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Abstract

Space-filling curves, particularly, Hilbert curves, have been extensively used to maintain

spatial locality of multi-dimensional data in a wide variety of applications. A window

query is an important query operation in spatial (image) databases. Given a Hilbert curve,

a window query reports its corresponding orders without the need to decode all the points

inside this window into the corresponding Hilbert orders. Given a query window of size

p × q on a Hilbert curve of size T × T , Chung et al. have proposed an algorithm for

decomposing a window into the corresponding Hilbert orders, which needs O(n logT ) time,

where n = max(p, q). By employing the properties of Hilbert curves, we present an efficient

algorithm, named as Quad-Splitting, for decomposing a window into the corresponding

Hilbert orders on a Hilbert curve without individual sorting and merging steps. Although

the proposed algorithm also takes O(n logT ) time, it does not perform individual sorting

and merging steps which are needed in Chung et al.’s algorithm. Therefore, experimental

results show that the Quad-Splitting algorithm outperforms Chung et al.’s algorithm.

1 Introduction

A space-filling curve is a continuous path which passes through every point in a space once

so giving a one-to-one correspondence between the coordinates of the points and the 1D-

sequence numbers of points on the curve. The space-filling curve provides a way to linearly

order the points of a grid. The goal is to preserve the locality; that is, points which are

close in space should be stored close together in the linear order. Some examples of space-

filling curves are the Peano curve [7], the RGB curve [14] and the Hilbert curve [3, 4, 10].

There have been found many applications in a variety of fields including image processing
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and compression [9, 21], spatial query [7], wireless sensor networks [1], wireless broadcast

system [26], neural networks [5], genome visualization [11], index of multi-dimensional data

[20], spatiotemporal index [25] and bandwidth compression [2].

The Hilbert curve has been shown to have strong locality preserving properties; that is,

it is the best space-filling curve in minimizing the number of clusters [15, 23]. So, Hilbert

curve can scan the neighboring points in the image continuously. Moreover, the scanning

order of Hilbert curve is named as Hilbert scan. Recently, some image compression methods

based on Hilbert scan have been proposed [8, 9, 17, 18, 19]. Those methods are based on

the Hilbert neighborhood property by a segmentation of the scanned one-dimensional data

using the linear interpolation. For each segment, the beginning point, end point and their

color component levels form a code, which is used to represent the segment.

A window query is an important query operation in the spatial (image) database. Given

a Hilbert curve, the window query reports the corresponding orders without the need

to decode all the points inside such a window. On the other hand, given a compressed

image, the window query reports the responding codes without the need to decomposing

the compressed image. That is, to decompress the compressed image will take a lot of time

[8]. Given a query window of size p × q on a curve of size T × T , employing the maximal

blocks partition strategy, Liu and Schrack’s encoding algorithm [22] and the related fast

mapping formula, Chung et al. have proposed an algorithm for decomposing a window

into the responding orders in O(n logT ) time, where n = max(p, q) [8]. This algorithm

has been applied to the window query on an arbitrary-size image [9]. Since Chung et

al.’s algorithm needs four steps which include sorting and merging steps, it will take long

time. By employing the properties of the Hilbert curve, this paper presents an efficient

algorithm, Quad-Splitting, for decomposing a window into the responding orders on a

Hilbert curve. Although the proposed algorithm also takes O(n log T ) time, it does not

perform individual sorting and merging steps which are needed in Chung et al.’s algorithm.

Therefore, experimental results show that the proposed algorithm outperforms Chung et

al.’s algorithm.

The rest of this paper is organized as follows. In Section 2, we briefly describe the

Hilbert curves and the window query. In Section 3, we present an efficient algorithm for
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decomposing a window into the responding orders on a Hilbert curve. In Section 4, we

analyze the performance complexity of the proposed algorithm and make a comparison of

performance of our algorithm with Chung et al.’s algorithm. Finally, we give a conclusion.

2 Related Work

In this section, we first introduce Hilbert curves and their applications. Then, we introduce

the window query on the Hilbert curve.

2.1 Hilbert Curves and Their Applications

Hilbert curves can be thought of as finite, self-avoiding approximations of curves that pass

through all points of a square. While the resolution of the Hilbert curves, denoted by

k, is a positive integer, each side length of the Hilbert curve is 2k long. Figure 1 shows

three examples of the Hilbert curves of resolution r = 1, 2 and 3; that is, the sizes of

these three examples are 21×21, 22×22 and 23×23, respectively. Each position on the curve

is denoted by an integer, called the Hilbert order h. Consider that a Hilbert curve is of

size T × T , the Hilbert orders along the Hilbert curve form a strictly increasing sequence

〈0, 1, 2, 3, · · · , T 2 − 1〉. When we scan an image along with a Hilbert curve, we obtain the

one-dimensional data having the neighborhood property.

[Figure 1 about here.]

Many different algorithms of the curve generation have been suggested [2, 3, 4, 12, 16, 22,

24]. Most of the algorithms for the curve generation are interpretations of Hilbert’s original

suggestion to continually divide a plane into four parts, each of these parts into four parts,

and so on, calculating the necessary plotting points as the division proceeds [10, 12, 24].

This continual division of the plane continues until the required curve resolution is obtained.

Breinholt and Schierz proposed a simple algorithm that can quickly and efficiently generate

the points of the Hilbert curve by using the simplest recursive technique [3]. Kamata et

al. proposed a computation method using lookup table [17] and applied it to compress an

image [18, 19]. Chung et al. applied Liu and Schrack’s encoding formula [22] to obtain the

corresponding Hilbert orders and compress an image [8].

3



Assume that an image is scanned along the Hilbert curve. In most cases, the difference

of color component levels between two neighboring pixels in the image is bounded by some

small value. Due to the locality property, this image can be partitioned into some segments

by using the interpolation method. For each segment, the beginning point, ending point

and their color component levels form a code, which is used to represent the segment.

The size of a code is less than that of represented segment in practice. If the original

image is represented by a set of codes, it achieves the compression effect. Based on the

Hilbert scan and the zero-order interpolation, Kamata et al. proposed two algorithms

for compressing gray images [18] and color images [19], respectively. Jian proposed an

algorithm [8] for compressing a gray image by using the first-order interpolation and the

split point approximation. Chung et al. proposed an algorithm for compressing a gray

image by using the recursive binary partition scheme and the S-tree data structure [9].

2.2 The Window Query on the Hilbert Curve

A window query is an important query operation in the spatial database. Given a Hilbert

curve, the window query reports the responding sorted segments without the need to decode

all the points inside this window. Chung et al. have proposed an algorithm for decomposing

a window into the corresponding orders on a Hilbert curve [8]. They have extended this

algorithm for the window query on an arbitrary-sized Hilbert curve [9]. Assume that a p×q

query window W lays on a Hilbert curve of size T ×T . Chung et al.’s algorithm consisting

of four steps is listed as follows.

Step 1 (Generating Maximal Blocks): Each maximal block is a square block and is

denoted by (x, y, s), where (x, y) is the coordinate of its lower left corner and s is the

width of the maximal block. For the query window W , the set of maximal blocks, say M ,

corresponding to W is generated by using the linear-time algorithm proposed by Tsai et al.

[8]. There are O(n) maximal blocks in the worst case, where n = max(p, q). For example,

in Figure 2, a query window W (2, 2, 5, 3) on a Hilbert curve of size 8 × 8 is considered.

Nine maximal blocks are obtained. M = {(2,6,1), (3,6,1), (4,6,1), (4,5,1), (4,4,1), (4,3,1),

(4,2,1), (2,4,2), (2,2,2)}

[Figure 2 about here.]
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Step 2 (Computing the Related Hilbert Orders): For each maximal block, both the min-

imal and maximal Hilbert orders are computed by using Liu and Schrack’s encoding algo-

rithm [22]. Since there are at most O(n) maximal blocks, this step takes O(n log T ) to deter-

mine the related Hilbert orders. Then, these determined Hilbert orders form a sequence S.

For example, in Figure 2, a sequence S = {(24),(27),(36),(35),(32),(53),(54),(28,31),(8,11)}

is obtained.

Step 3 (Sorting): Since the total maximal blocks in M are not obtained as the order of

the Hilbert scan, the sequence S needs to be sorted to be an increasing sequence. In this

step, the quick sort algorithm is used and it takes O(n logn) time. The sorted sequence

is denoted by S∗. For example, in Figure 2, the sorted sequence S∗ = {(8,11), (24), (27),

(28,31), (32), (35), (36), (53), (54)} is obtained.

Step 4 (Merging): In order to reduce the number of Hilbert orders used, two consec-

utive Hilbert orders will be merged. That is, if the difference of the Hilbert orders of

the begin point of the current block and the end point of the previous block is exactly

one, those two consecutive Hilbert orders can be merged. Thus, the merged sorted se-

quence, denoted by Snew, is obtained. Since the sequence S∗ needs to be traversed only

once, this step takes O(n) time. For example, in Figure 2, the merged sorted sequence

Snew = {(8, 11), (24), (27, 32), (35, 36), (53, 54)} is obtained. Therefore, this window is de-

composed into 5 sorted segments.

From the above four steps, given a query window of size p × q on a Hilbert curve of

size T × T , Chung et al.’s algorithm takes O(n log T ) time to perform a window query on

a Hilbert curve, where n = max(p, q). However, their four steps that include sorting and

merging steps take long time.

3 The Proposed Algorithm

In this section, we first introduce some properties of Hilbert curves. Then, we present an

algorithm, Quad-Splitting, for decomposing a window into sorted segments on a Hilbert

curve.
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3.1 Observations

Breinholt and Schierz proposed a simple algorithm that can quickly and efficiently generate

the points of the Hilbert curve by using the simplest recursive technique [3]. This algorithm

deconstructs the Hilbert curve into a set of unit shapes. In addition, the relative position

and rotation of each unit shape is defined by its sequential position in the curve generation.

In order to let the points of the curve be plotted in the correct position and the correct

order, this algorithm defines four possible orientations of the unit shape to describe both

the rotation of the unit shape and its start and end points. That is, the Hilbert curves

start at one corner of a square and end at one of the two neighboring corners of the square.

Figure 3 illustrates four of the possible orientations of the unit shape. For Orientation A

unit shape, the lower left corner is the start point and the lower right corner is the end

point.

[Figure 3 about here.]

Suppose a Hilbert curve is evenly partitioned into four parts. Suppose the lower left part,

the lower right part, the upper left part and the upper right part are P0, P1, P2 and P3,

respectively. We have the following three observations.

Observation 1 : For each part, it is still a Hilbert curve and its orientation can be

determined according to the orientation of the original Hilbert curve.

For example, Figure 4 shows that a 23 × 23 Hilbert curve of Orientation A is obtained.

After it is evenly partitioned into four parts, we find that each part is also a 22×22 Hilbert

curve. Suppose the orientations of the parts P0, P1, P2 and P3 are O0, O1, O2 and O3,

respectively, as shown in Figure 5. For Figure 4, we have O0 = B, O1 = D, O2 = A and

O3 = A.

[Figure 4 about here.]

[Figure 5 about here.]

Therefore, Figure 6 shows four cases that the orientations of parts are determined after a

curve is evenly partitioned into four parts for four orientations. For any one of Orientation

A Hilbert curves as shown in Figure 6-(a), after they are partitioned into four parts, each

6



part is also a Hilbert curve and the orientations of these parts are listed as follows: O0 = B,

O1 = D, O2 = A and O3 = A. Similarly, the orientations of parts for Orientations B, C

and D as shown in Figures 6-(b), 6-(c) and 6-(d), respectively.

[Figure 6 about here.]

Observation 2 : For each part, since its associated Hilbert orders form a strictly increasing

sequence, the minimal Hilbert order of each part can be determined.

For example, in Figure 4, there is a 23 × 23 Hilbert curve of Orientation A and its

Hilbert orders start from 0 to 63 (= 0 + 23 ∗ 23 − 1). That is, suppose the curve is of size

2r×2r and its minimal Hilbert order is denoted by min order, we can get that the maximal

Hilbert order is (min order + 2r ∗ 2r − 1). After this 23 × 23 curve is evenly partitioned

into four parts, each part is a 22 × 22 Hilbert curve. We can find that the Hilbert orders of

the lower left part form a strictly increasing sequence 〈0, 1, 2, · · · , 15〉; that is, the minimal

Hilbert order is 0 and the maximal Hilbert order is 15 (= 0+22 ∗ 22 − 1). For the upper

left part, its Hilbert orders also form a strictly increasing sequence 〈16, 17, 18, · · · , 31〉; that

is, the minimal Hilbert order is 16 and the maximal Hilbert order is 31 (= 16+22 ∗ 22 −

1). For the upper right part, its Hilbert orders also form a strictly increasing sequence

〈32, 33, 34, · · · , 47〉; that is, the minimal Hilbert order is 32 and the maximal Hilbert order

is 47 (= 32+22 ∗ 22 − 1). For the upper left part, its Hilbert orders also form a strictly

increasing sequence 〈48, 49, 50, · · · , 63〉, that is, the minimal Hilbert order is 48 and the

maximal Hilbert order is 63 (= 48+22 ∗ 22 − 1).

Therefore, suppose the minimal Hilbert orders of the lower left part, the lower right part,

the upper left part and the upper right part are min0, min1, min2 and min3, respectively.

For any one of 2r × 2r Hilbert curves of Orientation A whose minimal Hilbert order is

denoted by min order, after it is evenly partitioned into four parts, the minimal Hilbert

orders of each part are min0 = min order, min1 = min order + 2r−1 ∗ 2r−1 ∗ 3, min2 =

min order + 2r−1 ∗ 2r−1 and min3 = min order + 2r−1 ∗ 2r−1 ∗ 2 as shown in Figure 7-

(a). Similarly, for any one of 2r × 2r Hilbert curves of Orientation B, Orientation C and

Orientation D, the minimal Hilbert orders of their parts are determined as shown in Figure

7-(b), Figure 7-(c) and Figure 7-(d), respectively.

[Figure 7 about here.]
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Observation 3 : For any kind of window queries, there are nine relationships among a

Hilbert curve.

In [6], Chang et al. have proposed that when an object is lying on the space, only nine

cases are possible based on decomposing the whole region into four regions. Hence, after

a Hilbert curve is evenly partitioned into four parts, when a query window is lying on this

curve, we also find that only nine relationships are possible as shown in Figure 8. Thus,

for a Hilbert curve of size T × T and the query window W (x, y, p, q), where the size of this

window is p×q and (x, y) is the coordinate of the lower left corner of this window. Suppose

there is a query window of size p× q and the coordinates of its lower left corner and upper

right corner are llw and urw, respectively. We have llw = (x, y) and urw = (x + q, y + p).

The possible nine relationships are described as followed:

[Figure 8 about here.]

• Type 0: When llw ∈ P0 and urw ∈ P3 as shown in Figure 8-(a), the condition

(x < T/2, y < T/2, (x + q) ≥ T/2 and (y + p) ≥ T/2) is true, we can find that this

window can also be partitioned into four sub-windows simultaneously.

• Type 1: When llw ∈ P2 and urw ∈ P3 as shown in Figure 8-(b), the condition

(x < T/2, y ≥ T/2, (x + q) ≥ T/2 and (y + p) ≥ T/2) is true, we can find that this

window can also be partitioned into two sub-windows simultaneously.

• Type 2: When llw ∈ P0 and urw ∈ P1 as shown in Figure 8-(c), the condition

(x < T/2, y < T/2, (x + q) ≥ T/2 and (y + p) < T/2) is true, we can find that this

window can also be partitioned into two sub-windows simultaneously.

• Type 3: When llw ∈ P0 and urw ∈ P2 as shown in Figure 8-(d), the condition

(x < T/2, y < T/2, (x + q) < T/2 and (y + p) ≥ T/2) is true, we can find that this

window can also be partitioned into two sub-windows simultaneously.

• Type 4: When llw ∈ P1 and urw ∈ P3 as shown in Figure 8-(e), the condition

(x ≥ T/2, y < T/2, (x + q) ≥ T/2 and (y + p) ≥ T/2) is true, we can find that this

window can also be partitioned into two sub-windows simultaneously.
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• Type 5: When both llw and urw ∈ P2 as shown in Figure 8-(f), the condition

(x < T/2, y ≥ T/2, (x + q) < T/2 and (y + p) ≥ T/2) is true, we can find that this

window is only in the upper left part.

• Type 6: When both llw and urw ∈ P3 as shown in Figure 8-(g), the condition

(x ≥ T/2, y ≥ T/2, (x + q) ≥ T/2 and (y + p) ≥ T/2) is true, we can find that this

window is only in the upper right part.

• Type 7: When both llw and urw ∈ P0 as shown in Figure 8-(h), the condition

(x < T/2, y < T/2, (x + q) < T/2 and (y + p) < T/2) is true, we can find that this

window is only in the lower left part.

• Type 8: When both llw and urw ∈ P1 as shown in Figure 8-(i), the condition (x ≥

T/2, y < T/2, (x+ q) ≥ T/2 and (y+p) < T/2) is true, we can find that this window

is only in the lower right part.

3.2 The Quad-Splitting Approach

Assume that there is a query window W of size p× q inside an Orientation oABCD of size

T×T Hilbert curve whose minimal Hilbert order is denoted as mino, which has its lower left

corner at position (x, y). Such a Hilbert curve will be denoted as HC(oABCD, T, mino)

and a query window as W (x, y, p, q). We can obtain a sorted sequence S = {s0, s1, . . . sk},

where sk is called a segment that uses both the minimal and maximal Hilbert orders,

(minsk, maxsk), to identify the consecutive Hilbert orders of a segment. Each segment

does not intersect the other segment. Moreover, if i > j, then we have minsi > minsj . For

example in Figure 2, a query window W (2, 2, 5, 3) in a Hilbert curve HC(A, 8, 0) is consid-

ered. We can obtain a sorted sequence S = {(8, 11), (24, 24), (27, 32), (35, 36), (53, 54)}.

We now present an efficient algorithm shown in Figure 9 to decomposing a window into

sorted segments on a Hilbert curve. We can call procedure QSplit( oABCD, T , mino,

x, y, p, q) to decompose the window W (x, y, p, q) into sorted segments on the Hilbert

curve HC(oABCD, T, mino). This algorithm is implemented in a recursive procedure that

modifies its calling parameters as it converges a sorted sequence on the curve. For example,

in Figure 2, to obtain a sorted sequence, the corresponding orders, the first call is procedure
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QSplit(A, 8, 0, 2, 2, 5, 3).

[Figure 9 about here.]

In procedure QSplit(oABCD, T , mino, x, y, p, q), first, if the size of the query window

is equal to the size of the curve, the result of this window is the same as the orders of

a Hilbert curve that its size is T × T and the minimal Hilbert order is mino. Based on

Observation 1, we will obtain the minimal Hilbert order, mins = mino, and the maximal

Hilbert order, maxs = mino + T ∗ T − 1, in this window. Then, the Hilbert segment

(mins, maxs) is added to a sequence S by calling procedure addSequence which will merge

the two consecutive Hilbert segments as shown in Figure 10.

[Figure 10 about here.]

Otherwise, if the size of a window is not equal to the size of a curve, we will partition

this curve into four parts evenly. Assume that the lower left part, the lower right part, the

upper left part and the upper right part are denoted as SHC0, SHC1, SHC2 and SHC3,

respectively. Based on Observation 1, the orientation of each part can be determined. For

example, there are four parts, SHC0 = HC(B, 4, 0), SHC1 = HC(D, 4, 48), SHC2 =

HC(A, 4, 16) and SHC3 = HC(A, 4, 32) in Figure 11.

[Figure 11 about here.]

Moreover, for each part, the overlapping between the window and this part produces the

sub-window. Assume that the sub-windows in the lower left part, the lower right part,

the upper left part and the upper upper right part are denoted as SW0, SW1, SW2 and

SW3, respectively. In Figure 12-(a), for a window W (x, y, p, q) lying on all four parts, i.e.

Type 0, we have SW0 = W (x, y, N/2− y, N/2− x), SW1 = W (0, y, N/2− y, x + q −N/2),

SW2 = W (x, 0, y+p−N/2, N/2−x) and SW3 = W (0, 0, y+p−N/2, x+q−N/2). For the

other types, the sub-windows are obtained in Figure 12. For example in Figure 11, there

are four sub-windows, SW0 = W (2, 2, 2, 2), SW1 = W (0, 2, 2, 1), SW2 = W (2, 0, 3, 2) and

SW3 = W (0, 0, 3, 1) on the parts SHC0 = HC(B, 4, 0), SHC1 = HC(D, 4, 48), SHC2 =

HC(A, 4, 16) and SHC3 = HC(A, 4, 32), respectively.
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[Figure 12 about here.]

Next, we can perform the query for each sub-window to obtain the responding Hilbert

orders recursively. But, this result may not be sorted segments, if we do not care the order of

these sub-window queries. However, according to Observations 1 and 2, we know that each

part is a Hilbert curve and the minimal Hilbert order of each part can be determined based

on the orientation of this original curve. So, in order to obtain sorted segments in one step,

the order of each sub-window query called must be determined based on the orientation of

the original curve. Following previous observations, we can find that there are 36 cases for

a window laying among four partitioned parts as shown in Figure 13. We can determine

which sub-windows will be queried and the order of sub-windows queried based on these 36

cases. For example, when a query window on the Hilbert curve of Orientation A is of type

1 relationship, we can find that there are two sub-windows, SW2 and SW3, performed in

the specific order that the sub-window SW2 is performed first and SW3 is performed next.

For another example, when a query window on the Hilbert curve of Orientation A is of type

4 relationship, we can find that there are two sub-windows, SW1 and SW3, performed in

the specific order that the sub-window SW3 is performed first and SW1 is performed next.

[Figure 13 about here.]

Hence, in order to simplify the QSplit procedure, these 36 cases are classified by the

orientation of the original curve. That is, there are four sub-procedures, QSplitA (as shown

in Figure 14), QSplitB (as shown in Figure 15), QSplitC (as shown in Figure 16) and

QSplitD (as shown in Figure 17), performed for the Orientations A, B, C and D curves,

respectively. For each sub-procedure, we can determine which type (0 · · ·8) the window

holds by calling function determineType that can determine which sequence its all sub-

windows will be performed in. Therefore, we can perform each sub-window query to obtain

the responding sorted segments in the determined order of sub-window recursively.

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]
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[Figure 17 about here.]

For example in Figure 11, there are four sub-windows, SW0, SW2, SW3 and SW1,

performed in sequence. That is, since the curve HC(A, 8, 0) has Orientation A, we will call

procedure QSplit(B, 4, 0, 2, 2, 2, 2), QSplit(A, 4, 16, 2, 0, 3, 2), QSplit(A, 4, 32, 0, 0, 3,

1) and QSplit(D, 4, 48, 0, 2, 2, 1) in sequence. Next, for the procedure QSplit(B, 4, 0, 2,

2, 2, 2), since the size of the window W (2, 2, 2, 2) is not that of the Hilbert curve HC(B,

4, 0) and this window W (2, 2, 2, 2) on the curve HC(B, 4, 0) is of type 6, we can call

procedure QSplit(B, 2, 8, 0, 0, 2, 2) to decompose the window W (0, 0, 2, 2) on the curve

HC(B, 2, 8) into the corresponding sorted segments. Then, for procedure QSplit(B, 2, 8,

0, 0, 2, 2), since the size of window is equal to that of curve, it produces the order segment

(8, 11) and adds this segment into the sorted sequence by calling procedure addSequence.

This algorithm works by recursively calling itself with modified its parameters with each

call, until the size of the window is equal to the size of the curve. Figure 18 shows the

process of executing the procedure QSplit(A, 8, 0, 2, 2, 5, 3) and Table 1 shows the detail

of these nodes. First, the procedure QSplit(A, 8, 0, 2, 2, 5, 3), denoted as node 0, will

call procedures QSplit(B, 4, 0, 2, 2, 2, 2) (node 1), QSplit(A, 4, 16, 2, 0, 3, 2) (node 2),

QSplit(A, 4, 32, 0, 0, 3, 1) (node 3) and QSplit(D, 4, 48, 0, 2, 2, 1) (node 4) in sequence.

Next, the procedure QSplit(B, 4, 0, 2, 2, 2, 2) will call procedure QSplit(B, 2, 8, 0, 0,

2, 2) (node 5) and obtain the order segment (8, 11) and add this segment into the sorted

sequence. Finally, a sorted sequence S is obtained. S = {(8,11), (24), (27,32), (35,36),

(53,54)}

[Figure 18 about here.]

[Table 1 about here.]

4 Performance

In this section, we first analyze the time complexity of the proposed algorithm. Then, we

compare the performance of the proposed algorithm with that of Chung et al.’s algorithm.
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4.1 Analysis of Time Complexity

From procedure QSplit, it is known that the sorted Hilbert orders are obtained, while the

size of the window (sub-wundow) is equal to the size of the curve (sub-curve). If the

size of the window (sub-wundow) is not equal to the size of the curve (sub-curve), we use

procedures QSplitA, QSplitB, QSplitC and QSplitD to evenly partition this curve (sub-

curve) into four parts (sub-curves). Since the quadtree is based on a regular decomposition

of space into maximal blocks [13] whose sides are of size a power of two, and are placed

at predetermined positions, the decomposition can be represented as a tree of out-degree

4, with the root (at level 0) corresponding to the whole image, and each level-d node

corresponding to a block of side length T/2d. This decomposition is equivalent to that

procedure QSplit evenly partitions a curve into four parts recursively. Then, we have the

following result.

Lemma 1. For any performed procedure QSplit, if the size of the window (sub-wundow)

is equal to the size of the curve (sub-curve), this window (sub-window) is a maximal block.

For example, in Figure 19, there are nine maximal blocks for a query window W (2, 2, 5, 3)

in an 8× 8 Hilbert curve. We find the result that the leaves in Figure 18 are equivalent to

the maximal blocks in Figure 19, since their lower left coordinates and size are the same.

For example, the leaf, node 5 in Figure 18, is equivalent to the maximal block, B8 in Figure

19.

[Figure 19 about here.]

If we partition the query window into some maximal blocks and use each maximal block

as a query sub-window to perform procedure QSplit, we find that the execution time of the

proposed algorithm is dominated by the total number of generated maximal blocks. That

is, the execution time of the proposed algorithm is bounded by the total execution time for

each query sub-window. Then, we have the following result.

Lemma 2. Given a query window and its maximal blocks are obtained, the execution

time of the proposed algorithm performed for a query window is bounded by the total

execution time of the proposed algorithm for each maximal blocks.

For example, in Figure 19, the execution time of QSplit(8, 0, 2, 2, 5, 3) is bounded by the
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total execution time of each query sub-window which includes maximal blocks B0, B1, · · ·B8.

Given a curve of size T×T , if the query window is the maximal block size of T×T , procedure

QSplit is performed 1 time. If the query window is the maximal block of size T/2 × T/2,

procedure QSplit is performed 2 times. However, If the query window is the maximal block

of size T/2k × T/2k, procedure QSplit is performed k times. Suppose the maximal block

is of size 2m × 2m(= T/2(log
2

T−m) × T/2(log
2

T−m)). It is known that procedure QSplit is

performed (log2 T − m) times to decompose this maximal block into the corresponding

Hilbert orders. Then, we have the following result.

Lemma 3. Given a curve of size T × T , if the query window is the maximal block of

size 2m × 2m, procedure QSplit is performed (log2 T − m) times to decompose the window

(maximal block) into the corresponding Hilbert orders.

For example in Figure 18, we find that procedure QSplit has been performed 3 and 4

times in node 5 and 11, respectively.

Lemma 4. Given a query window of size p × q, there are O(n) maximal blocks in the

worst case, where n = max(p, q) [8].

From Lemma 3, it is known that the maximal block of size 1× 1 takes the longest time,

log2 T , among all maximal blocks. From Lemma 2 and Lemma 4, when all the maximal

blocks are of size 1×1 is the worst case of the proposed algorithm. Therefore, the proposed

algorithm takes O(n log T ) time to decompose the window into the corresponding Hilbert

orders, where n = max(p, q).

Theorem 1. Given a query window of size p×q, the proposed algorithm takes O(n logT )

time to decompose the window (maximal block) into the corresponding Hilbert orders,

where n = max(p, q).

Although the proposed algorithm also takes O(n logT ) time, it does not perform indi-

vidual sorting and merging steps which are needed in Chung et al.’s algorithm. In the next

sub-section, the experiment results show that the proposed algorithm improves Chung et

al.’s algorithm significantly in terms of the processing time.
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4.2 Experiment Results

In this subsection, we compare the performance of the Quad-Splitting algorithm with that

of Chung et al.’s algorithm [8] and evaluate the computing time for the Quad-Splitting

algorithm. All experiments have been performed on the mobile AMD Athlon XP micro-

processor with 1.33G MHz and 1G RAM. The operating system is MS-Windows XP and

all programs are developed by Java 1.6.0. Assume that these inputs are a T × T Hilbert

curve and the size of a query window is p × q. We use the processing time to generate the

corresponding sorted segments in the query window as the performance measure.

First, we set p = q = n, T = 1024 and randomly choose the starting points to generate

10000 query windows. The experimental results for square windows are shown in Table

2 and Figure 20. For square windows with different widths, the total execution time for

performing these 10000 window queries using the Quad-Splitting algorithm and Chung et

al.’s algorithm, which are denoted by Tours and TChung,respectively. The improvement radio

of the execution time required in the proposed algorithm over the Chung et al.’s algorithm

is denoted by R = (TChung −Tours)/TChung × 100% as shown in the final column of Table 2.

From Table 2 and Figure 20, it is observed that the Quad-Splitting algorithm outperforms

Chung et al.’s algorithm and has about 92-97% time improvement. From Figure 20, the

larger the query window becomes, the better the performance is. The reason is that as

the number of segments increases, the processing time of the sorting and merging steps in

Chung et al.’s algorithm will increase.

[Table 2 about here.]

[Figure 20 about here.]

Second, the arbitrary rectangular windows are used as inputs. Ten types of area are used

in the experimentations and they are 1000, 2000, 3000, · · ·, and 10000. For each specific

area, 10000 query windows are generated by randomly choosing the starting points, the

width and the height of the window. The comparison of the execution time between the

Quad-Splitting algorithm and Chung et al.’s algorithm are shown in Table 3 and Figure 21.

From Table 3 and Figure 21, it is observed that the Quad-Splitting algorithm outperforms

Chung et al.’s algorithm and has about 95-98% time improvement. Since Chung et al.’s
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algorithm must execute the sorting and the merging steps, their execution time is more than

ours. From Figure 21, the larger the query window becomes, the better the performance is.

The reason is that as the number of segments increases, the processing time of the sorting

and merging steps in Chung et al.’s algorithm will increase.

[Table 3 about here.]

[Figure 21 about here.]

Next, we study the effect of the size of the Hilbert curve on the query performance

for the Quad-Splitting algorithm. Assume that these inputs are an T × T Hilbert curve

and the size of a query window is 10 × 10. Seven types of the Hilbert curve are used in

the experimentations and their side sizes are 16, 162, 163, · · ·, and 167. For each specific

curve, 100000 query windows are generated by randomly choosing the starting points. The

experimental results are shown in Table 4 and Figure 22. From Figure 22, it is observed

that the execution time of the Quad-Splitting algorithm is approximately linear by varying

the base-16 logarithm of the side size of the curve, i.e. log16T . Therefore, given a fixed size

window and a Hilbert curve of size T ×T , the Quad-Splitting algorithm takes O(log T ) time

to decompose the window into sorted segments on the Hilbert curve. This fits Theorem 1.

[Table 4 about here.]

[Figure 22 about here.]

Finally, we evaluate the effect of the size of the window on the query performance for

the Quad-Splitting algorithm. Assume that these inputs are an 1024× 1024 Hilbert curve

and the size of a query window is p × q. Ten types of the square window (p = q) are

used in the experimentations and their heights (widths) are 100, 200, 300, · · ·, and 1000.

For each specific window, 1000 query windows are generated by randomly choosing the

starting points. From Figure 23, it is observed that the execution time of the Quad-

Splitting algorithm is nearly linear by varying the side size of the window. Therefore, given

a window of size p × q on a fixed size Hilbert curve, the Quad-Splitting algorithm takes

O(n) time to decompose the window into sorted segments on the Hilbert curve, where

n = max(p, q). This fits Theorem 1.

[Figure 23 about here.]
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5 Conclusion

In this paper, we have presented the Quad-Splitting algorithm for decomposing a window

query into sorted segments on a Hilbert curve based on the properties of Hilbert curve.

Given a query window of size p × q on a Hilbert curve of size T × T , the Quad-Splitting

algorithm takes O(n log T ) time to perform the window query, where n = max(p, q). Al-

though the proposed algorithm also takes O(n log T ) time, it does not perform individual

sorting and merging steps which are needed in Chung et al.’s algorithm. From the simu-

lation results, we have shown that the Quad-Splitting algorithm improves Chung et al.’s

algorithm up to 98% in terms of the processing time. The experimental results also confirm

the time complexity analysis.
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Figure 1: Hilbert curves for resolutions r = 1, 2 and 3
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Figure 2: Sample 1: A query window of size 5 × 3 in a Hilbert curve of size 8 × 8
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Figure 3: Four orientations of the unit shape: (a) Orientation A; (b) Orientation B ; (c)
Orientation C ; (d) Orientation D.
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Figure 6: The orientation of each part after a Hilbert curve is evenly partitioned into four
parts for different orientations: (a) Orientation A; (b) Orientation B ; (c) Orientation C ;
(d) Orientation D.
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Figure 7: The minimal orders of each part after partitioning each of different orientation
Hilbert curve into four parts: (a) Orientation A; (b) Orientation B ; (c) Orientation C ; (d)
Orientation D.
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Figure 8: 9 possible relationships for any kind of window queries: (a) Type 0; (b) Type 1;
(c) Type 2; (d) Type 3; (e) Type 4; (f) Type 5; (g) Type 6; (h) Type 7; (i) Type 8.
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Procedure QSplit (oABCD, T , mino, x, y, p, q);
begin
if (T = p) and (T = q) then addSequence(mino, mino + T ∗ T − 1)
else
begin
case oABCD of

A : QSplitA(T , mino, x, y, p, q);
B : QSplitB(T , mino, x, y, p, q);
C : QSplitC (T , mino, x, y, p, q);
D : QSplitD(T , mino, x, y, p, q);

end;
end;

end;

Figure 9: Procedure QSplit
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Procedure addSequence (mins, maxs);
begin
if a sequence S is null
then append this segment (mins, maxs) to S
else
begin
if the last segment in S and this segment (mins, maxs) are consecutive
then merge these two segments
else

append this segment (mins, maxs) to S
end;

end;

Figure 10: Procedure addSequence
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Figure 11: Four sub-window queries, SW0, SW1, SW2 and SW3 among four parts after a
Hilbert curve is evenly partitioned into four parts.
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Figure 12: The sub-windows after partitioning the window for nine types: (a) Type 0; (b)
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Procedure QSplitA (T , mino, x, y, p, q);
begin

N2:= T/2;
N4:= N2 ∗ N2;
type:= determineType();

case type of
0 : QSplit(B, N2, mino, x, y, N2 − y, N2 − x);

QSplit(A, N2, mino + N4, x, 0, y + p − N2, N2 − x);
QSplit(A, N2, mino + N4 ∗ 2, 0, 0, y + p − N2, x + q − N2);
QSplit(D, N2, mino + N4 ∗ 3, 0, y, N2− y, x + q − N2);

1 : QSplit(A, N2, mino + N4, x, y − N2, p, N2 − x);
QSplit(A, N2, mino + N4 ∗ 2, 0, y − N2, p, x + q − N2);

2 : QSplit(B, N2, mino, x, y, p, N2− x);
QSplit(D, N2, mino + N4 ∗ 3, 0, y, p, x + q − N2);

3 : QSplit(B, N2, mino, x, y, N2 − y, q);
QSplit(A, N2, mino + N4, x, 0, y + p − N2, q);

4 : QSplit(A, N2, mino + N4 ∗ 2, x − N2, 0, y + p − N2, q);
QSplit(D, N2, mino + N4 ∗ 3, x − N2, y, N2 − y, q);

5 : QSplit(A, N2, mino + N4, x, y − N2, p, q);

6 : QSplit(A, N2, mino + N4 ∗ 2, x − N2, y − N2, p, q);

7 : QSplit(B, N2, mino, x, y, p, q);

8 : QSplit(D, N2, mino ∗ 3, x − N2, y, p, q);
end;

end;

Figure 14: Procedure QSplitA
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Procedure QSplitB (T , mino, x, y, p, q);
begin

N2:= T/2;
N4:= N2 ∗ N2;
type:= determineType();

case type of
0 : QSplit(A, N2, mino, x, y, N2 − y, N2− x);

QSplit(B, N2, mino + N4, 0, y, N2 − y, x + q − N2);
QSplit(B, N2, mino + N4 ∗ 2, 0, 0, y + p − N2, x + q − N2);
QSplit(C, N2, mino + N4 ∗ 3, x, 0, y + p − N2, N2 − x);

1 : QSplit(B, N2, mino + N4 ∗ 2, 0, y − N2, p, x + q − N2);
QSplit(C, N2, mino + N4 ∗ 3, x, y − N2, p, N2 − x);

2 : QSplit(A, N2, mino, x, y, p, N2 − x);
QSplit(B, N2, mino + N4 ∗ 1, 0, y, p, x + q − N2);

3 : QSplit(A, N2, mino, x, y, N2 − y, q);
QSplit(C, N2, mino + N4 ∗ 3, x, 0, y + p − N2, q);

4 : QSplit(B, N2, mino + N4, x − N2, y, N2− y, q);
QSplit(B, N2, mino + N4 ∗ 2, x − N2, 0, y + p − N2, q);

5 : QSplit(C, N2, mino + N4 ∗ 3, x, y − N2, p, q);

6 : QSplit(B, N2, mino + N4 ∗ 2, x − N2, y − N2, p, q);

7 : QSplit(A, N2, mino, x, y, p, q);

8 : QSplit(B, N2, mino + N4, x − N2, y, p, q);
end;

end;

Figure 15: Procedure QSplitB
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Procedure QSplitC (T , mino, x, y, p, q);
begin

N2:= T/2;
N4:= N2 ∗ N2;
type:= determineType();

case type of
0 : QSplit(D, N2, mino, 0, 0, y + p − N2, x + q − N2);

QSplit(C, N2, mino + N4, 0, y, N2 − y, x + q − N2);
QSplit(C, N2, mino + N4 ∗ 2, x, y, N2 − y, N2 − x);
QSplit(B, N2, mino + N4 ∗ 3, x, 0, y + p − N2, N2 − x);

1 : QSplit(D, N2, mino, 0, y − N2, p, x + q − N2);
QSplit(B, N2, mino + N4 ∗ 3, x, y − N2, p, N2 − x);

2 : QSplit(C, N2, mino + N4, 0, y, p, x + q − N2);
QSplit(C, N2, mino + N4 ∗ 2, x, y, p, N2 − x);

3 : QSplit(C, N2, mino + N4 ∗ 2, x, y, N2 − y, q);
QSplit(B, N2, mino + N4 ∗ 3, x, 0, y + p − N2, q);

4 : QSplit(D, N2, mino, x − N2, 0, y + p − N2, q);
QSplit(C, N2, mino + N4, x − N2, y, N2− y, q);

5 : QSplit(B, N2, mino + N4 ∗ 3, x, y − N2, p, q);

6 : QSplit(D, N2, mino, x − N2, y − N2, p, q);

7 : QSplit(C, N2, mino + N4 ∗ 2, x, y, p, q);

8 : QSplit(C, N2, mino + N4, x − N2, y, p, q);
end;

end;

Figure 16: Procedure QSplitC
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Procedure QSplitD (T , mino, x, y, p, q);
begin

N2:= T/2;
N4:= N2 ∗ N2;
type:= determineType();

case type of
0 : QSplit(C, N2, mino, 0, 0, y + p − N2, x + q − N2);

QSplit(D, N2, mino + N4, x, 0, y + p − N2, N2 − x);
QSplit(D, N2, mino + N4 ∗ 2, x, y, N2− y, N2− x);
QSplit(A, N2, mino + N4 ∗ 3, 0, y, N2 − y, x + q − N2);

1 : QSplit(C, N2, mino, 0, y − N2, p, x + q − N2);
QSplit(D, N2, mino + N4, x, y − N2, p, N2 − x);

2 : QSplit(D, N2, mino + N4 ∗ 2, x, y, p, N2 − x);
QSplit(A, N2, mino + N4 ∗ 3, 0, y, p, x + q − N2);

3 : QSplit(D, N2, mino + N4, x, 0, y + p − N2, q);
QSplit(D, N2, mino + N4 ∗ 2, x, y, N2− y, q);

4 : QSplit(C, N2, mino, x − N2, 0, y + p − N2, q);
QSplit(A, N2, mino + N4 ∗ 3, x − N2, y, N2− y, q);

5 : QSplit(D, N2, mino + N4, x, y − N2, p, q);

6 : QSplit(C, N2, mino, x − N2, y − N2, p, q);

7 : QSplit(D, N2, mino + N4 ∗ 2, x, y, p, q);

8 : QSplit(A, N2, mino + N4 ∗ 3, x − N2, y, p, q);
end;

end;

Figure 17: Procedure QSplitD
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Figure 18: Trace of Sample 1
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Figure 19: The maximal blocks of the query window for Sample 1

40



0


2000


4000


6000


8000


10000


12000


14000


16000


20
 40
 60
 80
 100
 120
 140
 160
 180
 200


Window size n x n


T
ot

al
 ti

m
e 

(m
se

c)



The Quad-Splitting Algorithm

Chung et al.'s Algorithm


Figure 20: A comparison of the total execution time between the Quad-Aplitting algorithm
and Chung et al.’s algorithm by varying the side length of the square window
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The Quad-Splitting Algorithm


Chung et al.'s Algorithm


Figure 21: A comparison of the total execution time between the Quad-Splitting algorithm
and Chung et al.’s algorithm by varying the size of the arbitrary rectangular window

42



150


200


250


300


350


400


1
 2
 3
 4
 5
 6
 7


The base-16 logarithm of the side size of the curve ( 
log
16
T
)


T
ot

al
 ti

m
e 

(m
se

c)



Figure 22: The total execution time of the Quad-Splitting algorithm for 100000 10 × 10
window queries by varying the side size of the Hilbert curve
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Figure 23: The total execution time of the Quad-Splitting algorithm for 1000 window
queries on a 1024 × 1024 Hilbert curve by varying the size of the square window
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Table 1: Detail of nodes in Figure 17

Node ID oABCD T mino x y p q

0 A 8 0 2 2 5 3

1 B 4 0 2 2 2 2

2 A 4 16 2 0 3 2

3 A 4 32 0 0 3 1

4 D 4 48 0 2 2 1

5 B 2 8 0 0 2 2

6 A 2 24 0 0 1 2

7 D 2 28 0 0 2 2

8 B 2 32 0 0 2 1

9 A 2 36 0 0 1 1

10 D 2 52 0 0 2 1

11 B 1 24 0 0 1 1

12 D 1 27 0 0 1 1

13 A 1 32 0 0 1 1

14 C 1 35 0 0 1 1

15 B 1 36 0 0 1 1

16 D 1 53 0 0 1 1

17 D 1 54 0 0 1 1
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Table 2: Experimental results for square windows

Window size n Tours (msec) TChung (msec) R

20 62 812 92.36
40 94 1716 94.52
60 124 2730 95.46
80 187 3869 95.17
100 218 5273 95.87
120 250 6708 96.27
140 296 8315 96.44
160 344 10218 96.63
180 390 12012 96.75
200 421 13931 96.98

47



Table 3: Experimental results for arbitrary rectangular windows

Window area n Tours (msec) TChung (msec) R

1000 219 4711 95.35
2000 296 9220 96.79
3000 343 10889 96.85
4000 374 13635 97.26
5000 452 15896 97.16
6000 390 14259 97.26
7000 422 16738 97.48
8000 468 17456 97.32
9000 437 17487 97.50
10000 514 20545 97.50
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Table 4: Experimental results for 16m × 16m Hilbert curves

T log16T Execution time (msec)
16 1 187
162 2 234
163 3 265
164 4 281
165 5 297
166 6 327
167 7 343
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