
RBE� A Rule�By�Example Active Database System

Ye�In Chang and Fwo�Long Chen
Department of Applied Mathematics
National Sun Yat�Sen University

Kaohsiung� Taiwan� �����
R�O�C�

�email	 changyi
math�nsysu�edu�tw�

SUMMARY

In an active database system� rules are used to monitor and respond to events that happen
inside the database� This paper presents the implementation of an active database system
called RBE� The system loosely couples OPS� production system and INGRES database
management system to e
cientlymonitor databases on complex conditions� In this system�
a table�based Rule�By�Example language� which is also noted as RBE� is designed� The
internal representations of the RBE rule language are production rules� therefore� rules can
be stored� managed� and tested e
ciently by using the well�developed pattern matching
algorithm in a production system� In other words� the system applies a production system
and a special production system program to the task of query rewrite trigger processing�
Moreover� a user�friendly interface is used to loosely couple OPS� rule system with INGRES
DBMS� The architecture used in this system shows the applicability of constructing an
active database system by integrating any production system and any database system�
Moreover� the proposed technique could be used as an implementation method for a query�
rewrite rule system inside a DBMS server� not using a layered approach�

Key Words� active database systems� alerters� arti�cial intelligence� production systems�
rules� triggers



Introduction

In recent years� various approaches have been suggested for adding active capabilities to

database systems in order to integrate rules and facts and thus simplify the application

programming task� The addition of active capability to database systems was �rst consid�

ered in order to support speci�c DBMS functions� such as view maintenance and integrity

constraint enforcement ���� which motivates the design of an active database system� In an

active database system� rules are used to monitor and respond to events that happen inside

the database ��� ��� Rules can reduce the amount of code that is required in applications

that access the database� Rules can also prevent redundant code that would otherwise be

required when multiple programs perform the same operations on the database� A trigger

is one type of rules in an active database system� which is used to detect some conditions

that happen in a database and then react to the database ��� ��� Triggering mechanisms of

di�erent types have also been suggested to support the maintenance of materialized views�

snapshots and derived attribute values� Moreover� the functions of rules can enforce ac�

counting rules� automate departmental practices� perform calculations� enforce protection�

create an audit trail� maintain the integrity of the database� support version control and so

on� The essential research in an active database system is to design a user�friendly language

to specify rules to monitor events that happen in a database� and to design a rule manager

to store� manage and test rules e
ciently�

Over the last decade� many researchers have proposed active database systems� ��� ��

��� such as POSTGRES ��� ��� ��� ��� ��� ���� HiPAC ���� ��� ���� Ariel ���� ��� and Starburst

���� ���� The POSTGRES system is a next�generation extensible database management

system that can support abstract data types� procedure types and rule types� and business

data types� for data� object and knowledge management� The HiPAC system� an active�

time�constrained� object�oriented DBMS� deals with two main problems	 one is handling

timing constraints in databases� and the other is avoiding costly polling by using situation�

action rules� The Ariel system is based on a production system model� which uses a

specially designed discrimination network and a rule�action planner that takes advantage

of the existing query optimizer� The Starburst system is a prototype relational database

system with a focus on extensibility� The rules of the Starburst system are set�oriented�

�



and the rule system fully integrates rule de�nition and execution with database processing�

In these active database systems� they are designed from scratch� that is� they tightly

couple the rule manager with the database� Although some researchers ���� argue that a

loosely�coupled system is likely to perform poorly unless the application has certain speci�c

characteristics� some other researchers ���� ��� ��� argue that a loose�coupling approach has

to work due to the political and economic necessities and due to a loose�coupling approach

concerning wider applicability and �exibility� Note that by loose coupling two systems�

we mean that both systems will maintain their own functionality and will communicate

through a well�de�ned interface ���� ���� for example� stream processing ����� while tight�

coupling� on the other hand� implies that at least one system has knowledge of the inner

workings of its counterpart� and that special performance�enhancing access mechanisms

are provided� The idea of a loose�coupling approach is similar to the idea of reusability in

software engineering� which is more economic than a tight�coupling approach� Moreover�

under the consideration of certain criteria such as applications� preexisting environment

and organizational factors� a loose�coupling approach may be a preferred approach �����

The key performance issue in the rule manager is the time required to identify which

rule or rules to apply� Some of the rule managers in these active systems use a value�driven

mechanism� that is� rules are tested after data has been accessed� Let�s consider an example

of a salary�bonus trigger �whenever a DBMS updates an employee�s salary� the DBMS

should also update the employee�s bonus to the same value as this employee�s salary��

If ���� employees� salaries are updated� a rule manager using a value�driven mechanism

needs ���� times of interaction with the DBMS to update the employees� bonuses� This

mechanism causes �ne granularity and intensive interaction between the DBMS and its rule

manager� In POSTGRES� in addition to support the above mechanism to process rules�

which is called the marking strategy� there is another rule processing strategy� called the

query rewrite strategy� In the query rewrite strategy� a rule could be applied by converting

a user�s query to an alternate form prior to execution� This transformation is performed

between the query language parser and the optimizer� In the example of the salary�bonus

trigger� if ���� employees� salaries are updated� the query rewrite strategy will derive a

new query �update the employees� bonuses to the same values as their salaries� and then

�



send this query to the DBMS� Therefore� the strategy reduces the intensive interaction

between the DBMS and the rule manager� This query rewrite strategy can be considered

as an event�driven mechanism� in which it actives rules and derives the set of queries

from these applicable rules before the user�s query accesses the data in the database� The

performance of this event�driven mechanism is good when there are a number of rules on

any given constructed type and those rules cover the whole constructed type� However� in

the implementation of the query rewrite strategy in POSTGRES� it requires four steps to

derive a new query �����

Actually� the event�driven mechanism well matches the pattern�matching algorithms

used in a production system� if a pattern contain an event� i�e�� the user�s query� Moreover�

the rule processing task becomes simple and economic in a production system� since there

are many well developed pattern�matching algorithms� like RETE ���� and TREAT �����

which have been implemented in a production system� even in parallel� such as parallel

OPS� that is freely available from Carnegie Mellon University ����� Therefore� based on

the event�driven mechanism� in this paper� we design and implement an active database

system� called RBE that denotes Rule�By�Example� which loosely couples a production sys�

tem� parallel OPS� ���� ���� as the rule manager� and a database system� INGRES� which is

the only available traditional relational database in our department� to construct an active

database system� instead of designing from scratch as in other active systems� In this sys�

tem� a Rule�By�Example language that is also noted as RBE is designed� which has similar

syntax as one of relational database languages� Query�By�Example ����� The internal rep�

resentations of the RBE rule language are production rules� A user�friendly interface that

is written in C is used to loosely couple OPS� rule system with INGRES DBMS as shown

in Figure �� This interface accepts user�s query� inserts this event into OPS� rule system to

activate rules and sends the original query with these derived queries to INGRES DBMS�

The system has been implemented on IBM RISC System����� workstations by using C�

embedded SQL to call INGRES� and OPS� languages�

�



Figure �	 The Structure of RBE

The Language

In this section� we present the syntax of a table�based rule language	 Rule�By�Example that

is noted as RBE� describe its internal representation� and show several examples written

in this language�

Syntax of Rules

Based on the requirement of easy�to�use and complete semantic expressibility� a table�based

rule language	 RBE� to monitor a database is designed� To input a rule� a C program called

RMX is written to o�er users �ve options	 add� update� delete and inquire rules or quit from

the system� The input format of a rule is shown in Figure ��

A rule name �eld is used to specify a unique rule name for a user�s convenience� A

priority �eld records the priority of this rule to control the order of rule execution when

con�icts occur among applicable rules� An integer number between � and � can be chosen

to represent the priority from low to high� A condition table �eld speci�es these relations

which are to be referred in the condition part� and an action table �eld speci�es the relations

which are to be referred in the action part� A menu�driven user�interface is provided to

enter table names into these two �elds� The RMX module has pre�loaded information

about relation names and related attribute names by using embedded SQL �����

A table inside the condition window can be �lled in with any attribute name of the

�



Figure �	 Rule�By�Example

relation provided by the menu� This is one more attribute DBMS OP provided by the

system as shown in Figure �� This attribute is used to represent an event in a DBMS� and

the possible values for this attribute are insert� delete� update and retrieve� The values in

the other attributes have the same expression as that in OPS� language� For example��x�

represents a variable x which can match any value in the database� Similarly� a table inside

the action window can be �lled in with any attribute name of the relation� Besides� one

more attribute DBMS OP is provided by the system� This attribute is used to represent

the event which is executed by the DBMS� and the possible values for this attribute are

insert� delete� update� retrieve� refuse and show� Note that the operator show is used to

display a message on the screen and the operator refuse is used to reject the incoming event

speci�ed in the condition table�

When the value of DBMS OP is one of insert� delete� retrieve operations� the at�

tributes provided by the system is the same as those in the relation� When the value of

DBMS OP is a show operation� the system provides one more attribute message� When

the value of DBMS OP is a update operation� the number of attributes provided by the

system have been doubled� For each attribute A in a relation� the system provides one

�



Figure �	 The DBMS OP �eld in a condition table

more attribute U A to represent the new value after data modi�cation as shown in Figure

�� Therefore� the old and the new values of an attribute A can be simply distinguished by

�elds A and U A� respectively�

The semantics of these two windows is that if the event� the query� speci�ed in the

condition window occurs� then the DBMS should execute the event speci�ed in the action

window� Figure � shows an example of a trigger� The semantics of this rule is described as

follows	

if Update department set mgr no � �y� where dno � �x�

then Update employee set mgr no � �y� where dno � �x�

That is� whenever the manager of a certain department is changed� the related man�

ager information should also be changed in the employee table� Note that the examples

shown in this paper are copied down when the system is in an Inquire Rules mode� there�

fore� a message �Do you want to inquire any rule�� is shown at the bottom of the screen�

�



Figure �	 Attributes provided by RMX when the DBMS OP � update

Figure �	 A trigger

�



The Internal Representation

For e
ciency concerns in the storage� management� and tests of rules� a RBE rule is

translated into an internal representation in the form of an OPS� production rule by the

RMX module�

A rule in OPS� has the following general form	

�p �identi�er�

�condition�� �condition�� ��� �conditionn�

� ��

�action�� �action�� ��� �actionm�� where n� m �� ��

Each condition is a triple of object�attribute�value� and is called an element� For

example� element �EMP �name Mary �bonus ������ means that element EMP has two

attributes	 name and bonus� and the values of these attributes are Mary and ������ re�

spectively� Events in the action part can make� remove or modify an element�

Basically� a RBE rule contains two queries	 one is in the condition part� and the

other one is in the action part� A query is translated into a form of OPS� elements by an

attribute�value mapping method� For each relation referred to in the query� the relation

name is used as the element name� These attributes names in such an element is the same

as that in the relation� and so does the value related to each attribute� Figure � shows

the BNF grammar of the internal representation of the RBE rule language� Therefore� the

internal representation of the example shown in Figure � is represented as follows� where

attribute DBMS OP is replaced with dbms	

�p trigger

�department �dbms update �dno �x� �U mgr no �y��

� ��

�make employee �priority � �dbms update �dno �x� �U mgr no �y� ��

Examples

In addition to the example of a trigger� alerters and referential integrity are some other

useful functions in an active database system� An alerter is another type of rules in an

active database system� which is used to monitor a database and then report the changes

�



rule ��� �p rule id conditions� �� � actions��
conditions ��� �condition table �dbms condition operator condition field��
actions ��� �make action table �priority number �dbms action operator

action field��
condition operator ��� delete j update j retrieve j insert
action operator ��� delete j update j retrieve j insert j show j refuse
condition field ��� �field name condition
action field ��� �field name action
condition ��� frestriction�g �� conjunctions ��

j restriction
restriction ��� �� any atom� �� �� disjunctions ��

j predicate atomic value
j variable predicate actomic value j atomic value

atomic value ��� constant symbolic atom j number
j variable �� �symbol atom� ��

predicate ��� � j �� j � j �� j �� j �
action ��� atomic value j expression
expression ��� number j variable j expression operator expression j � expression �
operator ��� � j � j � j �
rule id ��� constant symbolic atom
condition table ��� constant symbolic atom
action table ��� constant symbolic atom
field name ��� constant symbolic atom

Figure �	 BNF Grammar for RBE

�



Figure �	 An alerter

to users� Figure � shows an example of an alerter rule in which whenever an employee�s job

is updated to President� the system should show a warning message� In order to maintain

the consistency of a database� referential integrity is a required service� Figure � shows an

example of referential integrity� which states that if a tuple in relation department� where

department�dno � �x� is removed� then there should be no employee working in dno �

�x� department�

Most of the commercial DBMSs do not allow views to be updated since it may result

in data inconsistency in a database� The RBE system provides users to maintain view

consistency by writing rules� Figure � shows an example of view consistency control� The

view emp is de�ned over employee and department tables� Whenever the values in the view

are updated� related values are updated�

In the above examples� all the rules are event�driven� That is� rules are activated

before the events are executed by the DBMS� There are still some rules which are activated

only after the events are executed by the DBMS� i�e�� value�driven rules� For value�driven

rules� the system most pre�load some related data� Figure �� shows an example of a value�

driven rule since the rule can be activated only when the value of the job attribute is

known� This rule states that the president�s salary cannot be known� That is� whenever a

query retrieves the president�s salary� this event should be refused� For our system to work

��



Figure �	 Referential integrity

Figure �	 View consistency control

��



Figure ��	 A value�driven rule

well in this case� the user or the system should rewrite this value�driven rule into another

rule as shown in Figure ��� where �� � �� represents a special mark to the rule manage and

indicates that some data should be pre�loaded� In the case� one more employee table is

needed with the value of DBMS OP � �� � ��� and the key name of the employee table

and the attribute that contains a constant expression in the original employee table are

also copied into the new added employee table� Note that the attribute that contains a

constant expression in the original employee table is then removed� The interface in the

RBE system pre�loads those data speci�ed in a rule with �� � �� mark into main memory

before accepts user�s queries� In this example� the interface pre�loads the values of the name

and the job attributes for those tuples whose job � President from the employee table into

main memory before accepting user�s queries� However� the rule shown in Figure �� is still

incorrect to represent for what we want� this rule refuses not only a query that retrieves the

president�s salary� but also a query that retrieves any attribute of the president� The reason

is that the variable �z� shown in the salary attribute can match with any value� even the

null value� i�e�� nil in OPS�� Therefore� the correct rule for this value�driven example is

shown in Figure ��� where the value of the salary attribute that the user tries to protect

should be f�z� �� nilg�

��



Figure ��	 A rewritten value�driven rule

Figure ��	 A correct value�driven rule

��



The Rule Manager

The pattern matching algorithms used in a production system well match the event�driven

mechanism used in our rule manager� if we let a pattern contain an event� i�e�� a query�

Therefore� we use OPS� production system to implement the rule manager� In the RBE

system� all the rules have been translated into OPS� production rules by the RMX module�

Note that the syntax checking of the RBE rules also has been done in the RMX module�

Moreover� the RMX module has added some rules to control the interaction between OPS�

and the interface written in C� which are discussed in details in this section�

OPS� Production System

A production system is composed of three components	 a working memory to store data�

a production rule memory to store the rules and an interpreter� i�e�� an inference engine�

to choose applicable rules �����

A working memory that is noted as WM is a collection of elements in OPS�� A

rule contains conditional elements and action elements� Conditional elements are simple

templates to be matched against data items in the WM� Action elements can use three

actions to alter the contents of the working memory	 ��� make	 add a new element� ���

remove	 delete an old element� and ��� modify	 update a matched element�

An interpreter executes the recognize�act cycle between the execution of the applied

rules� First� the interpreter executes the pattern matching phase to recognize those rules

whose condition parts are all satis�ed with the current contents of the WM and puts

them into a con�ict set� Many e
cient pattern matching algorithms have been proposed

���� ��� ��� ���� Then the interpreter executes the con�ict resolution phase to select one

of these rules from the con�ict set by using a pre�de�ned control strategy� Finally� the

interpreter executes the action part of the dominating rule to update the contents of the

working memory�

Another important feature of OPS� is that it permits external procedure�function

calls inside the action elements� Depending on the version of OPS� available� these external

procedures�functions can be coded in the implementation language	 Lisp� Bliss or C ���� ����

Moreover� those external procedures�functions can also insert elements into the WM� For

��



dollar�reset��� �� clear the buffer used between OPS� and C ��

dollar�value�dollar�intern�employee��� �� insert the element name ��

dollar�tab�dollar�intern�name��� �� point to an attribute ��

dollar�value�dollar�intern�Jack��� �� insert a string value ��

dollar�tab�dollar�intern�salary��� �� point to an attribute ��

dollar�value�dollar�cvna�atoi�	


���� �� insert an integer value ��

dollar�assert��� �� finished ��

Figure ��	 C codes to insert an element into the WM

example� Figure �� shows a way to insert an element �employee �name Jack �salary �����

into the WM by using C codes�

The Processing of the Rule Manager

The rule manager written in OPS� is an output �le called rbe�l of the RMX module� This

rbe�l contains rules written by the users and rules to interact with the other two modules

written in C	 QUERY and TRANS� The QUERY module is used to input user�s query�

and the TRANS module is used to pre�process user�s query and derived queries� which

are stored in �le rule�out� to INGRES� Figure �� shows the �owchart of the rule manager�

and Figure �� and Figure �� show rbe�l when there is only one rule called trigger in the

system� The QUERYmodule translates user�s query into an OPS� element and then inserts

the element into the WM� When an applicable rule has been triggered� the new elements

produced in the action part should also be inserted into the WM for further testing�

To distinguish which user�s query activates the derived queries� the rule manager

assigns each user�s query a number and attaches the same number to each derived query�

To record the relationship between the user�s query and these derived queries� a level

attribute is used to denote the level of each query in this tree of derived queries� and a

uid and a pid attributes are used to represent the unique identi�er of each query and the

identi�er of its father� This relationship a�ects the execution order of those queries�

In the case that the action part of a rule is a refuse operation� the query which

activates this rule is removed from the WM to prohibit the execution of this query� and a

special mark is sent to the TRANS module to print out the query and a warning message

�The query is refused�� In the case that a query A activates a rule �if A then B� and a rule

��



Figure ��	 The �owchart of the rule manager

��



�external query�

�external trans�

�literalize output�flag � when action � on ��� output queries

action � when action � off ��� output is finished

switch � when switch � off ��� seq�no should be

seq�no� � increased by one

�literalize input�query � define the status of input
query

start� � the value of start is �on� off�

�literalize employee

dbms eno U�eno name U�name job U�job salary U�salary

comm U�comm mgr�no U�mgr�no dno U�dno tel U�tel

user � user�s name

priority � the priority of the rule

level � the level in the tree of queries

pid � the uid of its father

uid � the unique identifier

number� � the order among user�s queries

�p initial � start

�start�



�

�openfile ruleout �rule�out� out�

�make input�query �start on�

�default ruleout write�

�call query�� � CALL QUERY

�p to�output � when no more applicable rule ��� output

�input�query �start on�



�

�make output�flag �action on �seq�no 
��

�p increase�seq�no � after output� increase the sequence number

�output�flag �action on �switch off �seq�no �kk��

�input�query �start on�



�

�modify 	 �seq�no �compute �kk� � 	� �switch on��

Figure ��	 Rule Manager �rbe�l�

��



�p accept�another�query � the system starts to accept another query

�input�query �start on�

�output�flag �action on �switch on�



�

�modify 	� � change the time tag

�remove ��

�closefile ruleout�

�call trans� � CALL TRANS

�openfile ruleout �rule�out� out�

�default ruleout write�

�call query�� � CALL QUERY

�p exit�the�system � finished

�input�query �start off�

�output�flag �action on �switch on�



�

�closefile ruleout�

�call trans� � CALL TRANS

�halt��

�p output�employee � write a query to the output file

�output�flag �action on �seq�no �kk��

��employee �dbms �dbms	� �eno �eno	� �U�eno �U�eno	� �name �name	�

�U�name �U�name	� �job �job	� �U�job �U�job	� �salary �salary	�

�U�salary �U�salary	� �comm �comm	� �U�comm �U�comm	� �mgr�no �mgr�no	�

�U�mgr�no �U�mgr�no	� �dno �dno	� �U�dno �U�dno	� �tel �tel	�

�U�tel �U�tel	� �user �user	� �priority �priority	� �level �kk�

�uid �uid	� �pid �pid	� �number �number	�� �employeewrite��



�

�write �employee� ��priority� �priority	� ��level� �kk�

��uid� �uid	� ��pid� �pid	� ��dbms� �dbms	� ��eno� �eno	�

��U�eno� �U�eno	� ��name� �name� ��U�name� �U�name	�

��job� �job	� ��U�job� �U�job	� ��salary� �ry	�

��U�salary� �U�salary	� ��comm� �comm	� ��U�comm� �U�comm	�

��mgr�no� �mgr�no	� ��U�mgr�no� �U�mgr�no	� ��dno� �dno	�

��U�dno� �U�dno	� ��tel� �tel	� ��U�tel� �U�tel	� ��user� �user	�

��number� �number	� �crlf��

�modify 	 �switch off�

�remove �employeewrite���

�p trigger � user�s rule

�input�query �start on�

�department �dbms update �dno �x� �U�mgr�no �y��



�

�bind �id�� � create an uid

�make employee �priority � �dbms update �dno �x� �U�mgr�no �y� �pid �idx�

�uid �id� �level �compute �level� � 	� �number �No� ��

Figure ��	 Rule Manager �rbe�l� �continued�

��



�p rule	

�employee �dbms update �name Mary �U�salary ��x� �� nil� �level �level�

�number �No� �uid �idx��



�

�bind �id��

�make employee �priority � �dbms update �name John �U�salary �compute �x� � 	


�

�level �compute �level� � 	� �number �No� �uid �id� �pid �idx���

�p rule	
add

�employee �dbms update �eno nil �name nil �job nil �salary nil

�U�salary ��x	� �� nil�

�comm nil �mgr�no nil �dno nil �tel nil �level �level�

�number �No� �uid �idx��



�

�bind �id��

�make employee �priority � �dbms update �name Mary �U�salary �x	�

�level �compute �level� � 	� �number �No� �uid �id� �pid �idx���

Figure ��	 An example of a new added rule

�if A then C�� then both queries B and C� have the same value in the level attribute� In

the case that a query A activates a chain of rules� for example� �if A then B�� �if B then C��

then query A has level � �� query B has level � � and query C has level � �� Moreover�

the RMX module may add some more rules in order to make the event�driven mechanism

work well� Consider the following three rules	

rule �	 if Mary�s salary is updated to X� then update John�s salary to X � �����

rule �	 if John�s salary is updated to X� then update Tom�s salary to X � �����

rule �	 if Tom�s salary is updated to X� then update Joe�s salary to X � �����

Given a query �update employee set salary � ������ the rule manager does not

activate those three rules� In order to activate those three rules� the RMX module adds

one more rule for each rule whose condition part contain an update operation at the time

when the rule is added� In this example� for rule �� the new added rule �� speci�es that

whenever employee�s salary is updated to a value X and X �� nil� update Mary�s salary

to X� as shown in Figure ��� In a similar way� rule �� and rule �� are added by the RMX

module� Now� given a user�s query �update employee set salary � ������ the sequence of

rules which are activated is ���� �� ��� �� �� ��� �� �� ��� That is� �nally� Mary�s salary is

����� John�s salary is ����� Tom�s salary � ����� and Joe�s salary � �����

��



After all applicable rules have been detected� the rule manager writes those queries� in

addition to user�s query� to an output �le rule�out� The rule manager then calls the TRANS

module to reorder those queries according to attributes level and priority� translate those

queries represented in elements into SQL commands� and the TRANS module then sends

those commands to INGRES� Note that we also can directly send a SQL command of

a derived query from the rule manager to INGRES whenever a rule is activated� Since

many rules can be activated by the same query� those derived queries may not be executed

according to the derivation relationship and priority� which may result in an unexpected

database state� To de�ne clear rule execution semantics� we design the TRANS module

that will be explained in details in the next section�

The Architecture

The architecture of RBE as shown in Figure �� contains four parts	 RMX� the rule manager�

INGRES DBMS and the interface� The RMX module and the rule manager have been

introduced in previous two sections� Therefore� in this section� we describe the functions

performed in the interface that communicates with OPS� and INGRES�

The Interface

The interface contains two modules	 QUERY and TRANS� The QUERY module �rst

processes value�driven rules� i�e�� it loads related information for those value�driven rules�

For example� for the rule shown in Figure ��� the QUERY module sends the following SQL

command to INGRES �Select name� job from employee where job � �President��� After

getting a result from INGRES� the QUERY module translate the result into the form of

OPS� elements with DBMS OP ��� � �� into the WM� After processing value�driven rules�

the QUERY module starts to accept user�s query either written in SQL or in a table form�

The QUERY module then translates user�s query into an OPS� element� and inserts this

element into the WM�

The semantics of rule execution is implemented in the TRANS module� Note that in

our system� the rule testing task is performed as soon as a user inputs a query� An activated

rule may trigger other rules� However� the system will not execute those activated rules

��



Figure ��	 The architecture of the RBE system

until all applicable rules are detected� Moreover� two tasks are performed in the TRANS

module	 ��� determine the coupling made of the user�s query and derived queries and ���

determine rule execution order� For the �rst task� in our RBE system� we treat each query

as a transaction� Therefore� if query A triggers query B� the abortion of query B will not

a�ect the result of query A� while the abortion of query A will result in the abortion of

query B� We can also easily implement other coupling mode in the TRANS module� For the

second task� the TRANS module reads the output �le created from the rule manager� The

output �le contains user�s query and derived queries represented in a form of elements� The

TRANS module translates each element into a SQL command and sends each command to

INGRES� Before these elements are translated into SQL commands� the TRANS module

reorders these elements �i�e�� queries� according to the levels of the tree and priority� The

purpose of the reorder algorithm is to determine an execution order� Basically� elements

are executed according to the increasing order of levels� and for the elements in the same

level� they are executed according to the increasing order of priority� from low to high� since

the result of a high priority rule will determine the �nal system state� Based on this order

algorithm� it is easy to handle an exception case for a rule by assigning the general rule

��



�a� �b�

Figure ��	 An example of a set of applicable rules	 �a� rules� �b� the element index and
priority

a priority lower than the special case� After the new tree structure has been constructed�

an execution order without duplicated execution is determined by tracing the tree in a

depth��rst search�

Consider a set of rules as shown in Figure ����a�� where an edge marked as tr� from

a node Mary to a node John� for example� means that whenever Mary�s salary is updated

to a value X� update John�s salary to X � ���� and is recorded as rule tr�� Figure ����b�

shows the element index after sorting in an increasing order of levels and priority� and

priority assigned by the users� corresponding to Figure ����a�� The execution sequence

created from the reorder algorithm is ��� �� �� �� �� �� �� �� �� �� ��� ���� where the number

represents the element index� Figure �� shows the output of the set of rules by given a

query �update employee set salary � ���� where name � �Mary� �� In this example� since

the tuple name � �George� does not exist in the system� the related query is aborted by the

system� That is� when a query is aborted� all the other queries in the subtree below this

query are aborted� Obviously� the other choice is to treat the whole queries as a transaction�

therefore� once one transaction is aborted� all the queries are aborted�

Each query can be executed dynamically by making use the property of run�time query

��



Figure ��	 The output of a derived query

��



planning supported by INGRES� And the property allows the host program �C� to send a

command that is unknown to the host program in advance� If the command is not a select

operation� then the host program can simply send the command to INGRES� However� if

the command is a select operation� then the host program must prepare enough memory

storage to store returned data� Figure �� shows the part of program which performs run

time query planning in C�

The Processing of RBE

Figure �� shows the the �owchart of the RBE system� First� the RMX module accepts

user�s rules� checks syntax � and translates those rules into OPS� production rules� In

addition� the RMX module adds some production rules to control the interaction between

OPS� and the interface� The output �le from RMX is an OPS� program� After the OPS�

program has been compiled� the RBE system starts to accept user�s query by calling a C

program QUERY� The QUERY module accepts user�s query and translates the query into

an element which is then inserted into the WM�

After user�s query has been inserted into the WM� the control is returned back to

OPS�� By the data�driven property� the rule manager activates all applicable rules� The

rule manager then calls a C program TRANS to reorder all the queries and then do run time

query planning� The TRANS module translates each query in the form of elements into a

SQL command� and sends each command to INGRES� This module also shows information

about the status of the results of user�s query and derived queries on the screen� If there

is no more user�s query� the whole system stops�

Discussion

In this section� we discuss the criteria to distinguish event driven rules from value driven

rules� and the properties of appropriate applications which can make use of RBE� Then we

make a comparison of the RBE system with other active database systems�

��



exec sql include sqlca� ��� embedded SQL �� �� used in the TRANS module ��

exec sql include sqlda� ����

IISQLDA �sqlda � �IISQLDA ��
� ����

struct � int res�length�

char �res�data�

� res�buf � �
�NULL��

ingres�call�cmd�

char cmd�	�
�� �� the command string ��

� exec sql begin declare section� ����

char �loname� ����

char err�msg�	�
�� ����

exec sql end declare section� ����

int row�
�

exec sql connect rbedb� ����

Init�Sqlda��
�� �� a procedure to allocate memory ��

loname�cmd� �� the command string ��

exec sql prepare s	 from �loname� �� compile the command string ��

exec sql describe s	 into �sqlda� ����

if �sqlda
�sqld �� 
�� �� not a selection operation ��

exec sql execute s	� �� execute the command string ��

row � sqlca�sqlerrd���� � ����

else � exec sql declare c	 cursor for s	� �� open a buffer ��

Print�Header��� �� a procedure to print attribute names ��

exec sql open c	 for READONLY� ����

while �sqlca�sqlcode �� 
�� �� when execution status is O�K� ��

exec sql fetch c	 using descriptor �sqlda� ����

if �sqlca�sqlcode �� 
�� ����

row���

Print�Row��� �� a procedure to print a row ��

printf��n��

�

�

�

if �sqlca�sqlcode �� 
 �� ��sqlca�sqlcode �� 	

� �� �row � 
���

printf����t��� The database system process O�K� ����n����

else

if �sqlca�sqlcode �� 	

�

fprintf�wp����t ��� Error from INGRES � This tuple

does not exist in DB ����n����

else � exec sql inquire�sql ��err�msg � errortext��

��� get the error message from INGRES ���

fprintf�wp����t ��� Error from INGRES � �s ����n���err�msg�� �

exec sql close c	� ����

exec sql commit� ����

exec sql disconnect� ����

return�

�

Figure ��	 Run�time query planning in INGRES with the host language C

��



Figure ��	 The �owchart of RBE

��



Event driven vs� Value driven Rules

There are three cases in which a rule can be written as an event�driven rule	 ��� the

where clause is omitted� ��� the database operation is an insert operation� and ��� every

expression in each condition element is of the form ��attribute variable�� In these three

cases� rules can be activated without accessing the data in the database� For other cases�

a rule should be written in a value�driven rule style� However� if the given application has

some speci�c properties� then rules other than the above three cases still can be activated

without accessing the data in the databases� For example� this application guarantees that

a user�s query will always exactly match the condition part of a rule�

Properties of Appropriate Applications Based on RBE

To distinguish whether a rule should be written as an event�driven rule or a value�driven rule

as described before� we now point out the properties of appropriate applications that can

make use well of the event�driven mechanism supported in the RBE system� We consider

this problem from two view points	 the types of user�s queries and the forms of rules�

First� we consider the form of user�s queries� If user�s queries can exactly match rules�

obviously� it is always event�driven� For example� the following rule can be used for system

protection�

�p rule�

�employee �dbms delete �user �� �chenf��

���

�modify � �dbms refuse��

If the user�s queries do not contain the where condition� i�e�� the scope of the query is

all the tuples in the table� and the action parts of rules do not contain ��dbms refuse�� the

rule can be activated by using the automatically new added rules as shown in Figure ���

Next� we consider the forms of rules� If the dbms attribute of the condition parts of

a rule contains insert only� obviously� it is an event�driven rule� For example� the following

rule can be used in an inventory control�

�p amount�limitation

�goods �dbms insert �no ���� �amount f�x� � ���g�

���

�modify � �dbms refuse��

��



If the dbms attribute can contain any operation and the rule does not contain the

where condition� it is also an event�driven rule� For example� the following rule ensures

that somebody�s salary and bonus are always equal�

�p rule�

�employee �dbms update �U salary �x��

���

�make employee �dbms update �U bonus �x���

If every expression in each condition element is of the form ��attribute variable�� such

a rule is an event�driven rule� Appropriate applications contain version control� materialized

view� log� snapshot� referential integrity and derived attribute values� Although some

researchers ���� argued that a loosely�coupled system is likely to perform poorly unless the

application has speci�c characteristics� in this section� we have shown the properties of

appropriate applications which can make use of the RBE system�

A Comparison

In this Section� we make a comparison of our RBE system with several active databases�

including Ariel� HiPAC� Starburst and POSTGRES� and those commercial systems that

support triggers� including SYBASE� ORACLE and INFORMIX�

Ariel ���� ��� uses a subset of the POSTQUEL query language extended with a new

set�oriented rule language to support production rules� Ariel rules can have conditions

based on a mix of patterns� events and transitions� where a transition in Ariel is de�ned to

be the changes of the database� HiPAC ���� ��� ��� uses the relational model for the overall

framework and the nested transaction model as the framework for the execution of rules�

Each rule in HiPAC is structured according to the event�condition�action paradigm� Star�

burst ���� ��� provides set�oriented SQL�based production rule language� which are based

on the notion of transitions� POSTGRES ��� �� ��� ��� ��� ��� ��� allows any POSTQUEL

command to be tagged with three special modi�ers� always� refuse� and one�time� which

change its meaning and such tagged commands become rules� More recently� POSTGRES

proposes a new rule syntax that allows users to specify event�driven rules�

In all database production rule languages� the condition part of a rule speci�es a

predicate or query over the data in the database ���� Table � shows examples of rules in

��



those databases� In Ariel� the event may be omitted from a rule� in which case triggering

is de�ned implicitly by the rule�s condition� In HiPAC object�oriented active database�

events can be generic database operations or type�speci�c operations� In Starburst� an

event can be a disjunction� POSTGRES allows single explicit database triggering events�

In RBE� the events in the condition part can be retrieve� insert� delete or update operations�

Moreover� RBE is the only table�based language� which is more user�friendly�

The action part of a database production rule speci�es the operations to be per�

formed when the rule is triggered and its condition is satis�ed� In Ariel� Starburst and

POSTGRES� rule actions can be arbitrary sequences of retrieval and modi�cation com�

mands over any data in the database� Rule actions also may specify rollback to abort the

current transaction� Rule actions in HiPAC can contain arbitrary database operations�

transaction operations� rule operations� signals that user�de�ned events have occurred� or

calls to application procedures� In RBE� the rule actions can be insert� delete� update�

retrieve� refuse or show operations� Moreover� based on the loose�coupling approach� many

extensions can be easily implemented in the interface� For example� rule actions can contain

procedure calls or rollback operations by providing more DBMS operations in the action

window and implementing those functions in the TRANS module�

Many database rule languages allow conditions in rules triggered by database modi��

cations to refer both to the modi�ed data and to the database state preceding the triggering

event� In Ariel� the old value is referenced using the keyword previous� In HiPAC� the trig�

gering event of a rule may be parameterized� and these parameters may be referred� In

Starburst� a single rule triggering may involve arbitrary combinations of inserted� deleted�

and updated tuples� These changes may be referenced in the condition and action part of

a Starburst rule using transition tables� In POSTGRES� to reference the modi�ed tuple

before and after the triggering event� POSTGRES uses the special tuple variables new and

old� In RBE� the old and the new values of an attributed A can be referenced by �elds A

and U A� respectively�

In Ariel and POSTGRES� rules have numeric priorities� In Starburst� rules are par�

tially ordered� In HiPAC� multiple triggered rules are executed concurrently using an

extended nested transaction model� HiPAC rules may have relative ordering� and this

��



Table �	 A Comparison

��



ordering is used to in�uence the serialization order of concurrently executing nested sub�

transactions� In RBE� rules also have numeric priorities�

There are four basic techniques which can be applied in a rule manager ����	 ��� brute

force� ��� discrimination networks� ��� marking� and ��� query rewrite� Brute force entails

maintaining a list of all rules that a�ect each table in a database� Then� each individual

update is matched against the condition part of each rule in the list to determine which

must be activated� Discrimination networks� such as RETE and TREAT� have been widely

used in expert system shells to speed up this search� The RETE algorithm compiles the

conditions of productions into a binary discrimination network� The third technique is to

utilize a marking system� in which each rule is processed against the database and every

record satisfying the event quali�cation is identi�ed� Each record is marked with a �ag

identifying the rule to be activated� A fourth implementation technique is called query

rewrite� In this case� each applicable rule is substituted into the user command to produce

a modi�ed command�

For testing rule conditions� Ariel makes use of a discrimination network composed

of a special data structure for testing single�relation selection conditions and a modi�ed

version of the TREAT algorithm� called A�TREAT� for testing join conditions ����� Ariel

is unique in its use of a selection�predicate index that can e
ciently test predicates of rules

on any attribute of a relation�

The HiPAC system applies the following techniques in the rule manager ����	 ���

multiple condition optimization� ��� materialization and maintenance of intermediate re�

sults� ��� identi�cation of readily ignorable events� ��� incremental evaluation� and ��� using

knowledge of the action parts of rules� Central to the concept of condition monitoring is the

graph abstraction� The graph abstraction is comparable to the RETE network structure

used in OPS�� However� the graph abstraction di�ers from the RETE network in several

aspects� For example� instead of the recognize�act cycle in the RETE network� HiPAC

intends to concurrently evaluate several conditions using several sub�graphs�

In the implementation of the Starburst rule manager� rule conditions and actions may

refer to transition tables� including inserted� deleted� new�updated� and old�updated tables�

which are logical tables re�ecting the changes to the rule table that have occurred during

��



the triggering transition �����

POSTGRES uses several techniques for rule optimization ���� ��� ���� such as index�

ing� cashing� lazy�evaluation� and eager�evaluation� Besides these� it supports tuple level

processing� i�e�� the marking strategy� and the query rewrite strategy� A marking strat�

egy is implemented based on individual record accesses and updates to the database� It

will work well if there are many rules� each a�ecting only a few instance� However� it is

impossible for the query optimizer to construct an e
cient execution plan for a chain of

rules that are activated� Moreover� the implementation of the marking mechanism is very

complex� and it may be incorrect ����� To support a rule like �Joe�s salary should be the

same as Fred�s�� four kinds of markers on di�erent �elds or indexes are needed� Therefore�

it has been a big challenge to ensure that markers are correctly installed and appropriate

actions are taken when record accesses and updates occur� Moreover� for rules which cover

many instances but not a signi�cant fraction of all instances� the marking implementation

is not very space e
cient� For the query rewrite implementation� a rule could be applied

by converting a user�s query to an alternate form prior to execution� This transformation is

performed between the query language parser and the optimizer� Support for views is done

in this way along with many of the proposals for a recursive query support� It will work

well when there are a small number of rules on any given constructed type and most rules

cover the whole constructed type� However� the number of queries as well as the complexity

of their quali�cations increases linearly with the number of rules� which will result in bad

performance unless multiple query optimization techniques are applied� When applicable�

the compile�time approach of query rewrite can be considerable more e
cient than the

run�time approach of tuple�level marking processing� When the markers are escalated to

the constructed type� the query rewrite strategy is replaced� Consequently� these two im�

plementation strategies have their own advantages�disadvantages� and are complementary

with each other�

Compared to POSTGRES� in RBE� an event�driven rule processing can cover the

cases that a query rewrite strategy can perform well� and a value�driven rule processing can

cover the cases that a marking strategy can perform well� However� the implementation of

the query rewrite strategy� needs four steps ����� And� the query rewrite strategy may send

��



some extra queries to DBMS and requires multiple query optimization strategy to improve

the performance ����� while RBE will activate only those applicable rules by making use of

well developed pattern matching algorithms no matter how complex a rule is� no matter

the number of rules is large or small� and no matter the overlapped scope of rules is large

or small�

Compared with these active database systems� including Ariel� HiPAC� Starburst and

POSTGRES� the RBE rule system is not designed from scratch� The RBE system loosely

couples the OPS� and INGRES database system� For the other systems� they are designed

from scratch� i�e�� they tightly couple the rule manager and the database� Moreover� RBE

applies the event�driven mechanism to design the system� and makes use of well�developed

pattern�matching algorithms used in a production system as the rule manages� as compared

to the marking or transition�table�based mechanisms applied in some other active database

systems�

The semantics of a database production rule language determines how rule processing

will take place at run�time once a set of rules has been de�ned� including how rules will

interact with the arbitrary database operations and transactions that are submitted by users

and application programs� In Ariel� rule processing is invoked automatically at the end of

each transition and the rules actually consider the net e�ect of the modi�cations in the

transition rather than the individual modi�cations� Rule processing in HiPAC is invoked

whenever any event occurs that triggers one or more rules� In Starburst� rule processing is

invoked automatically at the end of each user transaction that triggers one or more rules� In

addition� users can invoke rule processing within transactions by issuing special commands�

Like Ariel�s� Starburst�s rules consider the net e�ect of sets of modi�cation� rather than

the individual modi�cation� In POSTGRES� rule processing is invoked immediately after

any modi�cation to any tuple that triggers and satis�es the condition of one or more rules�

This case sometimes is referred to as tuple�oriented rule processing� as opposed to Ariel�s

set�oriented rule processing� In RBE� rule processing is invoked immediately after user�s

query is input and before the query is executed�

Coupling modes determine how rule events� conditions� and actions relate to database

transactions� There are three coupling modes	 immediate indicating immediate execution	

��



deferred indicating execution at the end of the current transaction� and decoupled in

dictating execution in a separate transaction� Ariel and Starburst support deferred mode�

while POSTGRES support immediate coupling mode only� HiPAC proposed a general

execution model� in which the rule de�ner has the �exibility of deciding whether or not

the conditions and actions should execute in the triggering transaction� In RBE� we can

implement these di�erent options in the interface� i�e�� the TRANS module although we

have implemented the immediate mode so far� All the systems allow cascaded execution of

rules�

Commercial DBMSs have been introducing support for triggers at various levels�

However� there are usually some limitation� The trigger events can only be built�in SQL

operations� like update� insert� delete� on a single base table� Triggers over views are not

allowed� Trigger can only be part of the triggering transactions and triggers cannot be

nested� For example� in SYBASE� the condition part of a trigger can only refer to one

table� and only the base table� a trigger cannot be created on a view� Only one trigger

can be associated with an operation on a table� The action part of a trigger is limited to

a sequence of SQL statements� Furthermore� triggering is limited to one level� where the

triggered actions themselves do not cause triggers to be activated� Similarly� in INFORMIX�

a user can create a trigger on a table in the current database� a user cannot create a trigger

on a temporary table� a view� or a system catalog table� Moreover� in INFORMIX� if a

user de�nes more than one update trigger event on a table� the column lists of the triggers

must be mutually exclusive� For example� in Figure ��� trig� is illegal because its column

list includes stock num that is a triggering column in trig�� In ORACLE� users must �rst

decide what kinds of events� such as exiting a certain �eld� which the triggers should be

activated� and write triggers with explicit speci�cation of those events� There are totally

�� trigger events� for example� pre��eld� post�change and post��eld are three �eld triggers�

There are also some restrictions in using SQL commands in a trigger� For example� a user

can only use SELECT commands in a post�change trigger� In RBE� a rule can refer any

number of tables� or views in either the condition part or the action part� Moreover� rule

execution can be nested�

��



CREATE TRIGGER trig� UPDATE OF item num	 stock num ON items
FOR EACH ROW�EXECUTE PROCEDURE proc��

CREATE TRIGGER trig� UPDATE OF order num	 stock num ON items
FOR EACH ROW�EXECUTE PROCEDURE proc��


Figure ��	 An illegal trigger in INFORMIX

Conclusions

In this paper� we have presented the design of a loosely�coupled active database system

called RBE� In this system� a user�friendly Rule�By�Example language� which has similar

syntax as QBE� is provided� To reduce the intensive interaction between the DBMS and

the rule manager� the system has applied an event�driven mechanism in which rules are

activated before the user�s query accesses the data in the database� An event�driven mech�

anism well matches the pattern�matching algorithms used in a production system� if we

let a pattern contain an event� i�e�� a query� Based on this event�driven mechanism� we

have presented an architecture which loosely couples a database system and a production

system to construct the RBE system� We have showed that a loose�coupling system� like

our RBE� can provide a higher �exibility than a tight�coupling system� Moreover� as the

e
ciency of the pattern matching algorithms will be further improved by the researchers

working in the research area of arti�cial intelligence� the performance of our RBE system

will also be improved� The architecture used in this system also has shown the applicability

of constructing an active database system by integrating any production system and any

database system� Moreover� the proposed technique could be used as an implementation

method for a query�rewrite rule system inside a DBMS server� not using a layered approach�

That is� the potential use of rule�based query rewrite processing in a tightly�coupled ar�

rangement could improve the performance of the task of query rewrite trigger processing

in those systems which have ad�hoc query rewrite systems�

In ����� they state that an interface between rule processing systems and database

systems can perform well if the rule system can easily identify a small subset of the data

to be loaded into the working memory of the rule manager� In RBE� when a rule is event�

driven� no data should be loaded into the working memory� but when a rule is value�driven�

we can identify the needed subset of the data to be loaded into the working memory�

��



For some functions in like views maintenance� snapshots� derived attribute values and

integrity constraints� our loosely�coupled RBE system can work well and straightforward�

Our approach has shown that a loose�coupling approach is economical and �exible�

Future research can be done in several directions� One of the directions is to extend

the RBE system to support a distributed environment� In a distributed active database

system� two parts can be distributed	 data and rules ���� ���� The most di
cult part is how

to activate rules� Moreover� as the rule base for an application grows� problems resulting

from unexpected interactions among rules become more likely to occur� Therefore� the

tools and techniques used to develop and manage large� complex rule bases are also needed

���� ���� Furthermore� the workload of an active DBMS consists of two types of actives	

externally generated tasks submitted by users and rule management tasks caused by the

system� How to de�ne a transaction boundary that can provide a good system performance

given varying levels of data contention� rule complexity and data sharing between externally

submitted tasks and the resulting rule management tasks� is also an important research

direction ���� ����

Acknowledgements

This research was supported in part by the National Science Council of Republic of China

under Grant No� NSC���������E���������

��



References

��
 M� Stonebraker	 �The Implementation of Integrity Constraints and Views By Query Modi�cation	�
Proc� of ACM�SIGMOD Conf� on Management of Data� pp� �����	 �����

��
 O� P� Buneman and E� K� Clemons	 �E�ciently Monitoring Relational Databases	� ACM Trans� on

Database Systems� Vol� �	 No� �	 pp� �������	 �����

��
 K� R� Dittrich	 A� M� Kotz and J� A� Mulle	 �An Event�Trigger Mechanism to Enforce Complex
Consistency Constraints in Design Database	� SIGMOD Record� Vol� ��	 No� �	 pp� �����	 �����

��
 A� Cornelio and S� B� Navathe	 �Using Active Database Techniques for Real Time Engineering Ap�
plications	� Proc� of ���� IEEE International Conf� on Data Engineering� pp� �������	 �����

��
 C� F� Eick and P� Werstein	 �Rule�Based Consistency Enforcement for Knowledge�Based Systems	�
IEEE Trans� on Knowledge and Data Engineering� Vol� �	 No� �	 pp� �����	 Feb� �����

��
 U� Jaeger and J� C� Freytag	 �An Annotated Bibliography on Active Databases	� SIGMOD Record�

Vol� ��	 No� �	 pp� �����	 March �����

��
 W� Kim	 Modern Database Systems� Chap� ��	 pp� �������	 Addison Wesley	 �����

��
 S� Chakravarthy	 �Early Active Database E�orts� A Capsule Summary	� IEEE Trans� on Knowledge

and Data Engineering� Vol� �	 No� �	 pp� ���������	 Dec� �����

��
 M� Stonebraker and L� Rowe	 �The Design of POSTGRES	� Proc� of ACM�SIGMOD Conf� on Man�

agement of Data� pp� �������	 �����

���
 M� Stonebraker	 E� Hanson and S� Potamianos	 �The POSTGRES Rule Manager	� IEEE Trans� on

Software Engineering� Vol� ��	 No� �	 pp� �������	 �����

���
 M� Stonebraker	 L� A� Rowe and M� Hirohama	 �The Implementation of POSTGRES	� IEEE Trans�

on Knowledge and Data Engineering� Vol� �	 No� �	 pp� �������	 �����

���
 M� Stonebraker	 A� Jhingran	 J� Goh and Spyros Potamianos	 �On Rules	 Procedures	 Caching and
Views in Data Base Systems	� Proc� of ACM�SIGMOD Conf� on Management of Data� pp� �������	
�����

���
 M� Stonebraker and G� Kemnitz	 �The POSTGRES Next�Generation Database Management System�	
Comm� of the ACM� Vol� ��	 No� ��	 pp� �����	 �����

���
 M� Stonebraker	 �The Integration of Rule Systems and Database Systems	� IEEE Trans� on Knowledge

and Data Engineering� Vol� �	 No� �	 pp� �������	 �����

���
 U� Dayal	 �Active Database Management System	� Proc� of the International Conf� on Data and

Knowledge Bases� pp� �������	 �����

���
 U� Dayal	 B� Blaustein	 A� Buchmann	 U� Chakravarthy	M� Hsu	 R� Ledin	 D�McCarthy	 A� Rosenthal	
S� Sarin	 M�J� Cary	 M� Livny and R� Jauhari	 �The HiPAC Project� Combining Active Database and
Timing Constraints	� SIGMOD Record� Vol� ��	 No� �	 pp� �����	 �����

���
 D� McCarthy and U� Dayal	 �The Architecture of an Active Database Management System	� Proc� of
ACM SIGMOD Conf� on Management of Data� pp� �������	 �����

���
 E� N� Hanson	 �Rule Condition Testing and Action Execution in Ariel	� Proc� of ACM SIGMOD

Conf� on Management of Data� pp� �����	 �����

���
 E� N� Hanson	 �The Design and Implementation of the Ariel Active Database Rule System	� IEEE

Trans� on Knowledge and Data Engineering� Vol� �	 No� �	 pp��������	 Feb� �����

���
 l� Haas	 G� L� W� Chang	 J� McPherson	 P� Wilms	 G� Lapis	 B� Lindsay	 H� Pirahesh	 M� Carey
and E� Shekita	 �Starburst Mid�ight� as the Dust Clears	� IEEE Trans� on Knowledge and Data

Engineering� Vol� �	 No� �	 pp� �������	 �����

��



���
 G� M� Lohman	 B� Lindsay	 H� Pirahesh and K� B� Schiefer	 �Extensions to Starburst� Objects	 Types	
Functions and Rules	� Comm� of the ACM� Vol� ��	 No� ��	 pp� ������	 Oct� �����

���
 M� Stonebraker	 ED�	 Readings in Database Systems� Los Altos	 CA� Morgan�Kaufman	 pp� �������	
�����

���
 A� P� Sheth	 �Does Loose AI�DBMS Coupling Stand a Chance	� Proc� of ���� IEEE International

Conference on data Engineering	 pp� �������	 �����

���
 L� Kerschberg	 �The Role of Loose Coupling in Expert Database System Architectures	� Proc� of ����

IEEE International Conference on data Engineering	 pp� �������	 �����

���
 D� S� Parker� �Integrating AI and DBMS Through Stream Processing	� Proc� of ���� IEEE Interna�

tional Conference on Data Engineering	 pp� �������	 �����

���
 C� Forgy	 �RETE� A Fast Algorithm for the Many Pattern�Many Object Pattern Match Problem	�
Arti�cial Intelligence� Vol� ��	 No� �	 pp� �����	 �����

���
 D� Miranker	 �TREAT� A Better Match Algorithm for AI Production Systems	� Proc� of AAAI

Conference on Arti�cial Intelligence� pp� �����	 �����

���
 D� Kalp	 M� Tambe	 A� Gupta	 C� Forgy	 A� Newell	 A� Acharya	 B� Milnes and K� Swedlow	 �Par�
allel OPS� User�s Manual	� Technical Report CMU�CS������	� Dept� of Computer Science	 Carnegie
Mellon Univ� �����

���
 L� Brownston	 R� Farrel	 E� Kart and N� Martin	 Programming Expert Systems in OPS
� Addison�
Wesley Publishing Company	 �����

���
 M� M� Zloof	 �Query�By�Example� A Database Language	� IBM System Journal� Vol� ��	 No� �	 pp�
�������	 �����

���
 C� J� Date	 An Introduction to Database Systems� Vol� �	 Addision�Wesley Publishing Company	
Reading Massachusetts	 �th edition	 �����

���
 T� Ishida	 �An Optimization Algorithm for Production Systems	� IEEE Trans� on Knowledge and

Data Engineering� Vol� �	 No� �	 pp� �������	 August �����

���
 A� J� Pasik	 �A Source�to�Source Transformation for Increasing Rule�Based System Parallelsim	� IEEE
Trans� on Knowledge and Data Engineering� Vol� �	 No� �	 pp� �������	 August �����

���
 A� Gupta and J� Widom	 �Local Veri�cation of Global Integrity Constraints in Distributed Databases	�
Proc� of ���� ACM SIGMOD� pp� �����	 �����

���
 I� M� Hsu	 M� Singhal and M� T� Liu	 �Distributed Rule Processing in Active Databases	� Proc� of

���� IEEE International Conf� on Data Engineering� pp� �������	 �����

���
 D� A� Brant and D� P� Miranker	 �Index Support for Ruled Activation	� Proc� of ���� ACM SIGMOD�

pp� �����	 �����

���
 T� Sellis	 C� C� Lin and L� Raschid	 �Coupling Production System and Database Systems� A Homo�
geneous Approach	� IEEE Trans� on Knowledge and Data Engineering� Vol� �	 No� �	 pp� �������	
April �����

���
 M� J� Carey	 R� Jauhari and M� Livny	 �On Transaction Boundaries in Active Database� A Perfor�
mance Perspective	� IEEE Trans� on Knowledge and Data Engineering� Vol� �	 No� �	 pp� �������	
September �����

���
 M� Hsu	 R� Ladin and D� R� McCarthy	 �An Execution Model for Active Data Management Systems	�
Proc� of International Conf� on Data and Knowledge Base� pp� �������	 �����

��


