evaluated as a score for

a submatrix of the microarray data. If the score of one submatrix is below

threshold δ, this submatrix forms a δ-bicluster. The FLOC method (Yang

et al., 2002, 2005) also follows this model. However, this model has several

limitations (Wang et al., 2002). First, a submatrix of one δ-bicluster is not

necessarily a δ-bicluster. This creates difficulties in designing efficient methods.

Moreover, many found δ-biclusters may contain some outliers. Furthermore,

these methods apply a greedy and random manner to find δ-biclusters, which

may miss some biclusters. Therefore, another model, pCluster, was proposed

5

 -biclustering�
FLOC�

 -bicluster�

Biclustering�

pCluster�

pClustering�
MaPle�

zCluster�
MicroCluster�

Fig. 3. The biclustering methods

(Wang et al., 2002). The pCluster model determines whether a submatrix

of the microarray data could be a pCluster according to the pScore of this

submatrix. As compared to the δ-bicluster model, the pCluster model has

two advantages. First, a submatrix of one pCluster must also be a pCluster.

Second, the pClusters found will not contain outliers. Therefore, in this paper,

we will focus on the design of a new method based on the pCluster model.

Many methods based on the pCluster model have been proposed. Most of

the methods, e.g., pClustering (Wang et al., 2002), MaPle (Pei et al., 2003),

and zCluster (Yoon et al., 2005), need to compute MDSs (Maximum Dimen-

sion Sets) for both of every gene-pair and every condition-pair in the gene

expression matrix. An MDS is formally defined as follows (Wang et al., 2002):

assuming c = (O, T) is a pCluster, column set T (or row set O) is an MDS of

c if there does not exist T ′ ⊃ T (or O′ ⊃ O) such that (O, T ′) (or (O′, T)) is

also a pCluster. Note that a gene-pair MDS (consisting of a pair of genes and

T) indicates under which conditions two genes have similar behavior, and a

condition-pair MDS (consisting of a pair of conditions and O) indicates which

genes have similar behavior under two conditions. Since the number of genes

6

(usually from 103 to 104) is far larger than the number of conditions (usually

less than 102) in the microarray data, computing the MDSs for every two

genes should be time-consuming. Moreover, to find pClusters, these methods

utilize the gene-pair MDSs to construct a prefix tree, and perform a complex

duplicating process at each node of the prefix tree. The time complexity of

this duplicating process seems to be exponential to the number of conditions,

which reduces the efficiency of these methods. Although the MicroCluster

method (Zhao and Zaki, 2005) computes only condition-pair MDSs and uti-

lizes a multigraph to find pClusters, it needs to solve the Maximal Clique

problem, which is a well-known NP-Complete problem and can not be solved

in polynomial time.

Therefore, in this paper, we propose a new method, CE-Tree (Condition-

Enumeration Tree), to find pClusters from DNA microarray data sets. In the

proposed method, first, instead of generating the gene-pair MDSs, we generate

only the condition-pair MDSs. Then, we utilize the Condition-Enumeration

Tree (CE-Tree) to find the maximal pClusters. The CE-Tree will enumerate

the possible combinations of conditions, and derive the corresponding set of

genes at each node, even without the help of those gene-pair MDSs. More-

over, at each node of the CE-Tree, unlike the prefix tree used in those pre-

vious proposed methods, we do not need to perform the complex duplicating

process. Furthermore, we expand the CE-Tree in a special manner, the local

breadth-first within the global depth-first. We make use of many properties of

this expanding manner to develop three bounding techniques, which could

help us avoid exhaustively expanding the CE-Tree. We also utilize the idea of

the traditional hash join approach to propose a new data structure, signature

tables, which could significantly improve the efficiency of the joining process

7

performed at each node of the CE-Tree when deriving the corresponding set of

genes. From the simulation and experiment results, we show that the proposed

CE-Tree is more efficient than those previous proposed methods (Wang et al.,

2002; Yoon et al., 2005; Zhao and Zaki, 2005).

The rest of this paper is organized as follows. In Section 2, we give a survey of

two biclustering methods. Section 3 presents the proposed CE-Tree method. In

Section 4, we study the performance of the CE-Tree method and make a com-

parison with those previous proposed methods. Finally, we make a conclusion

in Section 5.

2 Related Work

In this section, we describe two biclustering methods, including pClustering

(Wang et al., 2002) and zCluster (Yoon et al., 2005).

2.1 The pClustering Method

In (Wang et al., 2002), Wang et al. noticed several limitations of the δ-bicluster

model for biclustering, and proposed a new model, pCluster. Let D be a set of

objects (genes) in the microarray data, and A be a set of attributes (conditions)

of objects in D. Let O be a subset of D (O ⊆ D) and T be a subset of A

(T ⊆ A). Pair (O, T) specifies a submatrix of the microarray data. Given

8

x, y ∈ O, and a, b ∈ T , we define the pScore of the 2 × 2 matrix as:

pScore(

⎡
⎢⎢⎢⎢⎢⎢⎣

dxa dxb

dya dyb

⎤
⎥⎥⎥⎥⎥⎥⎦
) = |(dxa − dxb) − (dya − dyb)|,

where duv is the value (the expression level) of object u on attribute v. Pair

(O, T) forms a pCluster if for any 2 × 2 submatrix X in (O, T), we have

pScore(X) ≤ δ for some δ ≥ 0. Intuitively, pScore(X) ≤ δ means that the

change of values on the two attributes between the two objects in X is confined

by δ, a user-specified threshold. If such confines apply to every pair of objects

in O and every pair of attributes in T , we have found a pCluster. Formally, the

generation of a pCluster needs to consider two more thresholds, NR and NC,

where NR and NC defines the minimal numbers of objects and attributes,

respectively. That is, for pCluster (O, T), |O| ≥ NR and |T | ≥ NC.

The pClustering method contains 3 main steps for generating pClusters as

follows.

Step 1: Pairwise Clustering

Since the pScore of any 2 × 2 submatrix of one pCluster must be less than

threshold δ, the pClustering method generates MDSs for any two genes (gene-

pair) and any two conditions (condition-pair). These MDSs will be combined

into a pCluster consisting more than two genes and more than two conditions

later. Figure 4 shows an example of the generation of gene-pair MDSs of

the pClustering method, where the raw data are from the microarray data

shown in Figure 1. To generate gene-pair MDSs, first, the pClustering method

computes the differences between two genes under all conditions, as shown in

Figure 4-(a). Next, these differences will be sorted in ascending order, as shown

9

(a)� (b)�

differences� 3�

condition� a�

3�

c�

3�

e�

5�

b�

6�

d�

condition�
gene�

a� b� c� d� e�

differences� 3� 5� 3� 6� 3�

1� 5� 9� 6� 7� 5�

2� 2� 4� 3� 1� 2�

Fig. 4. An example of generating gene-pair MDSs: (a) the differences between gene

1 and gene 2; (b) the sorted differences.

in Figure 4-(b). Then, this method groups those close differences together. For

each group, the difference between the largest one and the least one must be

less than or equal to the threshold, δ. Therefore, if δ is 2, in the example

shown in Figure 4-(b), there exist two groups, {a, c, e, b} and {b, d}. That is,

for genes 1 and 2, the corresponding MDS is {{a, c, e, b}, {b, d}}. This means

that genes 1 and 2 have similar behavior under not only conditions {a, c, e, b}
but also conditions {b, d}. If one MDS contains less than NC conditions, it is

pruned. A similar process is used to generate the condition-pair MDSs.

Step 2: MDS Pruning

The number of pairwise MDSs depends on the clustering threshold δ and the

user-specified minimum numbers of genes and conditions, i.e., NR and NC.

However, only some of these pairwise MDSs are valid. That is, there exist

only some of these MDSs actually occurring in pClusters with size larger than

NR × NC. In Step 2, the pClustering method tries to prune these MDSs. It

counts the number of times for each condition of a gene-pair MDS occurring

in condition-pair MDSs, and the number of times for each gene of a condition-

pair MDS occurring in gene-pair MDSs. If the number of occurrence is not

large enough, that condition/gene is removed from that MDS.

10

Step 3: Tree Constructing and Traversing

To generate pClusters, the pClustering method utilizes gene-pair MDSs to

construct a prefix tree. Each edge of the prefix tree corresponds to one condi-

tion of a gene-pair MDS. At the left node along one path, it records the two

genes of one gene-pair MDS. Figure 5-(a) shows an example of the prefix tree

for two gene-pair MDSs ({1, 2}, {a, b, c, d}) and ({1, 3}, {b, e}).

Then, the pClustering method performs a post-order traversal of the prefix

tree. For each traversing node, it first detects the pClusters contained within.

Then, it duplicates the gene pairs at the current node to those nodes which

represent subsets with size (k − 1) of the k conditions of the current node.

Figure 5-(b) shows an example of duplicating the gene-pairs of the leaf node

under path {a, b, c, d}. Gene pair {1, 2} will be duplicated to those nodes

under pathes {a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}. When traversing to the

next node, i.e. the node under path {a, b, c} in this example, this duplicating

process will be performed again, until the depth of the traversing node equals

to NC. This process, in fact, duplicates the gene information at one node to

all nodes which represent the power set of conditions of this node. This seems

to be inefficient and time-consuming.

2.2 The zCluster Method

Yoon et al. (Yoon et al., 2005) proposed a method to improve the performance

of the pClustering method by exploiting Zero-suppressed Binary Decision Di-

agrams (ZBDDs). We call this method zCluster in this paper. ZBDDs are

a compact data structure which provides an efficient representation for ma-

11

{1,� �2}�

a�

b�

c�

d�

b�

e�

{1,� �3}�

{1,� �2}�

a�

b�

c�

d�

b�

e�

{1,� �3}�

{1,� �2}�

d�

{1,� �2}�

c�

d�

{1,� �2}�

c�

d�

{1,� �2}�

(a)� (b)�

Fig. 5. An example of the prefix tree used in the pClustering method: (a) the prefix

tree; (b) duplicating the gene information.

nipulating large-scale sets of combinations. The zCluster method utilizes the

ZBDDs to store the set of conditions in each gene-pair MDS. This ZBDD-

based representation is crucial to keeping the entire method computationally

manageable.

Most steps of the zCluster method are similar to the pClustering method.

These two methods differ in the last step, which is to generate pClusters by

traversing a prefix tree. The zCluster method also constructs a prefix tree

by using gene-pair MDSs. However, after the prefix tree is constructed, the

zCluster method traverses this tree in a depth-first manner. At each node of the

prefix tree, the zCluster method derives the set of related genes corresponding

to the conditions along the path from the root node to the current traversing

node. Figure 6 shows an example of the prefix tree used in the zCluster method.

Assume that GSxy is the set of related genes for conditions x and y. When

traversing to the node under path {a, b, c}, GSabc is derived by GSab ⊗GSac ⊗
GSbc, where A ⊗ B = {I|I = a ∩ b, ∀a ∈ A and ∀b ∈ B}. Similarly, GSabcd

is derived by GSabc ⊗ GSad ⊗ GSbd ⊗ GScd. These intersection operations are

12

a�

b�

c�

d�

b�

e�

GS�abc� = GS�ab� GS�ac� GS�bc�

GS�abcd� = GS�abc� GS�ad� GS�bd� GS�cd�

Fig. 6. An example of the prefix tree used in the zCluster method

implicitly performed on ZBDDs, thus resulting in high efficiency.

3 The Proposed Method

In this section, we present our method, CE-Tree (Condition-Enumeration

Tree), for finding pClusters from DNA microarray data. Table 1 shows the

variables used in the proposed method, and Figure 7 shows the proposed

method. The proposed method has three main steps: (1) generating condition-

pair MDSs, (2) the pruning step, and (3) the joining step. We will describe

these three steps in the following three subsections, respectively.

3.1 Step 1: Generating Condition-Pair MDSs

In the CE-Tree method, first, we generate condition-pair MDSs from the given

microarray data. The purpose of this step is to find which genes have similar

behavior under the same two of these conditions. Basically, the process of

this step is similar to that used in the pClustering method (Wang et al.,

2002). That is, for every two conditions of the microarray data, we evaluate

13

Table 1

Variables used in the proposed method
Variable Description

MA A two-dimensional gene expression matrix

GenS The set of genes of the matrix

CondS The set of conditions of the matrix

δ The tolerable deviation of a pCluster

NR The minimal number of genes (rows) of a pCluster

NC The minimal number of conditions (columns) of a pCluster

PC The set of pClusters in the matrix

CountT A table consists of |CondS| tuples, where each tuple contains two fields:

(1) Count which counts the number of occurrence of each condition, and

(2) CandList which records a candidate list of conditions

Function CE-Tree(MA, δ, NR, NC): a set of pClusters;

begin

// Step 1: generating condition-pair MDSs

foreach cond1, cond2 ∈ CondS, cond1 < cond2 do

GenCondMDS(cond1, cond2);

// Step 2: the pruning step

foreach tuple t ∈ CountT do

if (t.Count < (NC − 1)) then

remove t.Cond from CountT wherever it occurs;

// Step 3: the joining step

foreach tuple t ∈ CountT do

ExpandCE-Tree(t.Cond, t.CandList);

return PC;

end;

Fig. 7. The CE-Tree method

the difference between these two conditions for each gene. Figure 8 shows

an example of the microarray data, and Figure 9-(a) shows these differences

of genes between conditions a and b. Next, we sort these differences in an

ascending order, as shown in Figure 9-(b). Then, we scan these sorted values

to determine the groups of genes which have the similar behavior. That is, for

any two genes in one group, the difference of values between them is not larger

14

 condition�
 gene�

0�

1�

2�

3�

4�

5�

6�

30�

c�

3�

5�

50�

8�

71�

100�

47�

d�

1�

4�

68�

50�

51�

200�

e�

4�

40�

7�

61�

9�

81�

10�

b�

2�

20�

4�

40�

6�

60�

8�

a�

1�

10�

3�

30�

5�

50�

7�

Fig. 8. An example microarray data set

than δ. This is the definition of a condition-pair MDS, which means the genes

in the same group have similar changes of expression levels under the current

two conditions. In the previous example, for those sorted differences shown in

Figure 9-(b), there are two groups generated with δ = 1, i.e., {0, 2, 4, 6} and

{1, 3, 5}. We also check whether the number of genes in each group is less

than NR, where NR defines the minimal number of genes of a pCluster. If

the number of genes of one group is less than NR, this group is pruned. In

the previous example, assuming that NR is 3, both of {0, 2, 4, 6} and {1, 3,

5} are not pruned. Therefore, we generate a condition-pair MDS, ({a, b}, {{0,

2, 4, 6}, {1, 3, 5}}). This MDS indicates that under conditions a and b, genes

{0, 2, 4, 6} have the similar behavior, so do genes {1, 3, 5}.

However, to efficiently support Steps 2 and 3 later, we have the following two

modifications:

(1) For each gene set in the generated MDS, we use a bit string, b0b1...b|GenS|−1,

to record those genes in this set, where bi is turned on if gene i is in this

set. For example, genes {0, 2, 4, 6} is represented as 1010101. Therefore,

15

 condition�
 gene�

a� b� b - a�

0�

1�

2�

3�

4�

5�

6�

1� 2� 1�

10� 20� 10�

3� 4� 1�

30� 40� 10�

5� 6� 1�

50� 60� 10�

7� 8� 1�

(a)� (b)�

b - a� 1�

gene� 0�

1�

2�

1�

4�

1�

6�

10�

1�

10�

3�

10�

5�

Fig. 9. An example of generating condition-pair MDSs: (a) the differences of expres-

sion values between conditions a and b; (b) the sorted differences.

in the previous example, the generated MDS is represented as ({a, b},
{1010101, 0101010}). (In fact, we also propose a new data structure, the

signature table, to store these bit strings, which will be described later.)

(2) For each condition pair which appears in the generated MDSs, we utilize

a counting table, CountT , to count the number of occurrence of each

condition. The number of occurrence could help us prune those conditions

which are impossible to appear within a pCluster in Step 2. Each tuple

of CountT records the information for one condition, x, consisting of two

parts: (a) Count, which records the number of occurrence of condition x,

and (b) CandList, which records those conditions related to condition x

(CandList will help us expand the enumeration tree in Step 3). Figure

10-(a) shows all the condition-pair MDSs generated from the microarray

data shown in Figure 8, and the corresponding counting table is shown in

Figure 10-(b). In Figure 10-(b), the value of Count for condition a is 4,

since there are 4 condition pairs related to condition a in Figure 10-(a).

16

Count�

4�

3�

1�

CandList�

b�, �c�, �d�, �e�

c�, �e�

({�a�, �b�}, {�1010101, 0101010}),�

({�a�, �c�}, {1010100, 0101010}),�

({�a�, �d�}, {1010010}),�

({�a�, �e�}, {1010101, 0101010}),�

({�b�, �c�}, {1010100, 0101010}),�

({�b�, �e�}, {1010101, 0101010}),�

({�c�, �e�}, {1010100, 0101010})�

3� e�

(a)� (b)�

Cond�

a�

b�

d�

c�

3�e�

Fig. 10. The result of Step 1: (a) all condition-pair MDSs; (b) the counting table,

CountT .

CandList for condition a is a set of all conditions y where {a, y} occurs

in the generated MDSs. In this example, CandList for condition a is {b,
c, d, e}, since there are 4 condition pairs, i.e., {a, b}, {a, c}, {a, d}, and

{a, e}, occurring in the condition-pair MDSs.

3.2 Step 2: The Pruning Step

In Step 2, we utilize table CountT generated in Step 1 to prune those con-

ditions which are impossible to appear in a pCluster. Figure 11 shows the

illustration of this pruning. A pCluster must consist of at least NR genes and

at least NC conditions, where NR and NC are determined by users. If there

exists one pCluster containing at least NC conditions, all pairs of any combi-

nation of these conditions must have been generated in Step 1. Therefore, the

number of occurrence of each condition must be not less than (NC − 1), as

shown in Figure 11. In the previous example of table CountT shown in Figure

10-(b), assume that NC is 3. Then, condition d will be pruned, since its value

17

a pCluster�
({�x, y, d�}, �{...})�

current �MDS�
({�x, y�}, �{...})�
({�x, d�}, {...})�
({�y, d�}, {...})�

x� 2�

y� 2�

d� 2�

CountT�

NC �conditions�
NC �- 1�

Fig. 11. Pruning of a pCluster based on CountT

Count�

4�

3�

1�

CandList�

b�, �c�, �d�, �e�

c�, �e�

3� e�

Cond�

a�

b�

d�

c�

3�e�

Fig. 12. The result of table CountT after the pruning step

of Count is less than (NC − 1) = 2. We will remove condition d wherever it

occurs in table CountT , as shown in Figure 12.

3.3 Step 3: The Joining Step

In this step, we generate pClusters based on those condition-pair MDSs (as

shown in Figure 10-(a)) and table CountT (as shown in Figure 12) generated

from the previous 2 steps. We apply the idea of the Condition-Enumeration

Tree (CE-Tree) for generating pClusters. A pCluster consists of two parts: a

condition set and a set of sets of genes (i.e., a set of bit strings in our method).

In the proposed method, a condition set is enumerated by the CE-Tree, and

its set of bit strings is derived by applying the ⊗ operations.

18

a�

ab� ac�

abc�abe�

abce�

ae�

b�

bc� be�

c� e�

ace�

ce�

bce�

node �a�

SubT�a�

MaxCS�
a�

Fig. 13. The CE-Tree for table CountT shown in Figure 12

3.3.1 The Condition-Enumeration Tree

The CE-Tree can enumerate all possible combinations of conditions, where

each node in this tree shows a possible combination of the conditions (i.e., a

condition set). (Note that we enumerate possible combinations of conditions,

instead of possible combinations of genes, since the number of the former one

is much less than that of the later one.) Figure 13 shows the CE-Tree for those

conditions recorded in table CountT shown in Figure 12. The subtree under

node a, for example, is expanded by enumerating the possible combinations of

Cond (= {a}) and CandList (= {b, c, e}) from the first tuple of table CountT

shown in Figure 12. In the CE-Tree, for node x, we denote its condition set

as CSx, its set of bit strings as GSx, the subtree under node x as SubTx, and

the maximal condition set in SubTx as MaxCSx, i.e., the condition set in the

leaf node which can not be expanded anymore, as shown in Figure 13.

We expand the CE-Tree in a special manner. We call this manner, the Local

Breadth-first within the Global Depth-first (LBGD). (This manner was also

applied to mine closed itemsets in (Chi et al., 2004).) Figure 14 shows how

the CE-Tree of the previous example shown in Figure 13 is expanded based on

the LBGD manner. At level 1 of the CE-Tree, all the condition sets with one

19

a�

ab� ac�

abc�abe�

abce�

ae�

b�

bc� be�

c� e�

ace�

ce�

bce�

1�

2�

3�

4�
5�

6�

7�

8�

level�

1�

2�

3�

4�

Fig. 14. The LBGD manner

single condition will be expanded according to the alphabetical order. Next,

globally, the tree is expanded in the depth-first manner. Therefore, SubTa will

be expanded before expanding SubTb, since node a is expanded before node b.

However, in SubTa, all of the child nodes of node a, i.e., ab, ac, and ae, which

have a common prefix, a, will be expanded before expanding SubTab. That is,

we first expand those nodes i, (i + 1), ..., (i + j) at level k of the same subtree

under one node. Then, we will sequentially expand SubTi, SubTi+1, ..., SubTi+j,

as shown in Figure 14. This traversal order could be done by sequentially

selecting a condition set with k conditions at level k as the join-base. Then,

we try to join other condition sets at the same level k with this join-base,

where these condition sets have a common prefix of length (k − 1) as the

join-base.

Take the CE-Tree shown in Figure 14 as an example. Figure 15 shows the

selecting order of the join-bases for this example. First, we have four nodes,

a, b, c, and e. Next, we select CSa as the join-base, and join CSa with CSb,

CSc, and CSe, respectively, to form CSab, CSac, and CSae. (Note that the

corresponding information is recorded in the first tuple of table CountT shown

in Figure 12.) Then, we select CSab (k = 2) as the join-base. We will join

CSab with CSac and CSae, respectively, which have a common prefix of length

20

(k − 1), a, as the join-base, to form CSabc and CSabe. Then, we select CSabc

(k = 3) as the join-base, and try to join it with other condition sets whose

prefix is ab, i.e., CSabe. After SubTab is expanded, we select CSac as the join-

base, and join CSac with CSae to expand SubTac. After SubTac is expanded,

originally, CSae should be the next join-base. However, since there exists no

other condition set which could be joined with CSae at level 2, there exists no

SubTae. Therefore, since SubTa has been expanded completely, we next select

CSb as the join-base and continue to expand SubTb. With the similar process,

we can expand the entire CE-Tree.

In fact, the process of the LBGD manner for those nodes whose size of con-

dition sets is grater than two is similar to the idea of the generation of Ck+1

based on Lk as proposed in the Apriori algorithm for mining association rules

(Agrawal and Srikant, 1994). The main property is that two large k-itemsets

in Lk could be joined together to form a candidate (k + 1)-itemsets, if they

have a common prefix of length (k − 1). Moreover, all subsets of this candi-

date itemset must also be large itemsets; otherwise, this candidate itemset is

impossible to be a large itemset and should be pruned.

Based on the LBGD manner, the CE-Tree has two properties for conditions. In

the previous example, for one subset of CSabce, whose length is k (2 < k < 4),

its node is expanded before expanding node abce, if it has the same prefix

of length (k − 1) as CSabce. Otherwise, its node will be expanded after node

abce. We denote this property as the CE-Tree cond property. For example,

both of nodes abc and abe (i.e., k = 3) are expanded before node abce, since

the prefix of CSabc and CSabc of length (3 − 1), i.e., ab, is the same as the

prefix of CSabce. However, for any subset of CSabce, whose prefix of length

(k − 1) is different from the prefix of CSabce, e.g., CSace or CSbce, its node

21

a, b, c, e�

ab, ac, ae�

a�bc, �a�be�

ab�ce�

a�ce�

bc, be�

b�ce�

ce�

join-base� others�

a� b, c, e�

a�b� a�c, �a�e�

ab�c� ab�e�

a�c� a�e�

b� c, e�

b�c� b�e�

c� e�

*�

*�

*�

* : the information recorded in table �CountT� (as shown in Figure 12)�

: the maximal condition set (�MaxCS�x�) in that subtree�

Step�

1�

2�

3�

4�

5�

6�

7�

8�

Expansion�Joining�

Fig. 15. The joining process of the CE-Tree

will be expanded after expanding node abce. Another property of the CE-Tree

is that for the join-base CSx and those condition sets which are joined with

CSx, their union set will be MaxCSx. In the previous example, when CSab

is selected as the join-base, we will join CSab with CSac and CSae to expand

SubTab. We could see that MaxCSab is CSabce, which is the union set of CSab,

CSac, and CSae. The reason is that all nodes in SubTab are expanded step by

step from these three ancestor nodes, i.e., ab, ac, and ae. Therefore, MaxCSab

will be equal to the union set of CSab, CSac, and CSae.

In the CE-Tree, after enumerating a new condition set CSx by the joining

process, its corresponding set of bit strings (i.e., its related genes), GSx, will

be derived by applying ⊗ operations on the sets of bit strings for those joined

22

condition sets. For example, when we enumerate CSabc by joining CSab with

CSac, GSabc will be derived by applying ⊗ operations on GSab and GSac. We

will explain how GSabc is derived in the following subsection.

3.3.2 The ⊗ Operation

As mentioned in the previous subsection, for any condition set CSx in the

CE-Tree, e.g., CSabc, it is enumerated by joining two subsets of CSx, e.g.,

CSab (i.e., CSy) and CSac (i.e., CSz), which have the same prefix, a, as CSx.

Then, GSx (e.g., GSabc) will be derived by applying ⊗ operations on GSy and

GSz (e.g., GSab and GSac), where y ⊂ x and z ⊂ x. The derived GSx will

indicate which genes have the similar behavior under CSx. The ⊗ operation

used here is the same as that used in the zCluster method (Yoon et al., 2005).

Assume that A and B are two sets of bit strings. Then, the result of A⊗B is

A ⊗ B = {(ai AND bj)|∀ai ∈ A, bj ∈ B}.

For example, if A = {110, 011} and B = {101, 010}, A ⊗ B = {110 AND

101, 110 AND 010, 011 AND 101, 011 AND 010} = {100, 010, 001, 010}.

Take SubTa shown in Figure 14 as an example. We have found the corre-

sponding MDSs for CSab, CSac, and CSae in Step 1. Figure 16 shows the

corresponding bit strings (i.e., the related sets of genes) for these condition

sets. Now, we enumerate those condition sets with 3 conditions under node

ab. They are abc and abe, enumerated by joining ab with ac and ae, respec-

tively. Then, we want to derive GSabc and GSabe. For GSabc, since CSabc is

enumerated by joining CSab with CSac, we apply the ⊗ operations on GSab

and GSac, to derive which genes occur in both of these two sets.

23

{1010100,�
0101010}�

be�
{1010101,�
0101010}�

GS�x�

CS�x� GS�x�

CS�x� GS�x�

abc�
{1010100,�
0101010}�

abe�
{1010101,�
0101010}�

{1010100,�
0101010}�

{1010101,�
0101010}�

{1010101,�
0101010}�

GS�
x�

ac�

ab�

ae�

CS�
x�

bc�

CS�x�

Fig. 16. The corresponding GSx for CSab, CSac, and CSae

a b b − a

gene 1 1 2 1

gene 2 3 5 2

a c c − a

gene 1 1 6 5

gene 2 3 7 4

b c c − b

gene 1 2 6 4

gene 2 5 7 2

(a) (b) (c)

Fig. 17. An example with δ = 1: (a) a condition-pair MDS, ({a, b}, {gene 1, gene

2}); (b) a condition-pair MDS, ({a, c}, {gene 1, gene 2}); (c) the difference of (c−b)

between these two genes = 2 > δ.

However, when GSabc is derived by GSab ⊗ GSac, one more set of bit strings,

GSbc, needs to be considered. The reason is that there may exist some genes

similar to each other under not only conditions a and b but also conditions

a and c, while they are different from each other under conditions b and c.

Figure 17 shows such an example, where the tolerable deviation, δ, is 1. In

other words, to ensure that GSabc could be correctly derived, in addition to

GSab and GSac, the gene set for the other subset of CSabc, i.e., GSbc, also

needs to be considered. Therefore, GSabc is derived by

GSabc = GSab ⊗ GSac ⊗ GSbc.

With the similar process, GSabe could also be derived, as shown in Figure 16.

Then, according to the LBGD manner, we will enumerate CSabce by joining

24

CSabc with CSabe. Originally, GSabce is derived by the following Formula 1:

GSabce = GSab ⊗ GSac ⊗ GSae ⊗ GSbc ⊗ GSbe ⊗ GSce, (1)

i.e., the ⊗ result of sets of genes for all of the C4
2 subsets of condition set

{a, b, c, e}. The number of ⊗ operations used is 5. The zCluster method (Yoon

et al., 2005) improves this derivation by replacing GSab ⊗ GSac ⊗ GSbc with

GSabc, resulting in the following Formula 2:

GSabce = GSabc ⊗ GSae ⊗ GSbe ⊗ GSce. (2)

Therefore, the number of ⊗ operations is reduced to 3. In the proposed CE-

Tree method, we further improve the above derivation by replacing GSae⊗GSbe

with GSabe, resulting in the following Formula 3:

GSabce = GSabc ⊗ GSabe ⊗ GSce. (3)

Note that GSabe is derived by GSab⊗GSae⊗GSbe. As compared to the replaced

part, i.e., GSae ⊗GSbe, GSabe considers one more set of bit strings, i.e., GSab.

However, GSab is originally considered in Formula 1, which does not affect the

final result of GSabce. (The size of GSabe is also less than or equal to the size of

GSae ⊗GSbe, since GSabe considers one more set of bit strings.) Therefore, the

number of ⊗ operations is further reduced to 2, which is less than the number

of ⊗ operations needed in the zCluster method, i.e., 3.

We can derive GSabce in such a way due to the LBGD manner. When node

abce is expanded, we have already expanded nodes abc and abe. Therefore,

we could utilize GSabc and GSabe to help us derive GSabce. Note that in the

zCluster method, it uses a depth-first manner to expand its tree. When node

abce is expanded, node abe has not been expanded yet. Therefore, the zCluster

method can not utilize GSabe to derive GSabce.

25

Table 2

A comparison of the number of ⊗ operations
method abcd abcde c1c2c3...cn−2cn−1cn

abc⊗ abcd⊗ c1c2c3...cn−2cn−1⊗
zCluster ad ⊗ bd⊗ ae ⊗ be ⊗ ce⊗ c1cn ⊗ c2cn ⊗ ... ⊗ cn−2cn⊗

cd de cn−1cn

(# of ⊗: 3) (# of ⊗: 4) (# of ⊗: n − 1)

abc⊗ abcd⊗ c1c2c3...cn−2cn−1⊗
CE-Tree abd⊗ abce⊗ c1c2c3...cn−2cn⊗

cd de cn−1cn

(# of ⊗: 2) (# of ⊗: 2) (# of ⊗: 2)

Table 2 shows a comparison of the number of ⊗ operations needed between

the zCluster and the CE-Tree method, where the underline parts show the

differences of the formulas between the zCluster method and the proposed

method. From this table, we can see that the information of the underline part

of one formula in the proposed method always contains that in the zCluster

method. To derive GSx for CSx which contains n conditions, the number of

⊗ operations needed by the zCluster method is (n − 1), while this number is

always 2 in the CE-Tree method. Therefore, with such a technique, we could

reduce the number of ⊗ operations needed, and improve the efficiency of the

joining process.

With a similar process, we can enumerate all the combinations of condition sets

shown in Figure 14, and find all MDSs for these condition sets by performing

the ⊗ operations. After performing the ⊗ operations, those derived bit strings

whose number of on-bits is less than NR are pruned. The reason is that the

number of on-bits in a bit string means the number of genes which have similar

behavior under one condition set. If there is no bit string for one condition set,

we will not join this condition set with other condition sets. (In other words,

we can prune such a node from the CE-Tree.)

26

For each generated MDS (CSx, GSx), it is added to the set of pClusters, PC,

if it satisfies the following definitions of a pCluster:

(1) The size of CSx is not less than NC.

(2) GSx contains at least one bit string with at least NR on-bits, which

means the number of genes is at least NR.

(3) There does not exist another pCluster which contains this MDS; that is,

a pCluster must be the maximal one.

In the CE-Tree, we expand all the nodes based on the LBGD manner, and

derive the information of genes of each node by the ⊗ operations. The CE-

Tree has two properties for conditions as mentioned in the previous subsection.

Moreover, the CE-Tree has one property for genes. This property is that for

node x, the number of on-bits of any bit string in GSx will not be greater

than that in GSy, where node y is one of the ancestor nodes of node x. (We

denote this property as the CE-Tree gene property.) The reason is that one

⊗ operation contains several AND operations. The number of on-bits of a

bit string will decrease, as the number of times of the ⊗ operations that are

applied increases. In the following subsection, we will utilize the properties of

the CE-Tree to develop three bounding techniques for the expansion of the

CE-Tree.

3.3.3 The Bounding Techniques

By expanding the entire CE-Tree as mentioned previously, we can find all

the pClusters. However, there may exist some nodes which do not need to be

expanded. Therefore, to avoid exhaustively enumerating, we further develop

a branch-and-bound strategy to efficiently enumerate these condition sets in

27

the CE-Tree.

Assume that CSX of node X at level i is the current join-base, and (CSY , GSY)

is a pCluster found previously. We have the following three bounding situations

to avoid expanding the subtree under node X:

Bound 1: The size of MaxCSX < NC.

Bound 2: CSY ⊃ MaxCSX and GSY = GSX .

Bound 3: CSY ⊃ MaxCSX , GSY �= GSX , but GSY = GSZ , where CSZ is

any one of those condition sets joined with CSX at the same level i.

The reason for the technique of Bound 1 is that since MaxCSX (i.e., the

maximal condition set in the subtree under node X) contains less than NC

conditions, it is impossible to generate a pCluster containing at least NC

conditions in this subtree. There are two cases for this situation. The first

case occurs in those last (NC− i) nodes at level i in the same subtree, where i

is also the size of a condition set at level i. Figure 18 shows an example for the

first case of Bound 1, where this tree is the same CE-Tree as shown in Figure

14. In this example, assume that NC is 3. For the last (3− 1) nodes at level 1

of the tree shown in Figure 18, i.e., nodes c and e, we do not further expand

their subtrees, since both of the lengths of MaxCSc and MaxCSe will be less

than 3. If NC is 4, all of SubTb, SubTc, and SubTe, i.e., subtrees under the

last (4 − 1) nodes at level 1, will not be expanded.

The second case of Bound 1 will occur if there is no bit string of related genes

with at least NR on-bits for any node at level i. In this case, this node is

pruned, which may result in a change of the last (NC − i) nodes at level i.

Then, the second case of Bound 1 becomes the first case of Bound 1 after

pruning that node. Figure 19 shows an example of this case. In this example,

28

a�

ab� ac�

abc�abe�

abce�

ae�

b�

bc� be�

c� e�

ace� bce�

NC� = 3 -> Bound 1�

ce�

level�

1�

2�

3�

4�

Fig. 18. The CE-Tree after applying the technique of Bound 1

ab ac ad ae�
{10101} {10101} {10101} {01010}�

abc abd abe�
{10101} {10101} {00000}�

pruned�

abc abd�
{10101} {10101}�

abcd�

NC� = 5 --> Bound 1�

(a)� (b)�

level�

2�

3�

level�

3�

4�

Fig. 19. The situation of Bound 1: (a) pruning abe; (b) applying the technique of

Bound 1 if NC = 5.

assume that there are three nodes, i.e., abc, abd, and abe, at level 3, as shown

in Figure 19-(a). After performing the ⊗ operations, we find that there is no

bit string of genes (with at least NR on-bits) for node abe, and node abe is

pruned. Therefore, there exist only two nodes, abc and abd, at level 3. If NC

is 5, we do not need to further expand subtrees under the last (5 − 3) nodes,

i.e., SubTabc and SubTabd, at level 3, as shown in Figure 19-(b).

The reason for the technique of Bound 2 is that when the situation of Bound

2 is satisfied, any MDS generated in SubTX must have been already contained

by pCluster (CSY , GSY). (Note that the current join-base is CSX .) According

to the CE-Tree gene property, the number of on-bits of one bit string in GSX

must be greater than or equal to the number of on-bits of one bit string at

any node of SubTX . Moreover, MaxCSX means the maximal condition set in

29

a�

ab, �{1010101,�
0101010}�

abc, �{1010100,�
0101010}�

abe, �{1010101,�
0101010}�

abce, �{1010100,�
0101010}�

ac, �{1010100,�
0101010}�

ae, �{1010101,�
0101010}�

Bound 2�

ace, �{1010100,�
0101010}�

Y�

X�

Fig. 20. An example of the situation of Bound 2

SubTX . Therefore, if there exists pCluster (CSY , GSY), where CSY contains

MaxCSX and GSY equals GSX , the MDS generated from any node of SubTX

must be contained by this pCluster. Since a pCluster must be the maximal

one, those MDSs contained by a pCluster can not be pClusters, and we do

not need to expand these nodes in the CE-Tree. For example, assume that

we have found a pCluster, (CSY , GSY) = ({a, b, c, e}, {1010100, 0101010}),
as shown in Figure 20. According to the LBGD expanding manner, next,

we will expand SubTac (i.e., CSX = CSac). However, the expansion of this

subtree can be bounded by the technique of Bound 2. The reason is that

there has already existed a pCluster, ({a, b, c, e}, {1010100, 0101010}), where

CSY = CSabce = {a, b, c, e} contains MaxCSX = MaxCSac = {a, c, e}, and

GSY = GSabce = {1010100, 0101010} equals to GSX = GSac. Therefore, it is

impossible to generate a new pCluster in SubTX = SubTac, and we do not

further expand this subtree.

The reason for the technique of Bound 3 is similar to that of Bound 2. The

difference between Bound 2 and Bound 3 is that when CSX is the join-base,

30

a�

ab, �{1010101,�
0101010}�

abc, �{1010100,�
0101010}�

abe, �{1010101,�
0101010}�

abce, �{1010100,�
0101010}�

ac, �{1111111}�
ae, �{1010100,�

0101010}�

Bound 3�

ace, �{1010100,�
0101010}�

Y�

Z�
X�

Fig. 21. An example of the situation of Bound 3

Bound 2 considers GSX , while Bound 3 considers GSZ , where CSZ is any of

those condition sets joined with CSX . The set of bit strings at any node of

SubTX is derived by applying ⊗ operations on GSX and all GSZ . According to

the CE-Tree gene property, if there exists pCluster (CSY , GSY), where CSY

contains MaxCSX and GSY equals GSZ , the MDS generated from any node

of SubTX must also be contained by this pCluster. (This case will occur even

if GSY �= GSX .) Figure 21 shows such an example. In this example, the join-

base is CSX = CSac, and CSY = CSabce = {a, b, c, e} contains MaxCSX =

MaxCSac = {a, c, e}. (Note that CSZ is CSae in this example.) Although

GSabce = {1010100, 0101010} is not equal to GSac (i.e., GSY �= GSX), GSabce

is equal to GSae (i.e., GSY = GSZ). Therefore, the situation of Bound 3

is satisfied. We could see that in this case, for the set of bit strings at any

node of SubTX = SubTac, i.e., GSace in this example, the number of on-bits

of any bit string in GSace will be limited by GSZ = GSae, since GSace =

GSac ⊗ GSae ⊗ GSce.

The techniques of Bound 2 and Bound 3 could be applied due to the CE-

31

a�

ab� ac�

abc�abe�

abce�

ae�

b�

bc� be�

c� e�

Bound 1�

Bound 2� Bound 2�

Fig. 22. The CE-Tree after applying the bounding techniques

Tree cond property. That is, CSabce is enumerated before some of its subsets,

e.g., CSace in this example. Therefore, after finding a pCluster, we could early

bound the expansion of those nodes whose condition sets and sets of bit strings

will be contained by this pCluster, i.e., branch-and-bound. Figure 22 shows

the final CE-tree for the previous example. As compared to a complete enu-

meration tree with 5 items, whose total number of nodes is 25 = 32, we only

expand 12 nodes based on the proposed pruning and bounding techniques. The

resulting reduction rate is (32−12)/32 = 62.5%. Therefore, we could efficiently

expand the tree without exhaustively enumerating all possible combinations.

3.4 Improving the Joining Process

As mentioned previously, we apply the ⊗ operations on those sets of bit strings

to derive which genes have similar behavior under the current enumerating

conditions. Since A ⊗ B = {(ai AND bj)|∀ai ∈ A, bj ∈ B}, this operation is

similar to the traditional join operation. Therefore, we can apply a strategy

similar to the hash join approach (DeWitt et al., 1984; Kitsuregawa et al.,

1983) to reduce the number of AND operations needed. For example, in Figure

23-(a), assume that A and B are two sets of bit strings, where each of them

32

10101�

10100�

01110�

01010�

set �A�

10101�

10001�

01010�

01110�

set B�

(a)�

10101�

10100�

01110�

01010�

set �A�

10101�

10001�

01010�

01110�

set B�

(b)�

Fig. 23. An example of joining two sets: (a) directly joining; (b) grouping bit strings

first and then joining.

contains 4 bit strings. Then, to derive the result of (A⊗B), it will need (4∗4) =

16 AND operations. If we group those similar bit strings (i.e., those bit strings

which have enough on-bits in the same positions) together first and apply ⊗
operations only on those similar bit strings, the number of AND operations

needed will be decreased. For example, in Figure 23-(b), according to the

distribution of on-bits in these bit strings, we could separate the bit strings

in each of sets A and B into two groups. Then, we apply the ⊗ operations

only on those similar groups between sets A and B. Therefore, the number of

AND operations needed becomes (2 ∗ 2 + 2 ∗ 2) = 8, which is only a half of

the original number of AND operations needed.

3.4.1 The Signature Table

Based on the idea mentioned previously, in the proposed method, for the

set of bit strings in each node of the CE-Tree, we utilize a new structure,

the signature table (table SG), to group them. In table SG, we try to group

those bit strings within one node of the CE-Tree into different tuples, i.e.,

one group per tuple. Those bit strings which have enough on-bits in the same

positions are stored in the same group (tuple). Then, for each group, we utilize

a signature to represent the distribution of on-bits of bit strings in this group.

33

By simply checking the signature of one group, we could know what type of

bit strings may be in this group, and avoid joining it with other dissimilar

groups whose signatures are far different from its signature.

Table SG consists of H tuples, where H is a parameter which could be dy-

namically adjusted according to the usable memory. Each tuple consists of two

parts: the signature, Sig, which is the OR result of all bit strings stored in

this tuple, and the set of bit strings, BSS. Let |b0b1...bm−1| mean the number

of on-bits among bits bi, 0 ≤ i ≤ (m−1). Then, we use a simple rule to decide

whether a new bit string, BS, could be added into one group (tuple), GP , as

follows.

Rule 1 If (|BS OR GP.Sig| − |GP.Sig|) ≤ T , we say that bit string BS is

similar to group GP and can be added into GP , where GP.Sig is the signature

of GP and T is the threshold assigned by the user.

This rule means that if the increment of the number of on-bits between the

result after applying the OR operation and the original signature is still inside

a threshold, T , we consider them as the same group. Otherwise, they will be

in different groups. For example, assume that T = 1 and there are three bit

strings. Initially, table SG is empty. For the first bit string, “10100”, it is

directly stored in the first tuple of table SG. The signature of the first tuple is

also set to this bit string. For the second bit string, “10101”, it can be added

to the first tuple, since (|10101 OR 10100| − |10100|) = (|10101| − |10100|) =

3− 2 = 1 ≤ 1. After this bit string is added into the first tuple, the signature

of this tuple is also set to the OR result, i.e., “10101” OR “10100” = “10101”.

For the third bit string, “01010”, it can not be added into the first tuple, since

(|01010 OR 10101| − |10101|) = 5 − 3 = 2 > 1. Therefore, “01010” is stored

34

in a new tuple, and the signature of this new tuple is also set to “01010”.

According to Rule 1, bit strings in each node of the CE-Tree will be added

into the signature table of this node. If table SG is full and BS is not similar

to any one of groups in this table, we store BS in tuple t, where the value of

(|BS OR t.Sig| − |t.Sig|) is the smallest one among all tuples.

3.4.2 The New Joining Process

After creating these signature tables, we could utilize them to improve the

joining process. For example, in the CE-Tree shown in Figure 14, originally, we

derive GSabc by GSab⊗GSac⊗GSbc. Now, we apply a new function, TableJoin,

to derive the result by utilizing the signature tables for GSab, GSac, and GSbc.

Figure 24 shows function TableJoin. Assume that A and B are two sets of

bit strings, and SGTableA and SGTableB are the signature tables for set A

and set B, respectively. In function TableJoin, we will try to generate a new

signature table, which stores the result of A ⊗ B, by joining SGTableA and

SGTableB. For tuple t1 ∈ SGTableA and tuple t2 ∈ SGTableB, if the number

of on-bits of the result of (t1.Sig AND t2.Sig) is not less than NR, we add

the result of (t1.BSS ⊗ t2.BSS) to the result set of bit strings, ResultBS.

The reason is that the signature of each tuple, Sig, is the OR result of all bit

strings stored in this tuple. If the number of on-bits of the result of (t1.Sig

AND t2.Sig) is less than NR, it is impossible to generate a bit string with at

least NR on-bits by applying the AND operation on one bit string in t1 and

another bit string in t2.

Figure 25 shows an example of two signature tables, SGTableA and SGTableB .

35

Function TableJoin(SGTableA, SGTableB): a signature table;

begin

foreach tuple t1 ∈ SGTableA do

foreach tuple t2 ∈ SGTableB do

if (|t1.Sig AND t2.Sig| ≥ NR) then

add t1.BSS ⊗ t2.BSS to ResultBS;

Let NewSG be a new signature table;

foreach bit string bs ∈ ResultBS do

if (|bs| ≥ NR) then

InsertT oSGTable(bs, NewSG);

return NewSG;

end;

Fig. 24. Function TableJoin

Assume that NR is 3. For the first tuples of SGTableA and SGTableB ,

their Sig are “1010101” and “1010100”, respectively. Since |1010101 AND

1010100| = 3 ≥ NR, we will apply the ⊗ operation on their BSS. How-

ever, for the first tuple of SGTableA and the second tuple of SGTableB ,

their BSS can not be applied with the ⊗ operation, since |1010101 AND

0101010| = 0 < NR. We could see that in this case, for any bit string in the

first tuple of SGTableA, e.g., “1010100”, and any bit string in the second tuple

of SGTableB, e.g., “0001010”, the number of on-bits in their AND result must

be less than NR (= 3). In this example, the total number of AND operations

needed is (2∗2+4∗4+4∗4) = 36, where 2∗2 is for checking the signatures and

4 ∗ 4 is for each of the ⊗ operations. If we do not utilize the signature table,

the number of AND operations needed by directly applying the ⊗ operation

on those bit strings in SGTableA and SGTableB will be (8 ∗ 8) = 64, which

is almost twice as large as the number of AND operations with a signature

table.

In function TableJoin shown in Figure 24, all of the ⊗ result are stored in a

36

TID�
Sig�

(the signature)�

0� 1010101�

1� 0101010�

BSS�
(the set of bit strings)�

1010101, �1010100�,�
1000101, 1010001�

0101010, 0001010,�
0101000, 0100010�

TID�
Sig�

(the signature)�

0� 1010100�

1� 0101010�

BSS�
(the set of bit strings)�

1010100, 0010100,�
1000100, 1010100�

0100010, 0101000,�
0001010�, �0100010�

(a)� (b)�

Fig. 25. An example of the signature tables: (a) SGTableA; (b) SGTableB .

new set of bit strings, ResultBS. Then, we also generate a new signature table,

NewSG, and apply procedure InsertToSGTable to insert each bit string in

ResultBS into NewSG, as mentioned in Subsection 3.4.1. Finally, NewSG is

returned as the function result. Therefore, when we join ab, ac, and bc to form

abc in the CE-Tree shown in Figure 14, the new signature table for condition

set abc, SGTabc, is derived by

SGTabc = TableJoin(TableJoin(SGTab, SGTac), SGTbc),

where SGTab, SGTac, and SGTbc are signature tables for ab, ac, and bc, respec-

tively. By utilizing the signature tables, we could efficiently derive the set of

bit strings in each node of the CE-Tree, since the number of AND operations

needed will be decreased significantly. Table 3 summarizes the improvements of

the CE-Tree method as compared to those previous proposed methods which

generate gene-pair MDSs and perform the complex duplicating processes.

4 Performance

In this section, we study the performance of the CE-Tree method. We imple-

mented the CE-Tree method in Java, and performed all experiments on a Fe-

dora Linux virtual machine (512 MB of memory, an 1.79 GHz Intel-compatible

37

Table 3

The summarization of improvements of the CE-Tree method

Constructing MDSs�
Reducing the number�
of expanding nodes�

Expanding the�
tree�

Performing processes�
at each node�

Gene-pair�
MDSs�

Condition-�
pair MDSs�

Pruning� Bounding�Joining� Duplicating�
The help of�

gene-pair MDSs�

Step�

Method�

pClustering�
MaPle�

zCluster�

CE-Tree�

Yes� Yes� Yes� No�Yes� Yes�Yes�

No� Yes� Yes� Yes�Yes *� No�No�

*: A new data structure to improve this process�

processor) over Windows XP through VMware middleware.

4.1 Experiment Data

To analyze the performance of the proposed method, we use several synthetic

data sets and real microarray data sets as the experiment data. We generate

synthetic data sets by using a method similar to that used in (Wang et al.,

2002). Initially, a synthetic data set is simulated by a 2-dimensional matrix

with random values ranged from 0-1500. Then, we embed a fixed number of

perfect pClusters (i.e., δ = 0) into this matrix (Wang et al., 2002). The related

parameters are shown in Table 4.

Table 5 shows the real microarray data sets used in our experiments. The yeast

microarray data set (Tavazoie et al., 1999) is widely used in microarray clus-

tering research, obtained from the yeast Saccharomyces Cerevisiae cell cycle

expression levels. The SRBCT (Small, Round Blue Cell Tumors) microarray

data set (Khan et al., 2001) consists of expression levels from the small, round

blue cell tumors of childhood, where most of values of these expression lev-

els are less than 1. The ALL-AML microarray data set (Brunet et al., 2004)

is often used in microarray classification research, composed of samples from

38

Table 4

Parameters used in the generation of synthetic data

Parameter Description

r The number of rows of the matrix

c The number of columns of the matrix

k The number of embedded pClusters

nr The number of rows of an embedded pCluster

nc The number of columns of an embedded pCluster

Table 5

The real microarray data sets

Name The number of genes The number of samples

Yeast 2884 17

SRBCT 2308 83

ALL-AML 5000 38

27 ALL (acute lymphoblastic leukemia) patients and 11 AML (acute myeloid

leukemia) patients.

4.2 Accuracy of the CE-Tree Method

In this subsection, we experiment the accuracy of the CE-Tree method. We

use several synthetic data sets as the experiment data. Figure 26-(a) shows an

example of a simple synthetic data set with r = 10, c = 5, k = 3, nr = 3, and

nc = 3. Since there are k perfect pClusters embedded in each synthetic data

39

Table 6

A comparison of the number of pClusters found

r c nr nc k The CE-Tree method zCluster

3000 30 30 6 30 30 5

3000 30 30 6 40 40 4

3000 30 30 6 50 50 2

5000 50 50 10 10 10 8

5000 50 50 10 20 20 2

set, there should be k pClusters found with δ = 0. Figures 26-(b) and 26-(c)

show these k (= 3) pClusters in this synthetic data set. The proposed method

can find all these pClusters. However, the zCluster method can not find the

pCluster shown in Figure 26-(c), where the executable file of the zCluster

method is downloaded from the url given in (Yoon et al., 2005). Table 6 shows

other synthetic data sets and the experiment results of the CE-Tree method

and the zCluster method. We could see that for these data sets, the CE-Tree

method could find the same number of pClusters as the value of k. However,

with unknown reasons, the numbers of pClusters found by the zCluster method

are all less than k, which seems to have some missing cases.

4.3 Efficiency of the CE-Tree Method

In this subsection, we experiment the efficiency of the CE-Tree method. First,

we compare the execution time between generating object-pair MDSs applied

in most of the previous proposed methods (Wang et al., 2002; Yoon et al., 2005)

40

91� 658� 498� 664� 667�
337� 259� 451� 25� 375�
219� 194� 245� 200� 203�
37� 564� 756� 254� 680�
391� 510� 446� 380� 598�
270� 244� 436� 26� 360�
325� 90� 6� 378� 62�
0� 119� 181� 443� 207�
457� 576� 481� 338� 664�
161� 570� 360� 576� 579�

0� 1� 2� 3� 4�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

condition�
gene�

658� 664� 667�
194� 200� 203�
570� 576� 579�

1� 3� 4�

0�
2�
9�

condition�
gene�

259� 451� 375�
564� 756� 680�
244� 436� 360�

1� 2� 4�

1�
3�
5�

condition�
gene�

391� 510� 598�
0� 119� 207�
457� 576� 664�

0� 1� 4�

4�
7�
8�

condition�
gene�

(a)�

(b)� (c)�

Fig. 26. An example of the missing case in the zCluster method: (a) the origi-

nal microarray data; (b) pClusters found by the zCluster method; (c) the missing

pCluster.

and the CE-Tree method. Next, we compare the execution time between the

MicroCluster method (Zhao and Zaki, 2005) and the CE-Tree method.

4.3.1 Generating Object-Pair MDSs

Both in (Wang et al., 2002) and (Yoon et al., 2005), the process of generating

pClusters consists of the following steps: (1) generating the object-pair MDSs;

(2) generating the condition-pair MDSs; (3) using these found MDSs to gen-

41

erate pClusters. The time complexity of Step 1, i.e., generating object-pair

MDSs, is O(N2M log M), where N is the number of genes and M is the num-

ber of conditions. However, in microarray data, the number of genes (objects)

is much larger than the number of conditions (columns). Generating object-

pair MDSs needs much longer time than generating condition-pair MDSs. In

this subsection, we compare the time of generating object-pair MDSs with

the total execution time of the proposed method. For generating object-pair

MDSs, we implement Algorithm 1 described in (Yoon et al., 2005), and we

use the same quick-sort method for sorting data.

Figure 27 shows the simulation results of the execution time for synthetic

data sets. These synthetic data sets are generated by the same parameters as

those in (Wang et al., 2002), where k is 30 and δ is 3. Figure 27-(a) shows the

result of the execution time with parameters c = 30, nr = 0.01∗ r, nc = 6, and

varying r. Figure 27-(b) shows the result of the execution time with parameters

r = 3000, nr = 30, nc = 0.1∗c, and varying c. From Figure 27, we could observe

that generating object-pair MDSs needs even longer time than the CE-Tree

method, when the number of objects or columns is large. This is because we

generate only the condition-pair MDSs. Moreover, when we generate pClusters

by these condition-pair MDSs, we apply several techniques to prune or bound

many situations which do not need to be considered. Therefore, the proposed

method could find the pClusters efficiently.

Figure 28 shows the experiment results for the real microarray data sets,

where Figures 28-(a) and 28-(b) are for the SRBCT microarray data set (Khan

et al., 2001) and the ALL-AML microarray data set (Brunet et al., 2004),

respectively. We apply 5 different cases of parameters (δ, NR, NC) for each

of these two microarray data sets. From this figure, we could observe that

42

0�

20�

40�

60�

80�

0� 1000�2000�3000�4000�5000�6000�7000�
Dataset size (# of objects)�A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
.)

�

Object-MDS�

CE-Tree�

0�

20�

40�

60�

80�

100�

0� 20� 40� 60� 80� 100� 120� 140�
Dataset size (# of columns)�A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
.)

�

Object-MDS�

CE-Tree�

(a)� (b)�

Fig. 27. A comparison of execution time between generating object-pair MDSs and

the proposed method: (a) varying the number of objects; (b) varying the number

of columns.

the whole process of the CE-Tree method needs less time to find pClusters

than the process of generating only object-pair MDSs for these data sets. The

reasons are the same as those mentioned previously. Note that the time for

generating object-pair MDSs is only affected by the size of the microarray

data. Therefore, in Figure 28, the time for generating object-pair MDSs is

fixed for each of these two microarray data sets, no matter what values the

three parameters are.

4.3.2 The MicroCluster Method

In this subsection, we compare the execution time between the MicroCluster

method (Zhao and Zaki, 2005) and the CE-Tree method. The source code of

the MicroCluster method is kindly given by the original authors. This source

code is written in C++. However, there have been many researches pointing

out that on Intel-based hardware, especially with Linux, the performance gap

between C++ and Java is small enough to be of little or no concern to pro-

grammers (Bull et al., 2001). In order to avoid a bad implementation of the

MicroCluster method, we directly compare the execution time of this C++

43

CE- Object-

δ NR NC pClusters Tree pair

found (sec) MDS

(sec)

0.005 30 3 19 14.41

0.01 50 3 105 19.14

0.015 75 3 23 19.24 31.226

0.02 100 3 5 19.51

0.025 125 3 12 20.17

CE- Object-

δ NR NC pClusters Tree pair

found (sec) MDS

(sec)

0 1200 3 80 4.8

5 1300 3 2 6

10 1300 3 953 10.9 61.7

20 1400 3 4 15.6

30 1475 3 241 19.2

(a) (b)

Fig. 28. The experiment results for real microarray data sets: (a) SRBCT; (b)

ALL-AML.

code with that of the CE-Tree method written in Java.

Since the MicroCluster method originally finds scaling biclusters, we slightly

modify Step 1 of our CE-Tree method to find the same biclusters. That is, for

any two conditions, we evaluate the ratio of their expression levels of each gene,

instead of originally evaluating the difference. We use the real yeast microarray

data (Tavazoie et al., 1999) as the input data. The basic parameters used are

δ = 0.001, NR = 50, and NC = 3. Figure 29 shows the results of the execution

time of the MicroCluster method and the CE-Tree method, where Figures 29-

(a), 29-(b), and 29-(c) show the results of varying δ, NR, and NC, respectively.

From these figures, we could observe that the CE-Tree method outperforms

the MicroCluster method in terms of the execution time. Although the Micro-

Cluster method also generates only the condition-pair MDSs, it needs to solve

the Maximal Clique problem, a well-known NP-Complete problem. Therefore,

44

0�

2000�

4000�

6000�

8000�

0� 0.01� 0.011�0.012�0.013�0.014�0.015�

Threshold (delta)�A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)
�

MicroCluster�
CE-Tree�

0�
10�
20�
30�
40�
50�
60�
70�

90� 80� 70� 60� 50� 40� 30�
NR�A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
.)

�

MicroCluster�
CE-Tree�

0�

50�

100�

150�

200�

6� 5� 4� 3� 2� 1�
NC�A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
.)

�

MicroCluster�
CE-Tree�

(a)� (b)� (c)�

Fig. 29. The results of the execution time of the MicroCluster method and the

CE-Tree method: (a) varying δ; (b) varying NR; (c) varying NC.

in Figure 29, we could observe the execution time of the MicroCluster method

increases quickly. For the proposed CE-Tree method, in the worst case, the

time complexity of generating pClusters is also the same as that of solving a

NP-Complete problem, i.e., O(2M). However, we develop several pruning and

bounding techniques, which could efficiently prevent the worst case occurring.

4.4 Discussion on pClusters from Real Data

In this subsection, we discuss the biological meaning of the pClusters found

from real microarray data. In the previous experiment on the real yeast mi-

croarray data, when the parameters were set to δ = 0, NR = 35, and

NC = 6, we could find two pClusters, as shown in Figure 30. Then, we

utilized a GO (Gene Ontology) annotation searching tool, GO Term Finder

(www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl), to verify the correspond-

ing biological meaning. The GO project provides a controlled vocabulary to

describe gene and gene product attributes in any organism, and is a collabo-

rative effort to address the need for consistent descriptions of gene products

in different databases (cited from www.geneontology.org). By using the GO

Term Finder, we could find significant shared GO terms for describing genes

45

Samples Column No. (0-16): 10 11 13 14 15 16

YAR061W YBR032W YBR298C YCR063W YCR081W YCR107W

YDL113C YDL206W YDL210W YDL239C YDL247W YDR118W

YDR259C YEL004W YEL006W YEL052W YER060W YFL054C

Genes YGL006W YGL229C YGL250W YGR065C YGR088W YGR122W

YGR197C YIL097W YIL120W YIR007W YJL083W YJL147C

YKL222C YKR076W YML066C YMR034C YNL191W YOL023W

YOR173W

(a)

Samples Column No. (0-16): 4 5 6 7 8 12

YAL064W YBL095W YBR295W YCR063W YDL221W YDL242W

YDR544C YEL052W YER075C YFL056C YGL090W YGL131C

YGR153W YGR212W YHR014W YHR015W YHR171W YIL171W

Genes YJR120W YKR104W YLL013C YLR176C YLR374C YML066C

YMR133W YMR306W YNL092W YNR068C YNR073C YOL114C

YOL117W YOL163W YOR040W YOR173W YPR015C YPR061C

(b)

Fig. 30. The pClusters found from the real yeast microarray data: (a) the first

pCluster consisting of 37 genes and 6 samples; (b) the second pCluster consisting

of 36 genes and 6 samples.

within the found pClusters. Table 7 shows the searching result of GO Terms

for the pCluster shown in Figure 30-(a). We list only those significant shared

terms with p-values less than 0.01, where a p-value is a score of significance.

The closer the p-value is to zero, the more significant the particular GO term

46

associated with the group of genes is (cited from www.yeastgenome.org). From

Table 7, we could observe that genes within the same pCluster significantly

share the same GO terms. This means that these genes may jointly participate

in some activities. Although we could not find significant shared GO terms

for the pCluster in Figure 30-(b) (due to many genes being annotated as “un-

known cellular component/molecular function/biological process”), there may

exist some interesting relationships among these genes waiting for biologists

to discover them.

4.5 Efficiency of Pruning and Bounding Techniques

In this subsection, we experiment the efficiency of the proposed pruning and

bounding techniques in the CE-Tree method. We use the synthetic data gen-

erated in the same way mentioned previously as the input data. The default

values of parameters are r = 7000, c = 50, nr = 50, and nc = 10. We vary

the value of k, i.e., the number of embedded pClusters. Table 8 shows the

simulation results of the reduction rate of the number of expanded nodes in

the CE-Tree, where “Density of pClusters” means the ratio of the total size

of all pClusters to the size of the entire microarray data. From this table,

we could observe that as the density of pClusters increases, the efficiency of

the proposed pruning and bounding techniques decreases. The reason is that

the more potential pClusters there exist, the easier one node in the CE-Tree

passes the pruning and bounding situations. However, since we do not gen-

erate object-pair MDSs, we could still find pClusters efficiently even if there

exist a lot of pClusters in the microarray data, as described in Subsection 4.3.

47

Table 7

Terms from the function ontology for the genes in Fiugre 30-(a)

GO term Genes annotated to the term P-value

transporter activity YBR298C, YDL210W, YDL247W, 0.0000635

YEL004W, YEL006W, YER060W,

YFL054C, YGL006W, YGR065C,

YIL120W, YMR034C

transmembrane YBR298C, YDL210W, YDL247W, 0.00303

transporter activity YEL004W, YER060W, YFL054C,

YGL006W, YIL120W

substrate-specific YBR298C, YDL210W, YDL247W, 0.00537

transporter activity YEL004W, YER060W, YFL054C,

YGL006W, YMR034C

substrate-specific YBR298C, YDL210W, YDL247W, 0.00876

transmembrane YEL004W, YER060W, YFL054C,

transporter activity YGL006W

5 Conclusion

Biclustering has proved of great value for finding the interesting patterns from

the microarray expression data. In this paper, based on the pCluster model,

we have proposed a new method, CE-Tree, to solve the problem of biclustering

48

Table 8

The reduction rate of the number of expanded nodes in the CE-Tree

k Density of pClusters The reduction rate

5 0.7% 99.9%

10 1.4% 89.2%

15 2.1% 63.6%

20 2.8% 35%

25 3.5% 10%

for DNA microarray data. The CE-Tree method could find all pClusters with-

out generating gene-pair MDSs or performing complex duplicating processes.

Moreover, we have made use of the properties of the LBGD expanding manner

to develop three bounding techniques for the CE-Tree method. We have also

developed the signature tables, which utilize the idea of the traditional hash

join approach, to efficiently support the joining process in the CE-Tree. From

the simulation results on synthetic and real microarray data, we have shown

that the CE-Tree method is more efficient than those previous methods which

need to generate gene-pair MDSs, since the total execution time of the CE-

Tree method is less than the time for generating only the gene-pair MDSs. On

the other hand, although the MicroCluster method does not generate gene-

pair MDSs, we also have shown that the CE-Tree method outperforms the

MicroCluster method in terms of the execution time. Furthermore, we have

experimented the efficiency of the proposed pruning and bounding techniques.

49

Acknowledgments

This research was supported in part by the National Science Council of Repub-

lic of China under Grant No. NSC-95-2221-E-110-079-MY2. The authors also

like to thank “Aim for Top University Plan” project of NSYSU and Ministry

of Education, Taiwan, for partially supporting the research.

50

References

Agrawal, R., Srikant, R., 1994. Fast Algorithms for Mining Association Rules.

Proc. of the 20th Int. Conf. on Very Large Data Bases, 487–499.

Aguilar-Ruiz, J. S., Oct. 2005. Shifting and Scaling Patterns from Gene Ex-

pression Data. Bioinformatics 21 (20), 3840–3845.

Brunet, J. P., Tamayo, P., Golub, T. R., Mesirov, J. P., 2004. Metagenes and

Molecular Pattern Discovery Using Matrix Factorization. In: Proc. of the

National Academy of Science. pp. 4164–4169.

Bull, J. M., Smith, L. A., Pottage, L., Freeman, R., 2001. Benchmarking

Java Against C and Fortran for Scientific Applications. In: Proc. of ACM-

ISCOPE Conf. on Java Grande. pp. 97–105.

Chen, M. S., Han, J., Yu, P. S., Dec. 1996. Data Mining: An Overview from

Database Perspective. IEEE Trans. on Knowledge and Data Engineering

8 (6), 866–883.

Cheng, Y., Church, G. M., 2000. Biclustering of Expression Data. In: Proc. of

the 8th Int. Conf. on Intelligent Systems for Molecular Biology. pp. 93–103.

Chi, Y., Wang, H., Yu, P. S., Muntz, R. R., 2004. Moment: Maintaining Closed

Frequent Itemsets over a Stream Sliding Window. In: Proc. of the 4th IEEE

Int. Conf. on Data Mining. pp. 59–66.

DeWitt, D. J., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., Wood, D.,

June 1984. Implementation Techniques for Main Memory Database Sys-

tems. ACM SIGMOD Record 14 (2), 1–8.

Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F.,

Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., Meltzer, P. S.,

June 2001. Classification and Diagnostic Prediction of Cancers Using Ex-

pression Profiling and Artificial Neural Networks. Nature Medicine 7 (6),

51

673–679.

Kitsuregawa, M., Tanaka, H., Moto-Oka, T., 1983. Application of Hash to

Data Base Machine and Its Architecture. New Generation Computing 1 (1),

63–74.

Madeira, S. C., Oliveira, A. L., Jan.–March 2004. Biclustering Algorithms for

Biological Data Analysis: A Survey. IEEE/ACM Trans. on Computational

Biology and Bioinformatics 1 (1), 24–45.

Merz, P., Nov. 2003. Analysis of Gene Expression Profiles: An Application of

Memetic Algorithms to the Minimum Sum-of-Squares Clustering Problem.

Biosystems 72 (1–2), 99–109.

Pei, J., Zhang, X., Cho, M., Wang, H., Yu, P. S., 2003. Maple: A Fast Al-

gorithm for Maximal Pattern-based Clustering. In: Proc. of the 3rd IEEE

Int. Conf. on Data Mining. pp. 259–266.

Tan, M. P., Smith, E. N., Broach, J. R., Floudas, C. A., June 2008. Microarray

Data Mining: A Novel Optimization-Based Approach to Uncover Biologi-

cally Coherent Structures. BMC Bioinformatics 9 (268), 1–21.

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., Church, G. M., July

1999. Systematic Determination of Genetic Network Architecture. Nature

Genetics 22 (3), 281–285.

Wang, H., Wang, W., Yang, J., Yu, P. S., 2002. Clustering by Pattern Simi-

larity in Large Data Sets. In: Proc. of ACM SIGMOD Int. Conf. on Man-

agement of Data. pp. 394–405.

Yang, J., Wang, H., Wang, W., Yu, P. S., Oct. 2005. An Improved Biclustering

Method for Analyzing Gene Expression Profiles. Int. Journal on Artificial

Intelligence Tools 14 (5), 771–789.

Yang, J., Wang, W., Wang, H., Yu, P. S., 2002. δ-Clusters: Capturing Subspace

Correlation in a Large Data Set. In: Proc. of the 18th Int. Conf. on Data

52

Eng. . pp. 517–528.

Yoon, S., Nardini, C., Benini, L., Micheli, G. D., Oct.–Dec. 2005. Discover-

ing Coherent Biclusters from Gene Expression Data Using Zero-Suppressed

Binary Decision Diagrams. IEEE/ACM Trans. on Computational Biology

and Bioinformatics 2 (4), 339–354.

Zhao, L., Zaki, M. J., Nov./Dec. 2005. MicroCluster: Efficient Deterministic

Biclustering of Microarray Data. IEEE Intelligent Systems 20 (6), 40–49.

53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

