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Abstract

A continuous range query is defined to periodically re-evaluated to locate moving objects
that are currently inside the boundary of the range query and is widely used to support
the location-based services. However, the query processing becomes complicated due to
frequent locations update of moving objects. The query indexing relies on incremental
evaluation, building the index on range queries instead of moving objects, and exploiting
the relation between locations objects and queries. The cell-based query indexing method
has been proved to have the better performance of query processing than that of the R*-tree-
based query indexing method with the overlapping problem in internal nodes. However, it
takes a lot of space and time for the cell-based method to maintain the index structure,
when the number of range queries increases. The N A-tree has been proved to solve the
overlapping problem in the R*-tree to minimize the number of disk accesses during a tree
search for the range queries. In this paper, we propose the NA-Tree-Bit-Pattern-Based
(NABP) query indexing method based on the N A-tree. We use the bit-patterns to denote
the regions and to preserve the locality of range queries and moving objects. Therefore,
our NABP method can incrementally local update the affected range queries over moving
objects by bit-patterns operations, especially with the increase of the number of range
queries. From our simulation study, we show that our NABP method requires less CPU
time and storage cost than the cell-based method for large number of range queries update.
We also show that our NABP method requires less CPU time than the R*-tree-based
method for large number of moving objects update.

(Key Words: bit-pattern, continuous range queries, moving objects, NA-tree, query in-
dex)
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1 Introduction

A continuous range query is a fundamental type of a continuous query to periodically re-
evaluated to locate moving objects that are currently inside query ranges [10, 11]. For
example, “Find all people who are moving close to the department store, and then send
e-coupons to the PDAs or cell-phones of potential customers who are interested in the big
sale” is one continuous range query. It can be answered by placing a boundary around the
location of the building to retrieving all moving objects that are currently located within
querying boundaries [7, 21]|. Therefore, monitoring continuous range queries is required in
numerous applications such as logistics, transportation, and location-based services. Figure
1 shows a typical monitoring system, which consists of a base station, a database server,
application servers, and a large number of moving objects. The database server manages
range queries and moving objects. The application server requests or updates spatial range
queries to the database server, and obtains the latest query results from the database server
periodically. Moving objects periodically report their locations by GPS to the database
server through the base station. Only when locations of range queries or moving objects
update, the query results will be updated and sent to the related range queries and moving
objects [7, 21].
[Figure 1 about here.|

Since the range queries and objects move with time, we focus on the problem of range
queries over moving objects in which the ranges of queries are changed less frequently than
the locations of moving objects. Let us take Figure 2 as an example to briefly describe
continuous range queries. A range query is regarded as a Minimal Boundary Rectangle
(MBR) and a moving object is regarded as single point. At time T} in Figure 2-(a), query
()1 contains no object and query (); contains object P,. These queries do not change their
locations during time Ty to T7. At time 77 in Figure 2-(b), query @ contains object P,
because object P, changes its locations at time 7 and moves to query ;. At time T3
in Figure 2-(c), query @1 changes its range and does not contain object P;. Therefore,
the result of range queries should be updated continuously when the locations of moving

objects or the range of queries are changed with time.

[Figure 2 about here.]



Efficient evaluation of continuous range queries is critical on the acceptable response
time to search for range queries over the moving objects. Many methods on indexing for
the continuous range queries [7, 9, 10, 11, 15, 17, 21, 22, 24, 26] have been discussed and
can be classified into two categories: the object indexing and the query indexing, as shown
in Figure 3. However, the brute force method or the object indexing method [2, 12, 16, 18|
has poor performance due to frequent objects update. Because locations of range queries
change less frequently than those of moving objects [16], it costs less time to maintain an
index for range queries than for moving objects. In order to take less time to perform the
periodic query evaluation, the query indexing has been proposed to rely on incremental
evaluation, reversing the role of queries and data, and exploiting the related locations of
objects and queries [7, 13, 14, 17, 22, 23, 24].

[Figure 3 about here.]

As shown in Figure 3, the methods of query indexing can be classified into two categories,
tree-based methods and grid based methods, respectively. In the tree-based methods, the
R*-tree-based method [1, 6, 17, 19] (the variation of the R-tree) was first proposed to use a
safe region, the shortest range between the object and a query boundary, to avoid excessive
location updates. The object does not have to report the location until it moves outside
the safe region. However, the performance of the R*-tree-based method is degenerated
by intensive computation to determine a safe region due to the overlapping in regions of
range queries or internal nodes. In the grid indexing methods, the space is partitioned
into the equal sized grids which are usually regarded as cells. In [10, 11, 22, 23, 24], the
Kalashnikov et al.’s cell-based method was proposed to have the better performance than
the R*-tree based-method. It uses query lists for each partitioned cell to help answer the
continuous range queries. The shingle-based indexing method [22] is proposed to deal with
the drawback of accessing unnecessary lists which affects the performance the incremental
updating. However, it costs a lot of space and time to build and maintain the index, while
the number of range queries increases or changes. It also costs a lot of time to search for
all queries in query lists, while objects change locations frequently.

Since the grid-based query indexing method has the better performance of query pro-

cessing than that of the tree-based query indexing method, we adopt the the Nine-Areas



tree (denoted N A-tree) which is one of grid-based indices as the index structure for range
queries. The N A-tree uses the bucket-numbering scheme [5] to partition the space into
buckets, where a bucket means the partitioned space equivalent to a grid. The N A-tree
is also one of tree-based indices which defines nine regions to store a range query in only
one node. Therefore, the NA-tree can solve the problem of overlaps between MBR’s of
internal nodes in the R*-tree [1, 4, 27] to minimize the number of disk accesses during a tree
search for the range queries [5]. In other words, it needs less search cost (in terms of the
number of visited nodes) than the R*-tree. Therefore, in this paper, we propose a query
indexing method based on the N A-tree, the NA-Tree-Bit-Pattern-Based query indexing
method (the NABP method). We observe that the related bit-patterns denoting for re-
gions based on N A-tree can be used to answer the range queries. Since the bit-patterns are
used to preserve the locality of range queries and moving objects, our NABP method can
incrementally local update the affected range queries over moving objects by bit-patterns
operations. Moreover, since the number of range queries increases with time, our NABP
method can update the bit-patterns only for the increase of the number of range queries,
instead of rebuilding the N A-tree. From our simulation study, we show that our NABP
method requires less CPU time and storage cost than the cell-based method for large num-
ber of range queries update. We also show that our NABP method requires less CPU time
than the R*-tree-based method for large number of moving objects update.

The rest of the paper is organized as follows. In section 2, we discuss related work and
briefly describe the N A-tree structure which is used in our NABP method. In Section 3,
we present our NABP method for continuous range queries processing. In Section 4, we
evaluate the performance among our NABP method, the Kalashnikov et al.’s cell-based

method [10, 11], and R*-tree-based method [1, 4, 27]. Finally, we give the conclusion.

2 Related Work

The problem of evaluation on continuous range queries is: given a set of range queries
and a set of moving objects, continuously determine the set of objects that are contained
within each query [10, 11]. The goal of the method for the continuous range queries is

to re-evaluate all queries in as short time as possible. The storage cost should also be



considered. In this section, we briefly describe two well-known indexing method for the
continuous range queries, including the cell-based method and the R*-tree-based method.

We also describe the N A-tree index structure used in our NABP method.

2.1 The Cell-based Method

In the Kalashnikov et al.’s cell-based method [10, 11|, the space is partitioned into cells.
Each cell maintains two query lists: full and partial, as shown in Figure 4. The full list
stores the IDs of the queries that completely cover the cell, while the partial list keeps
those partially cover the cell. During the query reevaluation, these lists are used to find
all the queries that cover an object location. Take Figure 4 as an example. For point P
in cell(0,1) in Figure 4-(a), range queries () and 4 in the list are checked. However, the
cell-based method requires the large storage to store the duplicate range queries in query
lists of the related cells. For example, range queries () and ()4 are stored twice in partial
list of cell(0,0) and cell(0,1), as shown in Figure 4-(b). When the number of range queries
is larger than the capacity of the cell, the monitor area should be re-partitioned into cells
of new size. It takes a lot of time to rebuild and maintain query lists of cells.

[Figure 4 about here.|

2.2 The R*-Tree-based Method

The R*-tree-based method [1, 6, 17, 19] uses a safe region, the shortest range between the
object and a query boundary, to avoid excessive location updates. Take Figure 5 as an
example. Since there is the overlapping between internal nodes F'1 and E2 in Figure 5-(a),
the R*-tree-based method should travel one path from node E1 to compute the safe region
in range query (o for point P. It also travels another path from node E5 to compute the
safe region in query @4 for point P, as shown in Figure 5-(b). The safe regions are different
and required to be updated while the point P moves away. Due to the overlapping in
regions of range queries or internal nodes, the R*-tree-based method has to travel more
than one tree path and access many partitions of nodes to compute the range of a safe

region for the moving object.

[Figure 5 about here.]



2.3 The NA-Tree (Nine-Area Tree)

An NA-tree is an index structure based on the bucket-numbering scheme [5]. The space
is decomposed into buckets. A bucket is numbered as a binary bit-string x,y;..x,y, of 0’s
and 1’s, the so-called DZ expression. Symbols ‘0’ and ‘1’ correspond to left (lower) and
right (upper) half regions, respectively, for each binary division along the X axis (Y axis).
The leftmost two bits z1y; correspond to the first binary division, and the nth two bits
TnYyn correspond to the nth binary division along the X and Y axes of the space made
by the (n-1)’th division. Figure 6-(a) and (b) shows examples of buckets after one and
two binary divisions along the X and Y axes, respectively. The DZ expression of the gray
bucket in Figure 6-(b) is x1y;129y,='0110%". We convert the bucket number from binary
to decimal form, as shown in the legend alongside Figure 6-(b). The uptrend of bucket
numbers increases from southwest to northeast, as shown in Figure 7-(a), which is called
the N-order Peano curve of order n(=2). Therefore, the number of buckets after the nth
binary division along the X and Y axes are ordered by the N-order Peano curve of order
n. A variable, Maz_bucket (= 2™ x 2" — 1), is used to record the maximum bucket number
(in decimal form) of this area. In Figure 7-(b), the maximum bucket number is 15 (1111),
1.e., Max_bucket = 15.

[Figure 6 about here.]

[Figure 7 about here.]

In an N A-tree [5], a spatial object is specified by its bounding rectangle and represented
by two points, L(X},Y;) and U(X,,Y;), where L is the lower left coordinate and U is the
upper right coordinate of the bounding rectangle. The spatial number O(l, u) is computed
for the spatial object O, where [ is the bucket number of L(X;,Y};) and u is the bucket
number of U(X,,Y;). For example, the spatial number of spatial object O in Figure 7-(b)
is (1, 6). Moreover, two bucket numbers [ and u can be represented as the binary form:
T1Y1...TpYn and xlyjxl yr  respectively, where z; < zi, y; < yi, and 1 < i < n.

Based on the bucket-numbering scheme, there are four equal-sized regions defined for
four ranges of the bucket numbers, as shown in Figures 8-(a) and (b). According to ranges
of two spatial numbers: [ and u, for a spatial object O, there are nine child nodes defined

for different sized regions in an N A-tree, as shown in Figures 8-(c) and 9. An N A-tree



structure can handle two types of nodes, internal nodes and leaf nodes, for spatial objects.
An internal node in the N A-tree can have nine, four, three, or two child nodes. Since a
leaf node has no child node, it is a terminal node. A spatial object can only be stored
in a leaf, not in an internal node. Because the N A-tree does not split the spatial space,
it spatially organizes these spatial data objects depending on their spatial numbers and
locations. Take Figure 10 as an example. Our NABP method uses the N A-tree to store
one range query in one node. Range queries () and ()4 are stored once in the 5th child node
of the N A-tree. The storage cost would be less than the cell-based method. In order to
answer the continuous range queries over the moving point P at time ¢, our NABP method
accesses in only one path from the root to the 5th child node to search for range queries
Q2 and Q4. The search cost would be less than the R*-tree-based method.

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

3 The N A-Tree-Bit-Patterns-based Method (NABP)

In this section, we first describe bit-patterns for nine regions in the N A-tree. We then
present our NABP method for continuous range queries over moving objects by checking
bit-patterns based on the N A-tree. Finally, we give an example to illustrate our NABP
method.

3.1 The Bit-Pattern of the Region in the N A-Tree

Since one region in the N A-tree contains a range of bucket numbers, we can get a region
number by the bit-pattern derived from the bit-strings of bucket numbers. Take Figure 11
as an example. Region 2 contains a range of four bucket numbers from 4 to 7 . These four
bucket numbers have bit-pattern ‘01’ in the prefix two bits of their bit-strings, as shown in
the dotted diagram. Thus, we can get region 2 by the bit-pattern ‘01’.
[Figure 11 about here.]
Figure 12 shows regions with the corresponding bit-patterns at level i (i > 0). The

bucket number with the bit-string (z1%;...x;y;) which is ordered by the N-Order Peano



curve of order 7 is stored in the node with bit-pattern x;y;, x;, or y; at level ¢ of the N A-
tree. The 2nd_child at level 1 represents region 2 with the bit-pattern 01. The symbol
‘_ denotes the checked bit-pattern which means that either or both bits x;, y; should be
checked in the bit-strings of bucket numbers to get region number RN at level i of the
N A-tree. The 5th_child at level 1 represents region 5 which contains two small regions 1
and 2. Its bit-pattern is shown as 0x by combining two bit-patterns: 00 and 01, of two
regions 1 and 2, respectively. The symbol ‘x’ denotes the arbitrary bit (0 and 1) which
means that the region ranges across two half parts along the X or Y axis. It is similar to
the other node which represent regions 6, 7, or 8. The difference is the checked bit-pattern.
The 9th_child at level 1 represents region 9 which contains four small regions from 1 to 4.
Its bit-pattern is shown as ** by combining four bit-patterns: 00 and 01, 10 , and 11 of
four regions 1, 2, 3, and 4 , respectively.
[Figure 12 about here.]

Since the internal node at level (i — 1) (¢ > 1) can have nine, four, three, or two child
nodes at level 7, the checked bit-pattern of each child node is determined by its region
number or the region number of its parent node. For the internal node with the region
number ranging from 1 to 4 at level (i — 1), it has nine child nodes with the checked bit-
pattern x;y; at level ¢. For example, the 2nd_child with region number 2 at level 1 in Figure
12 has nine child nodes at level 2 with corresponding two underlined bits in the checked
bit-patterns.

For the internal node with region number 5 or 7 at level (i — 1), it has three child nodes
with the checked bit-pattern x; at level i. For example, the 5th_child with region number
5 at level 1 in Figure 12 has three child nodes with region numbers 5, 7 and 9 at level 2.
The region of the child node always ranges across two half parts along the Y axis and is
represented by the bit ‘x’. But, the region of the child node may range in one or across
two of left and right parts along the X axis and is represented by one underlined bit (‘0’
or ‘1’) or “*” in the checked bit-pattern. For the internal node with region number 6 or
8 at level (i — 1), it has three child nodes with the checked bit-pattern y; at level i. For
example, the 8th_child with region number 8 at level 1 in Figure 12 has three child nodes

with region numbers 6, 8, and 9 at level 2. The region of the child node always ranges



across two half parts along the X axis and is represented by the bit ‘x’. But, the region of
the child node may range in one or across two of lower and upper parts along the Y axis
and is represented by the underlined bit (‘0” or ‘1’) or “*’ in the checked bit-pattern.

For the internal node with region number 9 at level (i — 1), the number of its child nodes
and the bit-patterns of its child nodes are determined by the region number of its parent
node at level (i — 2). For its parent node with the region number ranging from 0 to 4, it
has four child nodes with the checked bit-pattern z;y; at level i. For its parent node with
the region number ranging from 5 to 8, it has two child nodes with one bit z; or y; in the
checked bit-pattern at level ¢. For example, the 9¢h_child with region number 9 at level 1 in
Figure 12, its parent node is root with region number 0 at level 0. It has four child nodes
1, 2, 3 and 4 at level 2 with two bits x5ys in the checked bit-patterns. For the other one
example, the 9th_child with region number 9 at level 2 whose parent node is with region
number 5 at level 1 in Figure 12 has two child nodes with reigion number 5 and 7 at level
3. There is only one bit x3 in the checked bit-patterns of these two child nodes.

Therefore, in our NABP method for the continuous query processing, we check the bit-
pattern to get the region of a range query or a point based on the N A-tree. Then, we can
retrieve the ralted range queries and points from the region and get the relation bwtween

the range query and the moving object.

3.2 Continuous Query Processing

We assume that the space is a R-kilometer by R-kilometer region. Based on the bucket
numbering scheme in the N A-tree [5], the space is divided n times along the X and Y axes
to obtain the number of 2" x 2" equal-sized buckets. The length w of a bucket along one
axis is (R/2")-kilometer. In the continuous query processing, a range query ) would be
inserted into or deleted from the space while a moving object would change the location
over time. The server deals with two events: range query update and point update.

In the event of range query update, we perform four steps Al to A4 in our NABP method
which are shown in the left side of Figure 13. A range query is stored in the N A-tree as a
Minimal Boundary Rectangle (MBR) with two pairs of the coordinates: (X, Y3) and (X,

Y;). In Step Al, we transform two pairs of coordinates into the two bucket numbers which



is the spatial number for a range query. In Step A2, we check the bit-pattern in two bucket

numbers to get a global region number QNA_RN, which denotes the region that the range

query is located in the N A-tree. In Step A3, we decide the related region PNA_RN which

is contained in region QNA_RN. In Step A4, if a moving object exists in region PNA_RN,

we decide the relation between the range query and the moving object and broadcast the

message about the relation at the server. Otherwise, we return the answer ‘No Point’.
[Figure 13 about here.]

In the event of point update, we also perform four steps B1 to B4 in our NABP method
which are shown in the right side of Figure 13, which are similar to steps Al to A4 in the
left side, respectively. However, a moving object is stored only as a point with one pair
of the coordinates (X, Y,) in the point update, instead of two pairs of coordinates in the
range query update. Therefore, in Step B4, we check the the existence of the range query

in the region which is related with the moving point in the relation decision.

3.2.1 A Range Query Update

While updating the range query ) with two pairs of coordinates: the lower left coordinate
(X, Y3) and upper right coordinate (X, Y;), we perform four steps Al to A4 as follows. In
Step Al, we compute the spatial number Q(/,u) as follows, where [ is the bucket number
of coordinate (X, V) and u is the bucket number of coordinate (X,, Y;). We first divide
two pairs of coordinates of range query @Q: (X, Y;) and (X, Y;), by width w to get
two pairs of bucket coordinates: LB (X, Yg) and RT (Xg, Yr). Then, we transform
the decimal values of two pairs of bucket coordinates: LB (X, Yg), RT (Xg, Yr), into
two pairs of bit-strings: LB(z1%2...Tn, Y1Y2...Yn), RT (2 2h...x), v\ y5...yl,), respectively. The
length of a bit-string is n bits depending on the N-Order Peano curve of order n used in
the N A-tree. Finally, the bucket numbers [ and u are obtained by interleaving z; and y;
bits in two pairs of bit-strings: LB and RT as two DZ expressions: [(z1y122Ys...TrY,) and
u(zyixhyh...xhyl), respectively. We also compute the bucket number ¢(xc1ye1..- Zenyen) for
the bucket coordinate CT (X¢, Y¢) of central point (X, Y.) in range query Q.

In Step A2, we check the bit-pattern in three bit-strings: [, u, and ¢, following the
related flowchart in Figure 14. Then, we can get the global region number QNA_RN for
the location of range query @) in the N A-tree. We start at level 0 of the root in the N A-

9



tree and assume that the region number QRN of the whole space is 0. Since the region
number QRN at level 7 in the N A-tree only ranges from decimal values 0 to 9, we compute
the global region number QNA_RN by the equation QNA_RN=QNA_RN + QRN %10"~!
(0 < i < n) once while updaing the range query ). Thus, we can get the region number
QRN at level ¢ by retrieving the ith digit from the rightmost digit of the global region
number QNA_RN, i.e., QRN=QNA_RN(i), instead of re-checking the bit-patterns. The
initial value of QNA_RN(0) is assumed to be 0.
[Figure 14 about here.]

Then, we first consider whether or not range query () has ever ranged across two parts
along the X and Y axes of the region for the root or the internal node at level (i-1) (¢ > 1).
We use the variable flag_9=1 to denote for the above condition in which the range query
should have ever been stored in the internal node which represents region QNA_RN(i)=9
at level 7. We should check the bit-pattern in bucket number ¢ after level ¢ of the internal
node, which is Case_9. Otherwise, We should check both two bucket numbers: [ and u in
the other three cases: Case_04, Case_57, and Case_68.

In Case_9, we first consider whether or not the region number of the internal node
is 9, i.e., QNA_RN(i-1)=9. If the condition of QNA_RN(i-1)=9 is true, then the region
number of child node is determined by the region number of its parent node at level (i-
2), i.e., QNA_RN(i-2). Otherwise, the region number of child node is determined by its
region number QNA_RN(i-1). There are three cases used to check for the region number
QNA_RN(i-1) or QNA_RN(i-2). In these three cases: Case_9-04, Case_9_57, and Case_9_68,
we use Condition_ XY, Condition_X, and Condition_Y to check the bit-string x;y;, x;, or
y; in bucket number ¢, respectively. The checked bit-pattern x;y;, x;, or y; underlined in
Figure 14 is used to check the region number of the child node where the centeral point
C'T of range query @ locates at level 1.

In Case_04, we check the bit-pattern in two bit-strings: z;x} and y;y; from two bucket
numbers [ and u of range query ), by two conditions: Condition_H (i.e., the horizontal

condition) and Condition_V (i.e., the vertical condition), respectively.
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0, if z;2}=00, i.e., z; = 2} =0 (L);
i =1 (R);

Condition_H (z;,2}) : R, = ¢ 1, if z;2i=11, i.e., 2; = @,
/

x, if z;2;=01, i.e., x; < x} (% : arbitrary bit 0 or 1).

0, if y;4;=00, i.e., y; = y; = 0 (B);
Condition V (y;,yi) : Ry =< 1, if yyi=11, i.e., y; =y, =1 (T);
x, if y;yi=01, i.e., y; < yi (*: arbitrary bit 0 or 1).

In Condition_H (Condition_V), the condition of two equal bits: x; = z} (y; = y.) means
that both two bucket coordinates: X and Xp (Yp and Y7r), are located in the same part:
left(L) or right(R) part along the X-axis (the lower(B) or upper(7’) part along the Y-axis).
Otherwise, two bucket coordinates are located in the different parts along the X axis (Y
axis) which is denoted by the symbol *. Then, we combine R, and R, as the checked
bit-pattern to get the region number of the child node at level i according to Figure 15.

[Figure 15 about here.]

The Case 57 (Case-68) is similar to Case_04. The difference is that we only have to
check bit-string z;z} (y;y;) to get the checked bit-pattern R, (R,) by condition Condition_H
(Condition_V). The reason is that the internal node with region number QNA_RN(i-1) 5
or 7 (6 or 8) only has three child nodes with their region numbers: 5, 7, and 9 (6, 8, and
9), as shown in Figure 12. The range query @ in one of these child nodes always ranges
across two parts along the Y axis (X axis), which results in R, = % (R, = %). The bit-
pattern checking for the global region number of range query () stops at the leaf node of
the N A-tree.

Let us take Figure 16 as an example. At level 1, the variable flag_9=0, region number
QRN=0, global region number QNA_RN(0)=0 of the whole space satisfy Case_04. For
range query () in Figure 16-(a), we check two bit-strings: z;2] = 00 and 3,77, = 11 by
two conditions: Condition_H and Condition_V, respectively, to get the checked bit-pattern
R, R, = 01. According to Figure 15, we get region number (QJRN=2 and global region
number QNA_RN=2, as shown in Figure 16-(b). At level 2, the variable flag_-9=0 and
region number QNA_RN(1)=2 of level 1 satisfy Case_0/. For range query ) in Figure 16-

(c), we check two bit-strings: zoxh, = 01 and y2y5 = 11 by two conditions: Condition_H and

Condition_V, respectively, to get the checked bit-pattern R, R, = x1. According to Figure
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15, we get region number (QRN=8 and the global region number QNA_RN=82, as shown
in Figure 16-(d). At level 3, the variable flag_9=0 and region number QNA_RN(2)=8 of
level 2 satisfy Case_68. For range query @ in Figure 16-(e), we only have to check one
bit-string ysy3 = 00 by Condition_V to get the checked bit-pattern R, R, = %0. According
to Figure 15, we get region number QRN = 6 and global region number )NA_RN =682,
as shown in Figure 16-(f).

[Figure 16 about here.]

In Step A3, we decide the related region PNA_RN(i), which is contained in region
QNA_RN(i) at level i. The moving objects in region PNA_RN(i) may be contained or
partially overlapped the range query @ in region QNA_RN(i). In the N A-tree, region
@NA_RN(i) may contain one, two, or four small regions, as shown in Figure 12. In Step
A4, we check the existence of the moving object in region PNA_RN(i). If there exists no
moving object in region PNA_RN(i), the message of “No Point” will be output. Otherwise,
each moving object P with one pair of bucket coordinates (Xp, Yp) is retrieved from region
PNA_RN(i). We decide the relation between range query () and moving object P by making
two distance comparisons on bit-patterns along the X and Y axes.

We find three relations between one bucket coordinate (Xp) of moving object P and two
bucket coordinates (X, Xg) of range query @ along the X axis: (1) Meet; (2) Contain; (3)
Disjoin. We use Condition_Px with X, Xg, and Xp as the values of three parameters L,
R, and Py, respectively, to check these three relations, as shown in Figure 17. The one of
first three equation (L = Py, Pxy = Ror L = Px = R) means that Py is in the same bucket
as either or both L and R of range query () and represents the relation ‘Meet’. The forth
equation (L < Py < R) means that Py is in the different bucket and the bucket is inside
the range between L and R of range query () and represents the relation ‘Contain’. The
one of last two equations (L > Py or Px > R) means that Py is in the different bucket but
the bucket is outside the range between L and R of range query (). The diagrams for these
equations are shown in Figure 17. The processing is similar to get the relation along the Y
axis . The difference is that we use Condition_Py along the Y axis to find three relations
between one bucket coordinate (Yp) of moving object P and two bucket coordinates (Y3,

Yr) of range query () along the Y axis.



[Figure 17 about here.]

Then, We make the combination of equations in two conditions: Condition_Px and
Condition_Py to help decide the relation between moving object P and range query () in
the two dimensional space. We derive seventeen kinds of InType’s, and conclude three
relations: (1) Partial Overlap; (2) Inside; (3) Outside, as shown in Figure 18. For example,
the relation ‘Partial_Overlap of "InType = 1 means that moving object P and range query
() are in the same bucket along the X and Y axes. The relation ‘Partial_Overlap of
InType = 7 means that moving object P is in the same bucket as two bucket coordinates:
B and T of the range query () along the Y axis. But, it is in the different bucket and the
bucket between two bucket coordinates: L and R of range query () along the X axis. The
relation ‘Inside’ of InType = 16 means that moving object P is contained in the range
query Q.

[Figure 18 about here.]

When the number of range queries increases over the bucket capacity (i.e., the defined
number of range queries in a bucket), we should make another one division along the X
and Y axes to get the large number of buckets. The order n of the N-Order Peano curve
should become large to be (n+1) to order the increasing number of buckets used in the N A-
tree. Then, the length of bit-strings for the original number of range queries becomes long.
However, the prefix bits are not changed. Our NABP method only have to incrementally

check the bit-pattern on those new added bits z,11y,11-

3.2.2 The Moving Object Update

While updating the moving object P with a pair of coordinates (X, Y,), we perform four
steps B1 to B4 in Figure 13. The processing of Steps B1 to B4 is similar to that of Steps
Al to A4 for the event of the range query update. However, in Step B1, we compute only
one bucket number b for the moving object P. In Step B2, we check the bit-pattern in
the bit-string z;y; of bucket number b by Condition_XY. Then, we get the global region
number PNA_RN which represents the region that the moving object P locates in the
NA-tree. In Step B3, we decide the related region QNA_RN(i) which contains region
PNA_RN(i) at level i (0 < i < n) of the NA-tree. The region with QNA_RN(i) may have

range queries which contain or partially overlap moving object P. For example, the region
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QNA_RN(i)(=3, 6, 7 or 9) contains the region PNA_RN(i)(=3). In Step B4, we retrieve
each range query from the region QNA_RN(i) at level i of the N A-tree and compare it
with the moving object P. Then, we can determine whether or not object P is inside or

partially overlapped the range query.

3.3 An Example

Let us take Figure 19 as an example to illustrate our NABP method for continuous range
queries over moving objects. The space is assumed as a 1 kilometer by 1 kilometer region
and is partitioned into 23x 23 = 64 equal-sized buckets. These buckets are linearly organized
by the N-Order Peano curve of order n = 3. The width w of each bucket is equal to
1000/2% = 125 meters. At time Tp in Figure 19-(a), one range query Qo and two moving
objects P, and P, initially exist in the space.

Then, a new range query ()7 with two pairs of coordinates: LB(75,795) and RT (350, 850),
is inserted into the space. The processing of range query (), insertion is shown in Figure
20. After Step A4, there is no object in node 2 at level 1 of the N A-tree with range query
()1, as shown in Figure 19-(b).

[Figure 19 about here.]
[Figure 20 about here.]

At time 77 in Figure 19-(c), moving object P; moves to (260, 800). The processing of
moving object P; update is shown in Figure 21. After Step B4, range query ) is found
in node 2 at level 1 of the N A-tree which may have the relation with moving object P, as
shown in Figure 19-(d). We decide the relation between range query @)y (LB(X,Y5)=(0,6),
RT (Xg,Yr)=(2,6)) and moving object P, (Xp,Ypr)=(2,6). After checking by two conditions:
Condition_Px(Xp = Xg) and Condition_Py(Yp = Xp = Yr), which is Intype = 6 in
Figure 18, the relation between range query )7 and moving object P, is ‘Partial Overlap’.

[Figure 21 about here.]

4 The Performance Study

In this section, we compare the performance of the continuous range query processing

among our NABP method, the Kalashnikov et al.’s cell-based method [10, 11], and R*-
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tree-based method (the variation of the R-tree) [1, 4, 27].

4.1 The Performance Model

The issue of obtaining the updated locations of objects is independent of the technique used
for evaluating the queries. Since we focus on the efficient evaluation of queries, we assume
that the network is stable for the communication such that updated information is available
at the server, without considering how exactly it was made available [10, 11]. We concern
about the performance of the server to deal with the large number of updated information
in the period of time, including the updating locations of moving objects and the evaluation
of range queries. New locations objects are generated and distributed uniformly in each
cycle. The location of an object can change greatly from one cycle to the next without
having any impact on the performance. While some index structures for moving objects rely
upon restricted models of movement, the query indexing allows objects to move arbitrarily.
It also happened that the number of range queries increases and range queries changes
their ranges. At this point, the range query index should be rebuilt. Therefore, since
the overall object distribution chosen for the experiment is maintained, the objects can
move anywhere and are not stored based on the index structure. Moving objects were
represented as points and the number of objects ranges from 10° to 10°. Range queries
were represented as squares with the average size 0.000025% and 0.0001%. The number of
range queries ranges from 10000 to 15000. Moving objects and range queries are uniformly
distributed on the space 1000 x 1000.

In our NABP method, the range queries were assigned to the corresponding bucket
based on the N-order Peano Curve in the N A-tree. The range queries in the same bucket
were linked. The number of spatial objects in a bucket, denoted as bucket_capacity, was
assigned to be ten range queries. Because of the limitation of bucket_capacity, an N-order
Peano curve of order 6 was required for 10000 to 15000 range queries. Then, the number
of 10° data points were randomly updated to evaluate the range queries. For the cell-based
method, the space was chosen to consist of 1000 x 1000 cells. Range queries and moving
objects were generated and put into arrays. The index was initialized and the range queries

were added to it [10, 11]. The capacity of each cell was assigned to be the number of ten
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range queries. For the R*-tree-based method, the capacity of each node was assigned to
be the number of ten range queries or nodes. Each entry in the leaf node contained the
coordinates of a range query. Since the sequence of inserting range queries affects the
structure of the R*-tree, we sort and group the range queries by using the Hilbert curve on
building and processing an R*-tree for datasets and use the pruning metrics in [4, 27].

To compare the performance of three methods above, we took 1000 averages of the above
results required to the evaluation. Since storage usage is related with the CPU time for
the range queries update and moving objects update, we consider the CPU time and the
storage cost as performance measures. The CPU time is used to measure the time which
takes for the location computation and comparison for the moving objects updating and
range queries updating. The storage cost is used to measure the number of cells in the
cell-based method and the number of nodes in our NABP method for storing all the range
queries in the space. In order for the solution to be effective, it is necessary to efficiently
compute the relation between large number of objects and queries. Since spatial indices
built in the main memory would perform better than disk-oriented structures [10, 11], we
take indices optimized for the main memory to process the efficient and scalable continuous

queries. Therefore, we focus on the measure of the CPU time, instead of the I/O time.

4.2 Simulation Results

In this simulation, we consider the case of the dataset with constant number of moving
objects updates (10°) and the variable number of range queries update (10000 to 15000).
Figure 22 shows the result of the storage cost for the range queries update. Our NABP
method requires lower storage cost than the cell-based method. Since each cell in the cell-
based method stores the pointers to all queries that fully or partially cover the cell, the
storage cost increases as the number of the range queries increases or the average size of
the range queries increases. However, our NABP method uses the N A-tree to store the
range query in only one node. The storage cost of our NABP method increases a little as
the number of range queries increases.
[Figure 22 about here.]
Figure 23-(a) shows the result of the CPU time for the range queries update. Our
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NABP method requires less CPU time than the cell-based method and the R*-tree-based
method. Since the range query may ranges across more cells in the cell-based method, it
requires CPU time to compute the cells which are fully or partially contained in the range
query. The CPU time of the cell-based method increases as the number of range queries
increases. In the R*-tree-based method, it requires more CPU time to find, delete, and
insert on the related nodes for the range query update. However, our NABP method uses
the bit-patterns operation with order n of the N-Order Peano curve to obtain the location
of the range query. The CPU time of our NABP method increases a little when the order
of the N-Order Peano curve is changed for the increase of the number of range queries.
[Figure 23 about here.]

Figure 23-(b) shows the result of the CPU time for the number of 10000 range queries
over the number of 10° and 10°® moving points update. Because the cell-based method has
high storage cost shown in Figure 22, the cell-based method requires less CPU time than
our NABP method. The reason is the tradeoff between the space and time complexity.
Since each cell in the cell-based method stores all the pointers to the range queries which
fully or partially contains it, it requires to search the cell where the moving object locates.
However, our NABP method uses the bit-patterns operation with order n of the N-Order
Peano curve to compute all range queries which contain the moving object. Moreover, our
NABP method requires less CPU time than the R*-tree-based method. In the R*-tree-
based method, it requires more CPU time to search in the related and overlapped nodes

and find all range queries which contain the moving object.

5 Conclusion

In this paper, we have presented the NABP method for the continuous range queries over
the moving objects. Our NABP method uses the bit-patterns of regions based on the
N A-tree to check the relation between the range queries and moving objects. Our method
searches only one path in the N A-tree for the range query, instead more than one tree paths
in the R*-tree-based method due to the overlapping problem. When the number of range
queries increases with time, our NABP method can incrementally update the affected range

queries by bit-patterns checking, instead of rebuilding the index like the cell-based method.
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From our simulation study, we have shown that our NABP method requires less CPU time

and less storage cost than the cell-based method for large number of range queries update.

We also have shown that our NABP method requires less CPU time than the R*-tree-based

method for large number of moving objects update.
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Figure 16: The location of query @: (a) the N-order Peano Curve of order 1; (b) the level
1 of the N A-tree; (c) the N-order Peano Curve of order 2; (d) the level 2 of the N A-tree;
(e) the N-order Peano Curve of order 3; (f) the level 3 of the N A-tree.
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Figure 18: Relations in the two dimensional space
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Figure 19: An example based on the N-Order Peano Curve of order 3: (a) the dataset at
time Tp; (b) the N A-tree at time Tp; (c) the dataset at time 77; (d) the N A-tree at time
1;.
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Figure 21: The process of point P, update at time T
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Figure 22: A comparison of storage cost (K = 103): (a) average size of range queries:
0.000025%; (b) average size of range queries: 0.0001%.
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Figure 23: A Comparison of CPU time (K = 10%): (a) range queries update; (b) moving
objects update.
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