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SUMMARY

In an active database system, rules are used to monitor and respond to events that happen
inside the database. This paper presents the implementation of an active database system
called RBE. The system loosely couples OPS5 production system and INGRES database
management system to efficiently monitor databases on complex conditions. In this system,
a table-based Rule-By-Example language, which is also noted as RBE, is designed. The
internal representations of the RBE rule language are production rules; therefore, rules can
be stored, managed, and tested efficiently by using the well-developed pattern matching
algorithm in a production system. In other words, the system applies a production system
and a special production system program to the task of query rewrite trigger processing.
Moreover, a user-friendly interface is used to loosely couple OPS5 rule system with INGRES
DBMS. The architecture used in this system shows the applicability of constructing an
active database system by integrating any production system and any database system.
Moreover, the proposed technique could be used as an implementation method for a query-
rewrite rule system inside a DBMS server, not using a layered approach.

Key Words: active database systems, alerters, artificial intelligence, production systems,
rules, triggers



Introduction

In recent years, various approaches have been suggested for adding active capabilities to
database systems in order to integrate rules and facts and thus simplify the application
programming task. The addition of active capability to database systems was first consid-
ered in order to support specific DBMS functions, such as view maintenance and integrity
constraint enforcement [1], which motivates the design of an active database system. In an
active database system, rules are used to monitor and respond to events that happen inside
the database [2, 3]. Rules can reduce the amount of code that is required in applications
that access the database. Rules can also prevent redundant code that would otherwise be
required when multiple programs perform the same operations on the database. A trigger
is one type of rules in an active database system, which is used to detect some conditions
that happen in a database and then react to the database [4, 5]. Triggering mechanisms of
different types have also been suggested to support the maintenance of materialized views,
snapshots and derived attribute values. Moreover, the functions of rules can enforce ac-
counting rules, automate departmental practices, perform calculations, enforce protection,
create an audit trail, maintain the integrity of the database, support version control and so
on. The essential research in an active database system is to design a user-friendly language
to specify rules to monitor events that happen in a database, and to design a rule manager
to store, manage and test rules efficiently.

Over the last decade, many researchers have proposed active database systems, [6, 7,
8], such as POSTGRES [9, 10, 11, 12, 13, 14], HiPAC [15, 16, 17], Ariel [18, 19] and Starburst
[20, 21]. The POSTGRES system is a next-generation extensible database management
system that can support abstract data types, procedure types and rule types, and business
data types, for data, object and knowledge management. The HiPAC system, an active,
time-constrained, object-oriented DBMS, deals with two main problems: one is handling
timing constraints in databases, and the other is avoiding costly polling by using situation-
action rules. The Ariel system is based on a production system model, which uses a
specially designed discrimination network and a rule-action planner that takes advantage
of the existing query optimizer. The Starburst system is a prototype relational database

system with a focus on extensibility. The rules of the Starburst system are set-oriented,



and the rule system fully integrates rule definition and execution with database processing.
In these active database systems, they are designed from scratch; that is, they tightly
couple the rule manager with the database. Although some researchers [22] argue that a
loosely-coupled system is likely to perform poorly unless the application has certain specific
characteristics, some other researchers [23, 24, 25] argue that a loose-coupling approach has
to work due to the political and economic necessities and due to a loose-coupling approach
concerning wider applicability and flexibility. Note that by loose coupling two systems,
we mean that both systems will maintain their own functionality and will communicate
through a well-defined interface [23, 24], for example, stream processing [25]; while tight-
coupling, on the other hand, implies that at least one system has knowledge of the inner
workings of its counterpart, and that special performance-enhancing access mechanisms
are provided. The idea of a loose-coupling approach is similar to the idea of reusability in
software engineering, which is more economic than a tight-coupling approach. Moreover,
under the consideration of certain criteria such as applications, preexisting environment
and organizational factors, a loose-coupling approach may be a preferred approach [23].
The key performance issue in the rule manager is the time required to identify which
rule or rules to apply. Some of the rule managers in these active systems use a value-driven
mechanism; that is, rules are tested after data has been accessed. Let’s consider an example
of a salary-bonus trigger “whenever a DBMS updates an employee’s salary, the DBMS
should also update the employee’s bonus to the same value as this employee’s salary”.
It 1000 employees’ salaries are updated, a rule manager using a value-driven mechanism
needs 1000 times of interaction with the DBMS to update the employees’ bonuses. This
mechanism causes fine granularity and intensive interaction between the DBMS and its rule
manager. In POSTGRES, in addition to support the above mechanism to process rules,
which is called the marking strategy, there is another rule processing strategy, called the
query rewrite strategy. In the query rewrite strategy, a rule could be applied by converting
a user’s query to an alternate form prior to execution. This transformation is performed
between the query language parser and the optimizer. In the example of the salary-bonus
trigger, if 1000 employees’ salaries are updated, the query rewrite strategy will derive a

new query “update the employees’ bonuses to the same values as their salaries” and then



send this query to the DBMS. Therefore, the strategy reduces the intensive interaction
between the DBMS and the rule manager. This query rewrite strategy can be considered
as an event-driven mechanism, in which it actives rules and derives the set of queries
from these applicable rules before the user’s query accesses the data in the database. The
performance of this event-driven mechanism is good when there are a number of rules on
any given constructed type and those rules cover the whole constructed type. However, in
the implementation of the query rewrite strategy in POSTGRES, it requires four steps to
derive a new query [12].

Actually, the event-driven mechanism well matches the pattern-matching algorithms
used in a production system, if a pattern contain an event, i.e., the user’s query. Moreover,
the rule processing task becomes simple and economic in a production system, since there
are many well developed pattern-matching algorithms, like RETE [26] and TREAT [27],
which have been implemented in a production system, even in parallel, such as parallel
OPS5 that is freely available from Carnegie Mellon University [28]. Therefore, based on
the event-driven mechanism, in this paper, we design and implement an active database
system, called RBE that denotes Rule-By-Example, which loosely couples a production sys-
tem, parallel OPS5 [28, 29], as the rule manager, and a database system, INGRES, which is
the only available traditional relational database in our department, to construct an active
database system, instead of designing from scratch as in other active systems. In this sys-
tem, a Rule-By-Example language that is also noted as RBE is designed, which has similar
syntax as one of relational database languages, Query-By-Example [30]. The internal rep-
resentations of the RBE rule language are production rules. A user-friendly interface that
is written in C is used to loosely couple OPSH rule system with INGRES DBMS as shown
in Figure 1. This interface accepts user’s query, inserts this event into OPS5 rule system to
activate rules and sends the original query with these derived queries to INGRES DBMS.
The system has been implemented on IBM RISC System /6000 workstations by using C,
embedded SQL to call INGRES, and OPS5 languages.



Figure 1: The Structure of RBE

The Language

In this section, we present the syntax of a table-based rule language: Rule-By-Example that
is noted as RBE, describe its internal representation, and show several examples written

in this language.

Syntax of Rules

Based on the requirement of easy-to-use and complete semantic expressibility, a table-based
rule language: RBE, to monitor a database is designed. To input a rule, a C program called
RMX is written to offer users five options: add, update, delete and inquire rules or quit from
the system. The input format of a rule is shown in Figure 2.

A rule name field is used to specify a unique rule name for a user’s convenience. A
priority field records the priority of this rule to control the order of rule execution when
conflicts occur among applicable rules. An integer number between 1 and 5 can be chosen
to represent the priority from low to high. A condition table field specifies these relations
which are to be referred in the condition part, and an action table field specifies the relations
which are to be referred in the action part. A menu-driven user-interface is provided to
enter table names into these two fields. The RMX module has pre-loaded information
about relation names and related attribute names by using embedded SQL [31].

A table inside the condition window can be filled in with any attribute name of the



Condition table : Action table :

Please key in a rule name

Figure 2: Rule-By-Example

relation provided by the menu. This is one more attribute DBMS OP provided by the
system as shown in Figure 3. This attribute is used to represent an event in a DBMS, and
the possible values for this attribute are insert, delete, update and retrieve. The values in
the other attributes have the same expression as that in OPS5 language. For example, <x>
represents a variable x which can match any value in the database. Similarly, a table inside
the action window can be filled in with any attribute name of the relation. Besides, one
more attribute DBMS OP is provided by the system. This attribute is used to represent
the event which is executed by the DBMS, and the possible values for this attribute are
insert, delete, update, retrieve, refuse and show. Note that the operator show is used to
display a message on the screen and the operator refuse is used to reject the incoming event
specified in the condition table.

When the value of DBMS OP is one of insert, delete, retrieve operations, the at-
tributes provided by the system is the same as those in the relation. When the value of
DBMYS OP is a show operation, the system provides one more attribute message. When
the value of DBMS OP is a update operation, the number of attributes provided by the

system have been doubled. For each attribute A in a relation, the system provides one



Condition table : employee

Action table :

Figure 3: The DBMS OP field in a condition table

more attribute U_A to represent the new value after data modification as shown in Figure

4. Therefore, the old and the new values of an attribute A can be simply distinguished by
fields A and U_A, respectively.

The semantics of these two windows is that if the event, the query, specified in the

condition window occurs, then the DBMS should execute the event specified in the action

window. Figure 5 shows an example of a trigger. The semantics of this rule is described as
follows:

if Update department set mgr_no

<y> where dno = <x>
then Update employee set mgr_no

<y> where dno

= <XxX>
That is, whenever the manager of a

certain department is changed, the related man-
ager information should also be changed

in the employee table. Note that the examples
shown in this paper are copied down when the system is in an Inquire Rules mode; there-

fore, a message “Do you want to inquire any rule?” is shown at the bottom of the screen.



U_dno
[ U_name
U_mgr_no
U_bldg
user
CONTINUE
END

Condition table : department Action table :

Figure 4: Attributes provided by RMX when the DBMS OP = update

<Xz <y | | <x <y
Condition table : department Action table : employee
Do yom want to inquire any rule ? (y/n)D

Figure 5: A trigger



The Internal Representation

For efficiency concerns in the storage, management, and tests of rules, a RBE rule is
translated into an internal representation in the form of an OPS5 production rule by the
RMX module.

A rule in OPS5 has the following general form:
(p <identifier>
<conditionl> <condition2> ... <conditionn>
>

<actionl> <action2> ... <actionm>) where n, m >= 1.

Each condition is a triple of object-attribute-value, and is called an element. For
example, element (EMP  ~"name Mary ~bonus 40000) means that element EMP has two
attributes: name and bonus, and the values of these attributes are Mary and 40000, re-
spectively. Events in the action part can make, remove or modify an element.

Basically, a RBE rule contains two queries: one is in the condition part, and the
other one is in the action part. A query is translated into a form of OPS5 elements by an
attribute-value mapping method. For each relation referred to in the query, the relation
name is used as the element name. These attributes names in such an element is the same
as that in the relation, and so does the value related to each attribute. Figure 6 shows
the BNF grammar of the internal representation of the RBE rule language. Therefore, the

internal representation of the example shown in Figure 5 is represented as follows, where

attribute DBMS OP is replaced with dbms:

(p trigger
(department ~dbms update “dno <x> ~U_mgrmno <y>)

>
(make employee ~priority 3 “dbms update “dno <x> ~U_mgrno <y> ))

Examples

In addition to the example of a trigger, alerters and referential integrity are some other
useful functions in an active database system. An alerter is another type of rules in an

active database system, which is used to monitor a database and then report the changes



rule
conditions
actions

condition_operator
action_operator
condition_field
action_field

condition

restriction

atomic_value

predicate
action
expression
operator
rule_id
condition_table
action_table
field_name

(p rule_id conditions* —— > actions*)

(condition_table ~dbms condition_operator condition_field*)

(make action_table ~priority number ~dbms action_operator
action_field*)

delete | update | retrieve | insert

delete | update | retrieve | insert | show | refuse

~ field_name condition

~ field_name action

{restriction*} /* conjunctions */

| restriction

<< any_atom® >> [* disjunctions */

| predicate atomic_value

| variable predicate actomic_value | atomic_value

constant_symbolic_atom | number

| variable /* <symbol atom> */

=l<>|<|<=]>=]|>

atomic_value | expression

number | variable | expression operator expression | ( expression )

+ =11/

constant_symbolic_atom

constant_symbolic_atom

constant_symbolic_atom

constant_symbolic_atom

Figure 6: BNF Grammar for RBE



<x> {<y> = President} | <x> <y>
message
warning
Condition table : employee Action table :; employee
Do you want to inquire any rule ? (y/n)D

Figure 7: An alerter

to users. Figure 7 shows an example of an alerter rule in which whenever an employee’s job
is updated to President, the system should show a warning message. In order to maintain
the consistency of a database, referential integrity is a required service. Figure 8 shows an
example of referential integrity, which states that if a tuple in relation department, where
department.dno = <x> is removed, then there should be no employee working in dno =
<x> department.

Most of the commercial DBMSs do not allow views to be updated since it may result
in data inconsistency in a database. The RBE system provides users to maintain view
consistency by writing rules. Figure 9 shows an example of view consistency control. The
view emp is defined over employee and department tables. Whenever the values in the view
are updated, related values are updated.

In the above examples, all the rules are event-driven. That is, rules are activated
before the events are executed by the DBMS. There are still some rules which are activated
only after the events are executed by the DBMS, i.e., value-driven rules. For value-driven
rules, the system most pre-load some related data. Figure 10 shows an example of a value-
driven rule since the rule can be activated only when the value of the job attribute is
known. This rule states that the president’s salary cannot be known. That is, whenever a

query retrieves the president’s salary, this event should be refused. For our system to work

10



<x> | | <x>

Condition table : department Action table :; employee

Do you want to inquire any rule ? (y/n)[]

Figure 8: Referential integrity

emp update | | employee update

name U_job name U_job

<> {<y> <> nil} <3 <y>

dno U_mgr_no Table DBHS OP

<z {<w> <> nil} department update
dno U_mgr_no
<z> <>

Condition table : emp Action table : department
Do you want to inguire any rule % (y/n)D

Figure 9: View consistency control
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<x> {<y> = President}
salary
<z>
Condition table : employee Action table : employee

Do you want to inquire any rule 2 (y/n)D

Figure 10: A value-driven rule

well in this case, the user or the system should rewrite this value-driven rule into another
rule as shown in Figure 11, where ’- - -7 represents a special mark to the rule manage and
indicates that some data should be pre-loaded. In the case, one more employee table is
needed with the value of DBMS OFP = ’- - -, and the key name of the employee table
and the attribute that contains a constant expression in the original employee table are
also copied into the new added employee table. Note that the attribute that contains a
constant expression in the original employee table is then removed. The interface in the

Y

RBE system pre-loads those data specified in a rule with - - -7 mark into main memory
before accepts user’s queries. In this example, the interface pre-loads the values of the name
and the job attributes for those tuples whose job = President from the employee table into
main memory before accepting user’s queries. However, the rule shown in Figure 11 is still
incorrect to represent for what we want; this rule refuses not only a query that retrieves the
president’s salary, but also a query that retrieves any attribute of the president. The reason
is that the variable <z> shown in the salary attribute can match with any value, even the
null value, i.e.; nil in OPS5. Therefore, the correct rule for this value-driven example is

shown in Figure 12, where the value of the salary attribute that the user tries to protect

should be {<z> <> nil}.
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name salary
a3 €Z>
Table DEMS OP
employee -
name job
<x> {<y> = President}
Condition table : employee Action table : employee

Do you want to inquire any rule ? (y/n)D

Figure 11: A rewritten value-driven rule

<> {«z» «» nil}

Table DBMS OP
employee -—

name job

x> {«<y> = Prezident}

Condition table ;

employee

Action table : employee

Do you want to inquire amy rule ? (y/n)]

Figure 12: A correct value-driven rule

13



The Rule Manager

The pattern matching algorithms used in a production system well match the event-driven
mechanism used in our rule manager, if we let a pattern contain an event, i.e., a query.
Therefore, we use OPS5 production system to implement the rule manager. In the RBE
system, all the rules have been translated into OPS5 production rules by the RMX module.
Note that the syntax checking of the RBE rules also has been done in the RMX module.
Moreover, the RMX module has added some rules to control the interaction between OPS5

and the interface written in C, which are discussed in details in this section.

OPS5 Production System

A production system is composed of three components: a working memory to store data,
a production rule memory to store the rules and an interpreter, i.e., an inference engine,
to choose applicable rules [29].

A working memory that is noted as WM is a collection of elements in OPS5. A
rule contains conditional elements and action elements. Conditional elements are simple
templates to be matched against data items in the WM. Action elements can use three
actions to alter the contents of the working memory: (1) make: add a new element, (2)
remove: delete an old element, and (3) modify: update a matched element.

An interpreter executes the recognize-act cycle between the execution of the applied
rules. First, the interpreter executes the pattern matching phase to recognize those rules
whose condition parts are all satisfied with the current contents of the WM and puts
them into a conflict set. Many efficient pattern matching algorithms have been proposed
[26, 27, 32, 33]. Then the interpreter executes the conflict resolution phase to select one
of these rules from the conflict set by using a pre-defined control strategy. Finally, the
interpreter executes the action part of the dominating rule to update the contents of the
working memory.

Another important feature of OPS5 is that it permits external procedure/function
calls inside the action elements. Depending on the version of OPS5 available, these external
procedures/functions can be coded in the implementation language: Lisp, Bliss or C [28, 29].

Moreover, those external procedures/functions can also insert elements into the WM. For

14



dollar_reset(); /* clear the buffer used between OPS5 and C */
dollar_value(dollar_intern(employee)); /* insert the element name */
dollar_tab(dollar_intern(name)); /* point to an attribute */
dollar_value(dollar_intern(Jack)); /* insert a string value */
dollar_tab(dollar_intern(salary)); /* point to an attribute */
dollar_value(dollar_cvna(atoi(1000))); /* insert an integer value */
dollar_assert(); /* finished */

Figure 13: C codes to insert an element into the WM

example, Figure 13 shows a way to insert an element (employee "name Jack ~salary 1000)

into the WM by using C codes.

The Processing of the Rule Manager

The rule manager written in OPS5 is an output file called rbe.l of the RMX module. This
rbe.l contains rules written by the users and rules to interact with the other two modules
written in C: QUERY and TRANS. The QUERY module is used to input user’s query,
and the TRANS module is used to pre-process user’s query and derived queries, which
are stored in file rule.out, to INGRES. Figure 14 shows the flowchart of the rule manager,
and Figure 15 and Figure 16 show rbe.l when there is only one rule called trigger in the
system. The QUERY module translates user’s query into an OPS5 element and then inserts
the element into the WM. When an applicable rule has been triggered, the new elements
produced in the action part should also be inserted into the WM for further testing.

To distinguish which user’s query activates the derived queries, the rule manager
assigns each user’s query a number and attaches the same number to each derived query.
To record the relationship between the user’s query and these derived queries, a level
attribute is used to denote the level of each query in this tree of derived queries, and a
wid and a pid attributes are used to represent the unique identifier of each query and the
identifier of its father. This relationship affects the execution order of those queries.

In the case that the action part of a rule is a refuse operation, the query which
activates this rule is removed from the WM to prohibit the execution of this query, and a
special mark is sent to the TRANS module to print out the query and a warning message

“The query is refused”. In the case that a query A activates a rule (if A then B) and a rule

15



Figure 14: The flowchart of the rule manager
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(external query)
(external trans)

(literalize output_flag ; When action = on ==> output queries
action ; when action = off ==> output is finished
switch ; when switch = off ==> seq_no should be
seq_no) ; increased by one

(literalize input_query ; define the status of input-query
start) ; the value of start is (on, off)

(literalize employee
dbms eno U_eno name U_name job U_job salary U_salary
comm U_comm mgr_no U_mgr_no dno U_dno tel U_tel

user ; user’s name
priority ; the priority of the rule
level ; the level in the tree of queries
pid ; the uid of its father
uid ; the unique identifier
number) ; the order among user’s queries
(p initial ; start
(start)

-—>
(openfile ruleout |rule.out| out)
(make input_query “start on)
(default ruleout write)

(call query)) ; CALL QUERY

(p to_output ; when no more applicable rule ==> output
(input_query “start omn)

-—>

(make output_flag “action on “seq_no 0))

(p increase_seq_no ; after output, increase the sequence number
(output_flag “action on “switch off “seq_no <kk>)
(input_query “start omn)

-=>
(modify 1 “seq_no (compute <kk> + 1) “switch on))

Figure 15: Rule Manager (rbe.l)
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(p accept_another_query ; the system starts to accept another query
(input_query “start omn)
(output_flag ~“action on “switch on)

-—>
(modify 1) ; change the time tag
(remove 2)
(closefile ruleout)
(call trans) ; CALL TRANS
(openfile ruleout |rule.out| out)
(default ruleout write)
(call query)) ; CALL QUERY

(p exit_the_system ; finished
(input_query “start off)
(output_flag ~“action on “switch on)

-—>
(closefile ruleout)
(call trans) ; CALL TRANS
(halt))

(p output_employee ; Write a query to the output file

(output_flag “action on “seq_no <kk>)
{(employee “dbms <dbmsi> “eno <enol> “U_eno <U_enol> “name <namel>
“U_name <U_namel> ~“job <jobl> “U_job <U_jobl> “salary <salaryi>
“U_salary <U_salaryl> “comm <comml> “U_comm <U_comml1> “mgr_no <mgr_noil>
“U_mgr_no <U_mgr_nol> “dno <dnol> “U_dno <U_dnol> “tel <tell>
“U_tel <U_tell> “user <userl> “priority <priorityil> “level <kk>
“uid <uidil> “pid <pidi1> “number <numberil>) <employeewrite>}
-—>
(write |employee| |“priorityl| <priorityi> |~level| <kk>
[“uid| <uidi> |“pid| <pidi> |~dbms| <dbmsi> |~eno| <enoi>
| "U_enol| <U_enol> | namel| <name> | U_name| <U_nameil>
|~jobl <jobi> |"U_jobl <U_jobi> |“salary| <ryi>
| "U_salary| <U_salaryi> |“comm| <commi> |“U_comm| <U_commi>
| "mgr_no| <mgr_noi> |“U_mgr_no| <U_mgr_nol> |“dno| <dnoi>
["U_dno| <U_dnoi1> |~tell <telil> |"U_tell <U_tell> |“user| <useri>
| "number| <numberi> (crlf))
(modify 1 “switch off)
(remove <employeewrite>))

(p trigger ; user’s rule
(input_query “start omn)
(department “dbms update “dno <x> “U_mgr_no <y>)
-—>
(bind <id>) ; create an uid
(make employee “priority 3 “dbms update “dno <x> “U_mgr_no <y> “pid <idx>
“uid <id> ~level (compute <level> + 1) “number <No> ))

Figure 16: Rule Manager (rbe.l) (continued)
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(p rulel
(employee “dbms update “name Mary “U_salary {<x> <> nil} "level <level>
“number <No> “uid <idx>)
-—>
(bind <id>)
(make employee “priority 3 “dbms update “name John “U_salary (compute <x> + 1000)
“level (compute <level> + 1) “number <No> ~“uid <id> “pid <idx>))

(p rulei-add
(employee ~dbms update “eno nil “name nil “job nil “salary nil
“U_salary {<x1> <> nil}
“comm nil “mgr_no nil “dno nil “tel nil “level <level>
“number <No> ~“uid <idx>)
-=>
(bind <id>)
(make employee “priority 3 “dbms update “name Mary “U_salary <xi1>
“level (compute <level> + 1) “number <No> ~“uid <id> “pid <idx>))

Figure 17: An example of a new added rule

(if A then C), then both queries B and C, have the same value in the level attribute. In
the case that a query A activates a chain of rules, for example, (if A then B), (if B then C),
then query A has level = 1, query B has level = 2 and query C has level = 3. Moreover,
the RMX module may add some more rules in order to make the event-driven mechanism
work well. Consider the following three rules:

rule 1: if Mary’s salary is updated to X, then update John’s salary to X 4+ 1000;

rule 2: if John’s salary is updated to X, then update Tom’s salary to X 4 1000;

rule 3: if Tom’s salary is updated to X, then update Joe’s salary to X 4 1000;

Given a query “update employee set salary = 60007, the rule manager does not
activate those three rules. In order to activate those three rules, the RMX module adds
one more rule for each rule whose condition part contain an update operation at the time
when the rule is added. In this example, for rule 1, the new added rule 1’ specifies that
whenever employee’s salary is updated to a value X and X # nil, update Mary’s salary
to X, as shown in Figure 17. In a similar way, rule 2’ and rule 3’ are added by the RMX
module. Now, given a user’s query “update employee set salary = 60007, the sequence of
rules which are activated is (3°, 3, 2°, 2, 3, 17, 1, 2, 3). That is, finally, Mary’s salary is
6000, John’s salary is 7000, Tom’s salary = 8000, and Joe’s salary = 9000.
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After all applicable rules have been detected, the rule manager writes those queries, in
addition to user’s query, to an output file rule.out. The rule manager then calls the TRANS
module to reorder those queries according to attributes level and priority, translate those
queries represented in elements into SQL commands, and the TRANS module then sends
those commands to INGRES. Note that we also can directly send a SQL command of
a derived query from the rule manager to INGRES whenever a rule is activated. Since
many rules can be activated by the same query, those derived queries may not be executed
according to the derivation relationship and priority, which may result in an unexpected
database state. To define clear rule execution semantics, we design the TRANS module

that will be explained in details in the next section.

The Architecture

The architecture of RBE as shown in Figure 18 contains four parts: RMX, the rule manager,
INGRES DBMS and the interface. The RMX module and the rule manager have been
introduced in previous two sections. Therefore, in this section, we describe the functions

performed in the interface that communicates with OPS5 and INGRES.

The Interface

The interface contains two modules: QUERY and TRANS. The QUERY module first
processes value-driven rules, i.e., it loads related information for those value-driven rules.
For example, for the rule shown in Figure 12, the QUERY module sends the following SQL
command to INGRES (Select name, job from employee where job = “President”). After
getting a result from INGRES, the QUERY module translate the result into the form of
OPS5H elements with DBMS OP =’- - -7 into the WM. After processing value-driven rules,
the QUERY module starts to accept user’s query either written in SQL or in a table form.
The QUERY module then translates user’s query into an OPS5 element, and inserts this
element into the WM.

The semantics of rule execution is implemented in the TRANS module. Note that in
our system, the rule testing task is performed as soon as a user inputs a query. An activated

rule may trigger other rules. However, the system will not execute those activated rules
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Figure 18: The architecture of the RBE system

until all applicable rules are detected. Moreover, two tasks are performed in the TRANS
module: (1) determine the coupling made of the user’s query and derived queries and (2)
determine rule execution order. For the first task, in our RBE system, we treat each query
as a transaction. Therefore, if query A triggers query B, the abortion of query B will not
affect the result of query A, while the abortion of query A will result in the abortion of
query B. We can also easily implement other coupling mode in the TRANS module. For the
second task, the TRANS module reads the output file created from the rule manager. The
output file contains user’s query and derived queries represented in a form of elements. The
TRANS module translates each element into a SQI. command and sends each command to
INGRES. Before these elements are translated into SQL commands, the TRANS module
reorders these elements (i.e., queries) according to the levels of the tree and priority. The
purpose of the reorder algorithm is to determine an execution order. Basically, elements
are executed according to the increasing order of levels, and for the elements in the same
level, they are executed according to the increasing order of priority, from low to high, since
the result of a high priority rule will determine the final system state. Based on this order

algorithm, it is easy to handle an exception case for a rule by assigning the general rule
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(a) (b)

Figure 19: An example of a set of applicable rules: (a) rules; (b) the element index and
priority

a priority lower than the special case. After the new tree structure has been constructed,
an execution order without duplicated execution is determined by tracing the tree in a
depth-first search.

Consider a set of rules as shown in Figure 19-(a), where an edge marked as trl from
a node Mary to a node John, for example, means that whenever Mary’s salary is updated
to a value X, update John’s salary to X 4+ 1000 and is recorded as rule trl. Figure 19-(b)
shows the element index after sorting in an increasing order of levels and priority, and
priority assigned by the users, corresponding to Figure 19-(a). The execution sequence
created from the reorder algorithm is (0, 1, 2,4, 7,9, 3, 5, 6, 8, 10, 11), where the number
represents the element index. Figure 20 shows the output of the set of rules by given a
query “update employee set salary = 6000 where name = "Mary’ 7. In this example, since
the tuple name = ’George’ does not exist in the system, the related query is aborted by the
system. That is, when a query is aborted, all the other queries in the subtree below this
query are aborted. Obviously, the other choice is to treat the whole queries as a transaction;
therefore, once one transaction is aborted, all the queries are aborted.

Each query can be executed dynamically by making use the property of run-time query
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Mary 5000

table : employee

Commit it (y/n) []

The

The

The

The

The

The

The

The

The

The

derived query is (update employee set salary = 7000 where name =
##x% The database system process 0.K. #x#x

derived query is (update employee set salary = 8000 where name =
##x% The database system process 0.K. #x#x

derived query iz (update employee set salary = $000 where name =
##xx The databazse system process 0.K. =#x

derived query iz (update employee set salary = 9000 where name =
### Error from INGRES : This tuple does not exist in DB ###
transaction id = $$0PS_129 abort

derived query is (update employee set salary = 7000 where name =
wxx The database system process 0K, #wx

derived query is (update employee set salary = $000 where name =
wxx The database system process 0K, #wx

derived query is (update employee set salary = $000 where name =
##%%x The database system process 0.K., =#wx

derived query is (update employee set salary = 9000 where name =
##%%x The database system process 0.K., =#wx

derived query is (update employee set salary = 9000 where name =
##%%x The database system process 0.K., =#wx

derived gquery is (update employee set salary = 10000 where name

### Error from INGRES : This tuple does not exist in DB ###

transaction id = $$0PS_135 abort

*Joe’ )

‘Peter’)

*Amy )

'George’ )

*Tom” )

fJuli’)

*Joe’)

'Peter’)

*Amy ')

= 'George’

Figure 20: The output of a derived query
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planning supported by INGRES. And the property allows the host program (C) to send a
command that is unknown to the host program in advance. If the command is not a select
operation, then the host program can simply send the command to INGRES. However, if
the command is a select operation, then the host program must prepare enough memory
storage to store returned data. Figure 21 shows the part of program which performs run

time query planning in C.

The Processing of RBE

Figure 22 shows the the flowchart of the RBE system. First, the RMX module accepts
user’s rules, checks syntax , and translates those rules into OPS5 production rules. In
addition, the RMX module adds some production rules to control the interaction between
OPS5 and the interface. The output file from RMX is an OPS5 program. After the OPS5
program has been compiled, the RBE system starts to accept user’s query by calling a C
program QUERY. The QUERY module accepts user’s query and translates the query into
an element which is then inserted into the WM.

After user’s query has been inserted into the WM, the control is returned back to
OPS5. By the data-driven property, the rule manager activates all applicable rules. The
rule manager then calls a C program TRANS to reorder all the queries and then do run time
query planning. The TRANS module translates each query in the form of elements into a
SQL command, and sends each command to INGRES. This module also shows information
about the status of the results of user’s query and derived queries on the screen. If there

is no more user’s query, the whole system stops.

Discussion

In this section, we discuss the criteria to distinguish event_driven rules from value_driven
rules, and the properties of appropriate applications which can make use of RBE. Then we

make a comparison of the RBE system with other active database systems.
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exec sql include sqlca; /** embedded SQL */ /* wused in the TRANS module */
exec sql include sqlda; /**/
IISQLDA #sqlda = (IISQLDA *)0; /#*/
struct { int res_length;
char *res_data;
} res_buf = {0,NULL};
ingres_call(cmd)
char cmd[180]; /* the command string */
{ exec sql begin declare section; /**/
char *loname; /**/
char err_msg[180]; /*x/
exec sql end declare section; /**/
int row=0;
exec sql connect rbedb; /**/
Init_Sqlda(20); /#* a procedure to allocate memory */
loname=cmd; /* the command string */
exec sql prepare sl from :loname; /* compile the command string */
exec sql describe sl into :sqlda; /**/
if (sqlda->sqld == 0){ /# not a selection operation */
exec sql execute sl; /# execute the command string */
row = sqlca.sqlerrd[2]; } /#*/
else { exec sql declare cl cursor for si; /* open a buffer */
Print_Header(); /* a procedure to print attribute names */
exec sql open c1 for READONLY; /**/
while (sqlca.sqlcode == 0){ /# when execution status is 0.K. */
exec sql fetch cl using descriptor :sqlda; /**/
if (sqlca.sqlcode == 0){ /**/

row++;
Print_Row(); /* a procedure to print a row */
printf(\n);
}
}
}
if (sqlca.sqlcode == 0 || ((sqlca.sqlcode == 100) && (row > 0)))
printf(’’\t*** The database system process 0.K. ***\n’’);
else

if (sqlca.sqlcode == 100)
fprintf (wp,’’\t ### Error from INGRES : This tuple
does not exist in DB ###\n’’);
else { exec sql inquire_sql (:err_msg = errortext);
/** get the error message from INGRES **/
fprintf(wp,’’\t ### Error from INGRES : %s ###\n’’,err_msg); }
exec sql close cl; /**/
exec sql commit; /**/
exec sql disconnect; /**/
return;

Figure 21: Run-time query planning in INGRES with the host language C
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Figure 22: The flowchart of RBE
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Event_driven vs. Value_driven Rules

There are three cases in which a rule can be written as an event-driven rule: (1) the
where clause is omitted, (2) the database operation is an insert operation, and (3) every
expression in each condition element is of the form (~attribute variable). In these three
cases, rules can be activated without accessing the data in the database. For other cases,
a rule should be written in a value-driven rule style. However, if the given application has
some specific properties, then rules other than the above three cases still can be activated
without accessing the data in the databases. For example, this application guarantees that

a user’s query will always exactly match the condition part of a rule.

Properties of Appropriate Applications Based on RBE

To distinguish whether a rule should be written as an event-driven rule or a value-driven rule
as described before, we now point out the properties of appropriate applications that can
make use well of the event-driven mechanism supported in the RBE system. We consider
this problem from two view points: the types of user’s queries and the forms of rules.
First, we consider the form of user’s queries. If user’s queries can exactly match rules,
obviously, it is always event-driven. For example, the following rule can be used for system

protection.
(p rulel
(employee ~dbms delete ~user <> "chenf’)
-->
(modify 1 ~dbms refuse))

If the user’s queries do not contain the where condition, i.e., the scope of the query is
all the tuples in the table, and the action parts of rules do not contain “~dbms refuse”, the
rule can be activated by using the automatically new added rules as shown in Figure 17.

Next, we consider the forms of rules. If the dbms attribute of the condition parts of
a rule contains insert only, obviously, it is an event-driven rule. For example, the following

rule can be used in an inventory control.
(p amount-limitation
(goods ~dbms insert "no 5872 ~amount {<x> > 500})
-=>
(modify 1 ~dbms refuse))
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If the dbms attribute can contain any operation and the rule does not contain the
where condition, it is also an event-driven rule. For example, the following rule ensures
that somebody’s salary and bonus are always equal.

(p rulel
(employee “dbms update ~U _salary <x>)
-->
(make employee “dbms update ~U_bonus <x>))

If every expression in each condition element is of the form (~attribute variable), such
a ruleis an event-driven rule. Appropriate applications contain version control, materialized
view, log, snapshot, referential integrity and derived attribute values. Although some
researchers [22] argued that a loosely-coupled system is likely to perform poorly unless the
application has specific characteristics, in this section, we have shown the properties of

appropriate applications which can make use of the RBE system.

A Comparison

In this Section, we make a comparison of our RBE system with several active databases,
including Ariel, HIPAC, Starburst and POSTGRES, and those commercial systems that
support triggers, including SYBASE, ORACLE and INFORMIX.

Ariel [18, 19] uses a subset of the POSTQUEL query language extended with a new
set-oriented rule language to support production rules. Ariel rules can have conditions
based on a mix of patterns, events and transitions, where a transition in Ariel is defined to
be the changes of the database. HiPAC [15, 16, 17] uses the relational model for the overall
framework and the nested transaction model as the framework for the execution of rules.
Each rule in HiPAC is structured according to the event-condition-action paradigm. Star-
burst [20, 21] provides set-oriented SQL-based production rule language, which are based
on the notion of transitions. POSTGRES [1, 9, 10, 11, 12, 13, 14] allows any POSTQUEL
command to be tagged with three special modifiers, always, re fuse, and one-time, which
change its meaning and such tagged commands become rules. More recently, POSTGRES
proposes a new rule syntax that allows users to specify event-driven rules.

In all database production rule languages, the condition part of a rule specifies a

predicate or query over the data in the database [7]. Table 1 shows examples of rules in
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those databases. In Ariel, the event may be omitted from a rule, in which case triggering
is defined implicitly by the rule’s condition. In HiPAC object-oriented active database,
events can be generic database operations or type-specific operations. In Starburst, an
event can be a disjunction. POSTGRES allows single explicit database triggering events.
In RBE, the events in the condition part can be retrieve, insert, delete or update operations.
Moreover, RBE is the only table-based language, which is more user-friendly.

The action part of a database production rule specifies the operations to be per-
formed when the rule is triggered and its condition is satisfied. In Ariel, Starburst and
POSTGRES, rule actions can be arbitrary sequences of retrieval and modification com-
mands over any data in the database. Rule actions also may specify rollback to abort the
current transaction. Rule actions in HiPAC can contain arbitrary database operations,
transaction operations, rule operations, signals that user-defined events have occurred, or
calls to application procedures. In RBE, the rule actions can be insert, delete, update,
retrieve, refuse or show operations. Moreover, based on the loose-coupling approach, many
extensions can be easily implemented in the interface. For example, rule actions can contain
procedure calls or rollback operations by providing more DBMS operations in the action
window and implementing those functions in the TRANS module.

Many database rule languages allow conditions in rules triggered by database modifi-
cations to refer both to the modified data and to the database state preceding the triggering
event. In Ariel, the old value is referenced using the keyword previous. In HIPAC, the trig-
gering event of a rule may be parameterized, and these parameters may be referred. In
Starburst, a single rule triggering may involve arbitrary combinations of inserted, deleted,
and updated tuples. These changes may be referenced in the condition and action part of
a Starburst rule using transition tables. In POSTGRES, to reference the modified tuple
before and after the triggering event, POSTGRES uses the special tuple variables new and
old. In RBE, the old and the new values of an attributed A can be referenced by fields A
and U_A., respectively.

In Ariel and POSTGRES, rules have numeric priorities. In Starburst, rules are par-
tially ordered. In HiPAC, multiple triggered rules are executed concurrently using an

extended nested transaction model. HiPAC rules may have relative ordering, and this
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Table 1: A Comparison
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ordering is used to influence the serialization order of concurrently executing nested sub-
transactions. In RBE, rules also have numeric priorities.

There are four basic techniques which can be applied in a rule manager [14]: (1) brute
force, (2) discrimination networks, (3) marking, and (4) query rewrite. Brute force entails
maintaining a list of all rules that affect each table in a database. Then, each individual
update is matched against the condition part of each rule in the list to determine which
must be activated. Discrimination networks, such as RETE and TREAT, have been widely
used in expert system shells to speed up this search. The RETE algorithm compiles the
conditions of productions into a binary discrimination network. The third technique is to
utilize a marking system, in which each rule is processed against the database and every
record satisfying the event qualification is identified. Fach record is marked with a flag
identifying the rule to be activated. A fourth implementation technique is called query
rewrite. In this case, each applicable rule is substituted into the user command to produce
a modified command.

For testing rule conditions, Ariel makes use of a discrimination network composed
of a special data structure for testing single-relation selection conditions and a modified
version of the TREAT algorithm, called A-TREAT, for testing join conditions [18]. Ariel
is unique in its use of a selection-predicate index that can efficiently test predicates of rules
on any attribute of a relation.

The HiPAC system applies the following techniques in the rule manager [16]: (1)
multiple condition optimization, (2) materialization and maintenance of intermediate re-
sults, (3) identification of readily ignorable events, (4) incremental evaluation, and (5) using
knowledge of the action parts of rules. Central to the concept of condition monitoring is the
graph abstraction. The graph abstraction is comparable to the RETE network structure
used in OPS5. However, the graph abstraction differs from the RETE network in several
aspects. For example, instead of the recognize-act cycle in the RETE network, HiPAC
intends to concurrently evaluate several conditions using several sub-graphs.

In the implementation of the Starburst rule manager, rule conditions and actions may
refer to transition tables, including inserted, deleted, new-updated, and old-updated tables,

which are logical tables reflecting the changes to the rule table that have occurred during
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the triggering transition [20].

POSTGRES uses several techniques for rule optimization [10, 11, 12], such as index-
ing, cashing, lazy-evaluation, and eager-evaluation. Besides these, it supports tuple level
processing, i.e., the marking strategy, and the query rewrite strategy. A marking strat-
egy is implemented based on individual record accesses and updates to the database. It
will work well if there are many rules, each affecting only a few instance. However, it is
impossible for the query optimizer to construct an efficient execution plan for a chain of
rules that are activated. Moreover, the implementation of the marking mechanism is very
complex, and it may be incorrect [11]. To support a rule like “Joe’s salary should be the
same as Fred’s”, four kinds of markers on different fields or indexes are needed. Therefore,
it has been a big challenge to ensure that markers are correctly installed and appropriate
actions are taken when record accesses and updates occur. Moreover, for rules which cover
many instances but not a significant fraction of all instances, the marking implementation
is not very space efficient. For the query rewrite implementation, a rule could be applied
by converting a user’s query to an alternate form prior to execution. This transformation is
performed between the query language parser and the optimizer. Support for views is done
in this way along with many of the proposals for a recursive query support. It will work
well when there are a small number of rules on any given constructed type and most rules
cover the whole constructed type. However, the number of queries as well as the complexity
of their qualifications increases linearly with the number of rules, which will result in bad
performance unless multiple query optimization techniques are applied. When applicable,
the compile-time approach of query rewrite can be considerable more efficient than the
run-time approach of tuple-level marking processing. When the markers are escalated to
the constructed type, the query rewrite strategy is replaced. Consequently, these two im-
plementation strategies have their own advantages/disadvantages, and are complementary
with each other.

Compared to POSTGRES, in RBE, an event-driven rule processing can cover the
cases that a query rewrite strategy can perform well, and a value-driven rule processing can
cover the cases that a marking strategy can perform well. However, the implementation of

the query rewrite strategy, needs four steps [12]. And, the query rewrite strategy may send
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some extra queries to DBMS and requires multiple query optimization strategy to improve
the performance [10], while RBE will activate only those applicable rules by making use of
well developed pattern matching algorithms no matter how complex a rule is, no matter
the number of rules is large or small, and no matter the overlapped scope of rules is large
or small.

Compared with these active database systems, including Ariel, HIPAC, Starburst and
POSTGRES, the RBE rule system is not designed from scratch. The RBE system loosely
couples the OPSH and INGRES database system. For the other systems, they are designed
from scratch; i.e., they tightly couple the rule manager and the database. Moreover, RBE
applies the event-driven mechanism to design the system, and makes use of well-developed
pattern-matching algorithms used in a production system as the rule manages, as compared
to the marking or transition-table-based mechanisms applied in some other active database
systems.

The semantics of a database production rule language determines how rule processing
will take place at run-time once a set of rules has been defined, including how rules will
interact with the arbitrary database operations and transactions that are submitted by users
and application programs. In Ariel, rule processing is invoked automatically at the end of
each transition and the rules actually consider the net effect of the modifications in the
transition rather than the individual modifications. Rule processing in HiPAC is invoked
whenever any event occurs that triggers one or more rules. In Starburst, rule processing is
invoked automatically at the end of each user transaction that triggers one or more rules. In
addition, users can invoke rule processing within transactions by issuing special commands.
Like Ariel’s, Starburst’s rules consider the net effect of sets of modification, rather than
the individual modification. In POSTGRES, rule processing is invoked immediately after
any modification to any tuple that triggers and satisfies the condition of one or more rules.
This case sometimes is referred to as tuple-oriented rule processing, as opposed to Ariel’s
set-oriented rule processing. In RBE, rule processing is invoked immediately after user’s
query is input and before the query is executed.

Coupling modes determine how rule events, conditions, and actions relate to database

transactions. There are three coupling modes: :mmediate indicating immediate execution:
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deferred indicating execution at the end of the current transaction, and decoupled in
dictating execution in a separate transaction. Ariel and Starburst support deferred mode,
while POSTGRES support immediate coupling mode only. HiPAC proposed a general
execution model, in which the rule definer has the flexibility of deciding whether or not
the conditions and actions should execute in the triggering transaction. In RBE, we can
implement these different options in the interface, i.e., the TRANS module although we
have implemented the immediate mode so far. All the systems allow cascaded execution of
rules.

Commercial DBMSs have been introducing support for triggers at various levels.
However, there are usually some limitation. The trigger events can only be built-in SQL
operations, like update, insert, delete, on a single base table. Triggers over views are not
allowed. Trigger can only be part of the triggering transactions and triggers cannot be
nested. For example, in SYBASE, the condition part of a trigger can only refer to one
table, and only the base table; a trigger cannot be created on a view. Only one trigger
can be associated with an operation on a table. The action part of a trigger is limited to
a sequence of SQL statements. Furthermore, triggering is limited to one level, where the
triggered actions themselves do not cause triggers to be activated. Similarly,in INFORMIX,
a user can create a trigger on a table in the current database; a user cannot create a trigger
on a temporary table, a view, or a system catalog table. Moreover, in INFORMIX, if a
user defines more than one update trigger event on a table, the column lists of the triggers
must be mutually exclusive. For example, in Figure 23, trig2 is illegal because its column
list includes stock num that is a triggering column in trigl. In ORACLE, users must first
decide what kinds of events, such as exiting a certain field, which the triggers should be
activated, and write triggers with explicit specification of those events. There are totally
17 trigger events, for example, pre-field, post-change and post-field are three field triggers.
There are also some restrictions in using SQL commands in a trigger. For example, a user
can only use SELECT commands in a post-change trigger. In RBE, a rule can refer any
number of tables, or views in either the condition part or the action part. Moreover, rule

execution can be nested.

34



CREATE TRIGGER trigl UPDATE OF item_num, stock_num ON items
FOR EACH ROW(EXECUTE PROCEDURE procl);
CREATE TRIGGER trig2 UPDATE OF order_num, stock_ num ON items
FOR EACH ROW(EXECUTE PROCEDURE proc2);

Figure 23: An illegal trigger in INFORMIX

Conclusions

In this paper, we have presented the design of a loosely-coupled active database system
called RBE. In this system, a user-friendly Rule-By-Example language, which has similar
syntax as QBE, is provided. To reduce the intensive interaction between the DBMS and
the rule manager, the system has applied an event-driven mechanism in which rules are
activated before the user’s query accesses the data in the database. An event-driven mech-
anism well matches the pattern-matching algorithms used in a production system, if we
let a pattern contain an event, i.e., a query. Based on this event-driven mechanism, we
have presented an architecture which loosely couples a database system and a production
system to construct the RBE system. We have showed that a loose-coupling system, like
our RBE, can provide a higher flexibility than a tight-coupling system. Moreover, as the
efficiency of the pattern matching algorithms will be further improved by the researchers
working in the research area of artificial intelligence, the performance of our RBE system
will also be improved. The architecture used in this system also has shown the applicability
of constructing an active database system by integrating any production system and any
database system. Moreover, the proposed technique could be used as an implementation
method for a query-rewrite rule system inside a DBMS server, not using a layered approach.
That is, the potential use of rule-based query rewrite processing in a tightly-coupled ar-
rangement could improve the performance of the task of query rewrite trigger processing
in those systems which have ad-hoc query rewrite systems.

In [10], they state that an interface between rule processing systems and database
systems can perform well if the rule system can easily identify a small subset of the data
to be loaded into the working memory of the rule manager. In RBE, when a rule is event-
driven, no data should be loaded into the working memory, but when a rule is value-driven,

we can identify the needed subset of the data to be loaded into the working memory.
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For some functions in like views maintenance, snapshots, derived attribute values and
integrity constraints, our loosely-coupled RBE system can work well and straightforward.
Our approach has shown that a loose-coupling approach is economical and flexible.
Future research can be done in several directions. One of the directions is to extend
the RBE system to support a distributed environment. In a distributed active database
system, two parts can be distributed: data and rules [34, 35]. The most difficult part is how
to activate rules. Moreover, as the rule base for an application grows, problems resulting
from unexpected interactions among rules become more likely to occur. Therefore, the
tools and techniques used to develop and manage large, complex rule bases are also needed
[36, 37]. Furthermore, the workload of an active DBMS consists of two types of actives:
externally generated tasks submitted by users and rule management tasks caused by the
system. How to define a transaction boundary that can provide a good system performance
given varying levels of data contention, rule complexity and data sharing between externally

submitted tasks and the resulting rule management tasks, is also an important research

direction [38, 39].
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