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Abstract—Traditional clustering algorithms consider all
of the dimensions of an input dataset in an attempt to
learn as much as possible about each object described.
In the high dimensional data, however, many of the
dimensions are often irrelevant. Therefore, projected clus-
tering is proposed. The DOC algorithm is one of well-
known density-based algorithms for projected clustering.
The FPC algorithm is an extended version of the DOC
algorithm, it uses the mining large itemsets approach to
find the dimensions of projected cluster. Although the FPC
algorithm has used the technique of mining large itemsets
to speed up finding projected clusters, it still needs many
user-specified parameters to work. Moreover, the FPC
algorithm applies a random approach for several times to
get the medoid, which takes long time and may still find a
bad medoid. Furthermore, the way to calculate the quality
of a cluster can be considered in more details, if we take
the weight of dimensions into consideration. In this paper,
we propose an algorithm, PRPC (Parameter-Relationship-
based approach for Projected Clustering), which improves
those disadvantages. From our simulation results, we show
that our algorithm is better than the FPC algorithm, in
term of the execution time and the quality of clustering.

Index Terms—Clustering, Data Mining, Density-based,
Large Itemset, Projected Clustering.

I. INTRODUCTION

The clustering problem has been discussed exten-
sively in the database literature as a tool for simi-
larity search, customer segmentation, pattern recog-
nition, trend analysis, classification, bioinformatics
[7], [17], and so on. In spatial data mining, cluster-
ing is a useful technique for discovering interesting
data distributions and patterns in the underlying
data. Given a large set of multidimensional data
points, the data space is usually not uniformly occu-
pied by the data points. Data clustering identifies the
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Fig. 1. The object of clustering

sparse and the crowded places, and hence discovers
the overall distribution patterns of the data set [8].

The problem of clustering can be defined formally
as follows: given � data points in a

�
-dimensional

metric space, partition the data points into � clusters
such that the data points within a cluster are more
similar to each other than data points in different
clusters [11]. An example of clustering is depicted
in Figure 1. The input patterns are shown in Fig-
ure 1-(a), and the desired clusters are shown in
Figure 1-(b). In general, the clustering algorithms
can be classified into three approaches: partition,
hierarchical and density-based approaches. For the
partitioning approach, there are � -means [13], PAM
[13], CLARA [13], and CLARANS [15]. For the
hierarchical approach, there are HAC [18], BIRCH
[26], ROCK [10], and CURE [11]. For the density-
base approach, there are CLIQUE [4], CAST [7],
DBSCAN [9], and CDC [27].

Technology advances have made data collection
easier and faster, resulting in larger, more com-
plex datasets with many objects and dimensions.
quality and speed. Traditional clustering algorithms
consider all of the dimensions of an input datasets
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Fig. 2. Two clusters with different subspace: (a) cluster ��� ( � - �
space); (b) cluster �	� ( � - 
 space).

in an attempt to learn as much as possible about
each object described. In high dimensional data,
however, many of the dimensions are often ir-
relevant. These irrelevant dimensions can confuse
clustering algorithms by hiding clusters in noisy
data. Feature selection methods have been employed
somewhat successfully to improve cluster quality.
These algorithms find a subset of dimensions on
which to perform clustering by removing irrelevant
and redundant dimensions. Unlike feature selection
methods which examine the datasets as a whole,
subspace clustering algorithms localize their search
and are able to uncover clusters that exist in multi-
ple, possibly overlapping subspaces.

Another reason that many clustering algorithms
struggle with high dimensional data is the curse
of dimensionality. As the number of dimensions
in a datasets increases, distance measures become
increasingly meaningless. Additional dimensions
spread out the points until, they are almost equidis-
tant from each other in very high dimensions.

Projected clustering algorithms are one answer to
those challenges [1], [2], [3], [4], [6], [14], [16],
[19], [20], [21], [22], [23], [24], [25]. A projected
cluster is a subset � of data points together with a
subset � of dimensions such that the points in � are
closely clustered in the subspace of dimensions � .
In Figure 2, two clusters exist in two different pro-
jected subspaces. Cluster �� exists in projected � – �
space, and cluster ��� exists in projected � – � space.
We can divide the approaches of projected clustering
into three classification: partitioning, density-based
and hierarchical. In this paper, we focus on density-
based projected clustering.

In density-based approach, users must give pa-

rameters � and � . Parameter � is the density
threshold of a cluster, i.e, the number of points
in the cluster must be larger than this threshold.
Parameter � is the width of a cluster. The density-
based approach does not need users to determining
the number of clusters, and the resulting clusters are
good with the high probability. The DOC algorithm
[16] is the density-based clustering algorithm. The
DOC algorithm develops a Monte Carlo algorithm
for iteratively computing projected clusters, and the
quality of cluster is good with the high probability.
But, it still has some disadvantages, it needs long
time to find all clusters in the data space, and it
needs too many parameters. If parameters are not
given advisably, the quality of the result will be se-
riously downgrade. The way of the DOC algorithm
to find relevant dimensions is not efficient. It must
execute long time to find the relevant dimensions,
and the relevant dimensions that it finds is not
always very suitable.

The FPC algorithm [24] is an extended version of
the DOC algorithm, it uses the mining large itemsets
approach to find the dimensions of projected cluster.
It improves the way of selecting the dimensions of
the DOC [16] algorithm. Finding the large itemsets
is the main goal of mining association rules. The
FPC algorithm finds the relationship between pro-
jected clustering and mining association rules, and
translates the datasets into a transaction database
with the medoid and the parameter � . Each point
and each dimension in the datasets are a transaction
and an item in the transaction database, respectively.
The items of a maximum large itemset are the
related dimensions of the cluster, and the transaction
that contains the maximum large itemset is the point
of the cluster.

Although the FPC algorithm has used the tech-
nique of mining large itemsets to speed up find-
ing projected clusters, it still needs three input
parameters. Moreover, in the first step, to choose
the medoid, the FPC algorithm applies a random
approach for several times to get the medoid, which
takes long time and may still find a bad medoid.
Furthermore, the way to calculate the quality of a
cluster can be considered in more details, if we
take the weight of dimensions into consideration.
Therefore, in this paper, we propose an algorithm,
PRPC (Parameter-Relationship-based approach for



Projected Clustering), which improves those disad-
vantages.

The rest of this paper is organized as follows. In
Section 2, we give a survey of some well-known
projected clustering algorithms. In Section 3, we
present a new projected clustering algorithm. In
Section 4, we give a comparison of the performance
of our new algorithm with the FPC algorithm.
Finally, we give the conclusion and point out some
future research directions in Section 5.

II. RELATED WORKS

In this section, we give a survey of some well-
known projected clustering algorithms in recent
years. First, we describe the DOC algorithm. Then,
we describe the FPC algorithm that improves the
DOC algorithm.

A. DOC

In the density-based approach, DOC [16], each
cluster is defined as a hypercube with width ��� ,
where � is a user parameter which defines the
width of cluster of each dimension. The clusters
are formed one after another. To find a cluster, a
pivot point is randomly chosen as the cluster center
and a small set of objects is randomly sampled to
form a tentative cluster around the pivot point. A
dimension is selected if and only if the distance
between the projected values of every sample and
the pivot point on the dimension is less than � . The
tentative cluster is thus bounded by a hypercube
with width ��� . All objects in the dataset falling
into the hypercube are grouped to form a candidate
cluster. Many random samples and pivot points are
then tried to form more candidate clusters, and a
specially designed function is used to evaluate the
quality of them. The candidate cluster with the best
evaluation score is accepted, and the whole process
is repeated to find other clusters.

Let � be a collection of � ��� � -dimensional points������� ! � �" "#$#$#$ �	%!& in ' % . A projected cluster in � is
a pair � �( )� & , where � is a subset of points and � is
a subset of dimensions. A projected cluster must be
dense. Specifically, the distance between every two
points � and * in � in every dimension +-,.� must
be at most � , where � is a problem parameter define
the width of cluster of each dimension. Moreover,
the size � ��� of cluster � (i.e, number of points in � )
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Fig. 3. A example of definition 1: (a) a cluster with the number of
points which is less than dense threshold. (b) a cluster with number
of points which is larger than dense threshold.

should be at least �/� ��� , where 0213�4165 is a user
parameter. Formally:

Definition 1: Let � be a set of points in ' % .
Given a set of points �879� , a set of dimensions
� , and parameters 02:;�41<5 and �;=>0 , � �( )� & is
a projected cluster if

1) � ���@?A�/� ��� ,
2) B�+-,C�D FEHGI�@J"K�L �NMPO E�+ ��Q K�L�* M 1R� , and
3) B�+TS,C�D FEHGI�@J"K�L �NMPO E�+ ��Q K�L�* M =U� .

Figure 3 shown the example of definition 1. There
are 14 points in dimension G and V . The � is 0.6 that
decide by user. First, we pick X points to decide the
dimension which the cluster correlates with. Then,
we can draw the WXJ"Y % . WZJ"Y % is the candidate cluster.
Finally, we calculate the number of points in W�J"Y % .
If the number of points in WXJ"Y % is less than 0[# \^]^5"\ ,
the cluster will be discard and repeat these steps. In
Figure 3-(a), the distance from point � to another
point in WZJ"Y _ on dimension G is less than � . In Figure
3-(b), the distance from point � to another points in
WZJ"Y ` on dimension V is less than � . In Figure 3-(a),
the number of points in WXJ"Y _ is less than �/� ��� , so it
can not be a cluster(i.e, � ��a )�b &��c� 0[ )0 & ). On the
other hand, in Figure 3-(b), the number of points in
WZJ"Y ` is larger than � , so it will be a cluster � ���" )�d� & .

Definition 2: Let G be the number of points in a
projected cluster � . Let V be the dimensionality of
� . The quality of cluster � is defined by

e-� G	 )V &f� Ghg � i & `
Large j favors large clusters with small subspaces

over small ones of high-dimensionality and vice-
versa. DOC uses this definition to estimate the



ID kml k"n k"o kqp
1 1 2 3 8
2 2 1 9 6
3 3 2 6 3
4 4 8 1 2
5 9 6 2 1
6 7 3 3 2

Fig. 4. The dataset with four dimensions

ID Itemset
1 rFkmltsuk"n)v
2 rFkmltsuk"n)v
3 rFkmltsuk"nasuk"oasukqpav
4 rFkmltsukqpav
5 rFkqp)v
6 rFk"n)sukqpav

Fig. 5. The transaction database

quality of cluster. It outputs a cluster that has the
best quality every time.

B. Frequent-Pattern-based Clustering

FPC (Frequent-Pattern-based Clustering) [24] is
the algorithm that improves the DOC [16], and
first associates with the algorithm of mining large
itemsets. It uses the miming associate rule to find
the relevant dimensions of cluster. After finding
the relevant dimensions, FPC uses the algorithm
of DOC to find cluster. DOC discovers one cluster
at a time, and FPC does too. Before using the
mining associate rule to find the relevant subspace,
we need to map the dataset to transaction database.
The large itemset in the transaction database is
equal to the subspace in dataset, and its support
in the transaction database is equal to the size of
cluster in this subspace. In Figure 4 is the original
dataset, there are six points with four dimensions.
FPC chooses the medoid randomly, and uses this
medoid to create the transaction database. The point
with ID = 3 is chosen as a medoid randomly, and the
� is 2 that decided by users. If the distance between
points and medoid with this dimension is less or
equal than 2 ( � � � ), this dimension is chosen as
an item of itemset. The result is shown as Figure 5.
After finding the maximum large itemsets, we can

find two clusters with wxGNa )Gy�qz and wxGI{"z . The result
of FPC is shown in Figure 6. Then, we input the

ID Itemset
1 rFkml , k"n)v
2 rFkml , k"n)v
3 rFkml , k"n , k"o , kqpav

ID Itemset
4 rFkml , kqpav
5 rFkqp)v
6 rFk"n , kqpav

(a) (b)

Fig. 6. The results: (a) �|� ( }�~����u� is ���������q��� ) ; (b) �	� ( }�~����u�
is ���!��� ).
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Fig. 7. The refinement step

result into refinement step, and output the best one
to users.

In the refinement step, there are two formulas for
measure the quality of clusters.

1) e-� G	 )V &-� G�g � i & ` ,
2) ' � �( )� &f�c�H�t�)� %�M����$�|� � Y � � L	�$�� L �
Formula 1 is from [16], and formula 2 is from

[2]. Let G be the number of points in a cluster
C. Let V be the number of dimensions in cluster
C. � � � & is the centroid of cluster C, defined by
� � � &�M�� �H�t�)� �a � L � for each dimension + . In order
to dealing with clusters that have different number
of dimensions fair, we use Manhattan segmental
distance. Given two points � and * , their Manhattan
segmental distance in subspace � is defined as� +�¡q¢�£ ���  F* &f�c�   � � � J  ¥¤�Q¦  �� £ � , where � �§� is the number
of dimensions in � . j is a user parameter that
indicates the importance of between points and
dimensions. Formula 1 is a quality measure formula,
and FPC uses it to measure the quality of a cluster.
Formula 2 is a spread measure formula that is used
to determine the compactness of a cluster. The best
cluster has high quality and small spread. After
calculating the e and ' � �( )� & , the result will be
ranking. The result is shown in Figure 7. In Figure
8, the sum of ranking of e and ' � �( )� & is be
considered to select to the best cluster. The best
cluster that has the minimum sum will be output.

III. A PARAMETER-RELATIONSHIP-BASED
APPROACH

In this section, we present our parameter-
relationship-based approach for projected cluster-
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Fig. 8. The ranking table

ing(PRPC). Our algorithm improves some problems
of the FPC algorithm, and it is more efficient than
the FPC algorithm. First, we find the relationship
between parameters � and j , and decrease the
number of required parameters. Next, we improve
the way to find the medoid. These improvements
let our algorithm cost less time to generate the best
cluster than the FPC algorithm, and decrease the
difficulty of deciding or choosing parameters. Then,
we propose a measuring formula of quality in the
refinement step. This formula makes our algorithm
provide hight accuracy.

A. The Relationship Between Parameters

Parameter j is needed in the formula of quality,e-� G	 )V &^� G¨g � i & ` , where G is the number of points
in a cluster, and V is the number of dimensions in
a cluster, in the FPC algorithm [24]. If a cluster
has many points and many dimensions, the value
of its quality is high. But it is always a trade-off
between the number of points in a cluster and the
number of dimensions in a cluster. We can not have
many points and many dimensions at the same time.
Therefore, we need a parameter j to decide whether
users favor the number of points in a cluster or the
number of dimensions in a cluster. The value of j
is larger than 0 and smaller than 1. If users favor
the number of points, they will let jª©«5 . In this
way, based on the FPC algorithm, it will increase
the number of points, and decrease the number of
dimensions. On the other hand, if users favor the
number of dimensions, they will let j¬©0 . In this
way, in order to increase the number of dimensions,
the number of points will decrease.

As stated in [24], we can translate the problem
of projected clustering into the problem of mining
association rules with these relationships. These re-
lationships make us have a different way to develop
an efficient algorithm for projected clustering.

To reduce the number of required parameters,
we observe some relationships between those pa-
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Fig. 9. The relationship between parameters ® and ¯ (positive
corelation)

rameters used in projected clustering and mining
association rules. Figure 9 shows the relationship
between parameters j , G , V , and � in projected
clustering and parameters � °-±�� , � and ² in mining
association rules. As j decreases, it means that the
users favor the large number of dimensions in a
cluster. V is the number of dimensions in a cluster.
As V increases, the number of items in the maximum
large itemset (i.e., � ) will increase. If we want to
have a large � , we must use the small value of the
minimum support of the large itemset (i.e., ² ). The
small value of ² means that we have a few points in
a cluster (i.e., � ). A few points in a cluster means
that we have small value of � . Therefore, through
this derivation, we observe that, in fact, the role of
parameter � is positive corelation to the role of j .

Moreover, we can find the similar relationship
when j increases. Based on this observation be-
tween parameters � and j , � and j are positive
corelation, we can conclude that we can decide the
value of � according to the value of j . It improves
the difficulty of users to decide the appropriate value
of � . The users only need to decide the value of j .
The value of j shows that users favor the number
of points in a cluster or the number of dimensions
in a cluster. As the value of j is decided, we can
decide the value of � at the same time.

B. The Proposed Algorithm
Figure 10 shows our algorithm, and the variables

used in our algorithm are listed in Table I. We use a
two dimensions table as our input. Each row of the
table is a point in the dataset, and each column of the
table is a dimension in the dataset. Our output is the
sets of clusters and dimensions. Each cluster has its
own set of dimensions, respectively. To illustrate our



TABLE I
DESCRIPTION OF PARAMETERS

³m´
The original datasetµ ³m´ µ
The size of the original datasetµ ¶ ´ µ
The size of the original space¯ The importance of the size of the subspace
over the size of the cluster·�¸
The width of a projected cluster in each
dimension¹
The minimum support of a large itemset~»º The best medoid which we found in

³x´
}�}@�a¼�½ The complete set of large itemsets that

FP–growth found}�~����u� The dimensions of the best cluster�¾~����u� The best clusterº2� ¶)¿ �aÀm�!ÁÂÁ The median for all dimensionsÃ ~ The table that we use to store the points
in each dimensionÃ�Ä ~ The transaction database� The set of all clustersÄ
The set of dimensions for each clusterÅ
The number of clusters that we wantÃ ¿�Æ ��ÇqÈ The times that dimension É appears
in a cluster

¿ÊZË ÆZÌ ��¼�Ç The number of dimensions that correlated
with cluster

¿
ÍyÎ Our weight refinement formula

1: Procedure Ï � Ï �XÐ�Ñ�Ò s¦ÓPs Ñ�Ô/Ò s�ÕÖs�×mØ ;
2: begin
3:

�
:= Ù ;

4:
Ô

:= Ù ;
5: repeat
6: Ú	ÛFÜ$ÛFÝ�Þ¦ßàÛFá!âãkqä Ð�Ñ�Ò Ø ;
7: åæâãÜ�Þ�ÛtçFÞ�è Ñ�Ô/ÒéÐ�Ñ�Ò s�Õ�Ø ;
8: åæâ¥ä@á � Ü�êyë�Þ�Ûtç Ð ÚIì!s¦ÓPs Ñ�Ô/Ò Ø ;
9:

�
:=
�bíî�æÒ Û)ë�Þ ;

10:
Ô

:=
ÔCí�ï|Ò Û)ë�Þ ;

11: until no cluster can be found;
12: ð � Û)ñòâ¥ä@ÛtóîÛtäyÞ Ðô� s Ô s�×mØ ;
13: end;

Fig. 10. Procedure õ÷ö¾õÖ�

algorithm, we use an example, Example 2 shown in
Figure 12, to explain our algorithm in each step.
Our algorithm contains the following four steps.

Step 1: Find the medoid of the dataset. Before
deciding the medoid, we have to find the median
of the dataset. A median is the middle value in a
set of numbers arranged in an increasing order. If
there is an even number of values, the median is the
average of the middle two values. For example: The
median of the set w 10, 12, 14, 19, 20 z is 14. The

1: Procedure Ú	ÛFÜ$ÛFÝ�Þ¦ßàÛFáqèFâãá Ð�Ñ�Ò Ø ;
2: begin
3:

Ò ßùø úûÙ ;
4: á!â�ë�Þ�üÂý ÚIì"ý þ�ø úûÙ ;
5: find the ßàÛFá!âãkqä@k"Ü$Ü of dataset Úyì ;
6: for each point â in each dimension ÿ do
7: á!â�ë�Þ�ü âôþ := á!â�ë�Þ�ü âôþ + ý Ñ�Ò ü âôþãü ÿaþ��dßàÛFá!âãkqä@k"Ü$Ü � ý ;
8: find the best medoid

Ò ß that has the minimum
9: distance to point ßàÛFá!âãkqä@k"Ü$Ü ;

10: end;

Fig. 11. Procedure
³ ��ÁÂ���¦��º2� ¶���¿�¶

median of the set w 2, 3, 4, 6, 8, 9 z is 5, which is the
average of 4 and 6. After finding the median, we
calculate the all distance between the median and
other points. In order to decrease the execution time
and the affection of different dimensions, we use
the Manhattan distance in the distance calculation.
The Manhattan distance between two points �Ö �� �¾�Y a "#$#$#$ t�¾�Y %q& and �P� � � �P�tY ! "#$#$#$ t�P�tY %!& is given by� � �¾a t�P� &X� �

%M��  � �¾�Y MPO �P�tY M � . Then, we choose the
point that has the minimum distance to the median
as the medoid. The complete algorithm of this step
is shown in Figure 11.

In Example 2, there are ten points with four
dimensions in the dataset. We will find some clus-
ters in this dataset by using our algorithm. We
let parameter � � � , and j � 0[# 	 . These two
parameters are decided by the user. Then, we find
the median of the dataset of each dimensions. In our
example, the median of the dataset is (4, 5, 3, 5).
Next, we calculate the distances between the median
and each point of the dataset. The

� +�
�
P# in Figure
12 means the distance between the median and this
point. We select the point with the minimum

� +�
�
P#
as the medoid in our dataset. The medoid W� is
the point with ID = 7.

Step 2: Filter the points that the distance to the
medoid is larger than � , and translate the dataset
to the transaction database. For example, if the
distance between point � and the medoid with
dimension GN is less than or equal to � , we select GN
as an item of the itemset of point � (i.e, translate).
In this step, we translate the problem of projected
clustering into the problem of mining association
rules. The complete algorithm of this step is shown
in Figure 13.

In Example 2, after finding the medoid W� (ID



ID kml k"n k"o kqp diff.
1 5 5 7 4 6
2 3 7 0 3 8
3 3 6 3 6 3
4 2 9 5 7 10
5 6 2 1 5 7
6 5 5 0 5 4
7 4 3 3 5 2
8 4 10 1 7 9
9 3 3 7 2 10
10 4 2 7 1 11

Fig. 12. Example 2: The dataset with four dimensions ( ~»º =7)

1: Procedure åæâãÜ�Þ�ÛtçFÞ�è Ñ�Ô/ÒéÐ�Ñ�Ò s�Õ�Ø ;
2: begin
3: for â := 1 to ý ÚIì"ý
4: for ÿ := 1 to ý á!ì"ý
5: if ý Ñ�Ò ü âôþãü ÿaþ�� Ò ß � ý��2Õ
6: then

Ñ�Ô/Ò ü âôþ :=
Ñ�Ô/Ò ü âôþ + ÿ ;

7: end;

Fig. 13. Procedure � ¿ Á �ã��¼�� � Ã�Ä ~
= 7), we will translate the dataset to the transaction
database TDB with W� and � (= 2). If the distance
between the W� and this points with dimension G	
is less than or equal to 2 ( � � � ), dimension G	 will
be selected to itemset of this point. For example,
the distances between the point with ID = 1 and the
W� with dimension GN , Gy� , GI{ are 1 (5 - 4 = 1), 2
(5 - 3 = 2), 1 (5 - 4 = 1). These distances 1, 2, 1 is
not larger than 2, so we select dimension G	 , Gy� , GI{
as the items of itemset 1.

Step 3: Find the maximum large itemset, and
then find the best cluster with the maximum large
itemset. There are several different ways to find

ID Itemset
1 rFkml , k"n , kqpav
2 rFkml , kqpav
3 rFkml , k"o , kqpav
4 rFkml , k"o , kqpav
5 rFkml , k"n , k"o , kqpav
6 rFkml , k"n , kqpav
7 rFkml , k"n , k"o , kqpav
8 rFkml , k"o , kqpav
9 rFkml , k"n)v
10 rFkml , k"n)v

Fig. 14. The TDB of Example 2 of PRPC (̧
��2·

)

1: Procedure åæâ¥ä@á � Ü�êyë�Þ�Ûtç Ð ÚIìas¦ÓPs Ñ�Ô/Ò Ø ;
2: begin
3:

ï|Ò Û)ë�Þ�üÂý á!ì"ý þ := Ù ;
4:

�æÒ Û)ë�Þ := Ù ;
5: �^ø ú�Ó��qý ÚIì"ý ;
6: Construct the FP-tree from

Ñ�Ô/Ò
with the minimum

7: support � ;
8: repeat
9: If the åfÏ - Þãç)ÛFÛ contains a single path Ï then

10: for each combination Ó of the nodes
11: in the path Ï do
12: generate pattern Ó í��

with support � = the
13: minimum support of nodes in Ó ;
14: else
15: for each k�� in the header of the åfÏ - Þãç)ÛFÛ do
16: begin
17: generate pattern Ó�ú�k�� í�� with support
18: k���� ë�ê�� �òèFçFÞ ;
19: construct Ó ’s conditional pattern base
20: and then Ó ’s conditional
21: åfÏ - Þãç)ÛFÛ Ñ ç)ÛFÛ"! ;
22: end;
23: until

Ñ ç)ÛFÛ"! = Ù ;
24:

ï|Ò Û)ë�Þ := óîk�#@r ï|ï kqç%$òv ;
25: for â := 1 to ý ÚIì"ý
26: if

ï|Ò Û)ë�Þ'& Ñ�Ô/Ò ü âôþ
27:

�æÒ Û)ë�Þ :=
�æÒ Û)ë�Þ í r%#(�ãv ;

28: end;

Fig. 15. Procedure � ¿ À ¶ �¾Á Ë �u�ã��¼

the maximum large itemset for mining association
rules. The main goal of mining association rules
is to find the large itemsets, where a large itemset
is a combination of items whose appearing times
in the dataset is greater than a given threshold. In
traditional methods of mining association rules, e.g.,
the Apriori algorithm [5], all large itemsets will
be kept. The maximum large itemset is the large
itemset that has the maximum item in it. The FP–
growth algorithm [12] is faster and more efficient
than the Apriori algorithm. Therefore, we use it to
find the maximum large itemsets. After finding the
maximum large itemset, we find a cluster with the
large itemset. The maximum large itemset is °-W*)m¡q¢
in our algorithm. °-W*)m¡q¢ is the dimensions of the
best cluster. If we have the dimensions, we can find
a cluster easily. If an itemset contains °-W*)m¡q¢ , it
is a point of a cluster with °-W*)m¡q¢ . The complete
algorithm of this step is shown in Figure 15.

In Example 2, we use the FP-growth algorithm to



ID kml k"n k"o kqp
3 3 6 3 6
4 2 9 5 7
5 6 2 1 5
7 4 3 3 5
8 4 10 1 7

Fig. 16. The cluster with four dimensions at round 1

ID kml k"n k"o kqp
1 5 5 7 4
2 3 7 0 3
6 5 5 0 5
9 3 3 7 2

10 4 2 7 2

Fig. 17. The dataset with four dimensions at round 2

mine the large itemset. We can find that the max-
imum large itemset is wxGN�G,+aGI{ :5 z . The � decides
the number of points in a cluster and the minimum
support value of the large itemset. We do not need
to decide the value of � , it will be assign as j , so
the value of � is 0.5. After finding the maximum
large itemset wxGN�G,+aGI{ :5 z , we check the count of
this maximum large itemset, if its count is less than
the minimum support value ² , this itemset will be
discarded. The count of wxGNtG,+)GI{ :5 z is 5 equal to 5
(10 * 0.5), so it will be a °-W*)m¡q¢ . Then, we find
the best cluster with °-W*)m¡q¢ . If an itemset contains
°-W*)m¡q¢ , it will be a point in a cluster. In our example,
the points with ID = 3, 4, 5, 7, 8 contain °-W*)m¡q¢ , so
these points will be a cluster. Finally, we can find
the best cluster which contains five points (IDs:3,
4, 5, 7, 8) with three dimensions ( G	 , G,+ , GI{ ). The
result of round 1 is shown in Figure 16.

After round 1, the rest points is shown in Figure
17. We repeat the step 1 to step 3 until no cluster be
found. At round 2, we can find that the maximum
large itemset °-W*)m¡q¢ is wxGNa )GI{�z and find the best
cluster which contains five points (IDs:1, 2, 6, 9,
10) with two dimensions ( GN , GI{ ).

Step 4: Refine the result that we found. In this
step, we use the following formulas:

1) e-� G	 )V &-� Ghg � i & ` ,
2) ' � �( )� &f� � � K�L � +�¡q¢�£ � �Ö � � � &t& SP� ��� and
3) e.-Z� �0/1 +32 1 4 2ãSP� �§�
Formulas 1 and 2 are from [24]. Let G be the

number of points in a cluster � , and V be the number

of dimensions in cluster � . � � � & is the centroid of
cluster � , defined by � � � &�M�� � � K�L � M SP� ��� for
each dimension + . In order to deal with clusters
that have different numbers of dimensions, we use
the Manhattan segmental distance. Given two points� and * , their Manhattan segmental distance [2]in
subspace � is defined as

� +�¡q¢t£ ���  F* &^� � M K�£ � �NMPO* M � SP� �§� , where � �§� is the number of dimensions
in � . j is a user parameter that indicates the im-
portance between points and dimensions. Formula
1 is a quality measuring formula [16]. We use it
to measure the quality of a cluster. Formula 2 is
a spread measuring formula [24] that is used to
determine the compactness of a cluster. The best
cluster has high quality and small spread. We design
a new formula to measure the quality of a cluster./1 +32 1 4 2 is the weight of each dimension 4 in cluster
+ . Formula 3 is a correlation measurement of each
dimension in a cluster. We give a weight to each
dimension. If a dimension is an element in °-W*)m¡q¢ ,
the weight of this dimension is assigned to 1. On
the other hand, if a dimension is not an element in
°-W*)m¡q¢ , the weight of this dimension is assigned ac-
cording to the times of appearance. As the times of
appearance increases, the weight of this dimension
decreases. If the number of dimensions that are not
correlated with a cluster becomes small, the value
of e.- becomes large. We use these formulas in the
refinement step.

In the refinement step, we calculate e  )'¨ and e5-
of each cluster that we find, and rank the results.
The best cluster must has large e , small ' , and largee.- . The cluster that has the minimum sum of these
ranks is the best cluster. Then, clusters which have
the smallest � scores are outputted, where � is the
number of clusters that users want. The complete
algorithms of this step and our refinement formula
is shown in Figures 18 and 19.

In our Example 2, after all steps, we find two
clusters in the datasets as shown in Figure 20, but
we only need the best cluster. The refinement step
is processed in this time. We use three formulas to
measure the quality of clusters that we find. The
weight of each dimensions of each cluster is shown
in Figure 21. The result is shown in Figure 22. The
sum of ranking score in shown in Figure 23. After
ranking the quality of clusters, we select the best
one to output.



1: Procedure ð � Û)ñòâ¥ä@ÛtóîÛtäyÞ Ðô� s Ô s�×mØ ;
2: begin
3: Calculate

� Ðô� s Ô Ø for each cluster and ranking;
4: Calculate � Ðô� s Ô Ø for each cluster and ranking;
5: weightrefine(C, D);
6: Add the ranking score of

� Ðô� s Ô Ø , � Ðô� s Ô Ø , �76 ü âôþ ;
7: Choose the the clusters which have the smallest
8: × score;
9: end

Fig. 18. Procedure 8bö¾�"9 ¿ Àx� Æ ��À��
1: Procedure :�Ûtâ;$=<mÞãç)Û)ñòâ¥ä@Û Ðô� s Ô Ø ;
2: /* Þãâ¥óîÛtâ is the times that dimension ÿ appears in a cluster
3: â */
4: /* äyêòó�>�ÛtçFâ is the number of dimensions that correlated
5: with cluster â */
6: begin
7: for each dimension ÿ of each cluster â in

�
8: If ÿ@? ï|Ò Û)ë�Þ
9: :^ü âôþãü ÿaþ�ø úBA ;

10: If ÿDC? ï|Ò Û)ë�Þ
11: :^ü âôþãü ÿaþ�ø úBA -

Ð�Ñ â¥óîÛFE=G(C�HTêòó�>�Ûtç�E"Ø ;
12: for each dimension ÿ of each cluster â in

�
13: �I6 ü âôþ@ø ú � :^ü âôþãü ÿaþJCmý Ô ý ;
14: end

Fig. 19. Procedure K�� ¿ ½ L!�¥¼t�"9 ¿ Àx�
ID Itemset
3 rFkml , k"o , kqp!v
4 rFkml , k"o , kqp!v
5 rFkml , k"n , k"o , kqp!v
7 rFkml ,, k"n , k"o , kqpav
8 rFkml , k"o , kqp!v

ID Itemset
1 rFkml , k"n , k"o , kqpav
2 rFkml , k"n , kqpav
6 rFkml , k"n , kqpav
9 rFkml , k"n , kqpav
10 rFkml , k"o , kqpav

(a) (b)

Fig. 20. The results: (a) Cluster M ( }�~����u� = ���m����� N��ã�!��� ) ; (b)
Cluster ~ ( }�~����u� = �������ã�q��� ).

kml k"n k"o kqp
Weight 1 oO Ð A.� nO Ø 1 1

(a)kml k"n k"o kqp
Weight 1 lO Ð AP� p O Ø oO Ð A.� nO Ø 1

(b)

Fig. 21. The weights of each dimension: (a) Cluster M ; (b) Cluster~ .

� l � n�
5.07 6.72� 40 20�I6 Q � R Ð ú l�Sn¦ì Ø Q � T Ð ú lãpn¦ì Ø

Fig. 22. The result of the WRefinement step

� l � n�
1 2� 1 2�I6 1 2

Sum 3 6

Fig. 23. The ranking table

IV. PERFORMANCE

In this section, we study the performance of the
PRPC algorithm by simulation, and make a compar-
ison with the FPC algorithm. The experiments were
performed on the machine with a Intel Pentium 4
CPU, 1024MB of main memory, running Windows
XP with Service Packet 2, and both algorithms were
implemented in Java. Our experiments were run
with synthetic datasets, and were repeated for 20
times to calculate the average execution time.

A. The Performance Model

The synthetic datasets used in our experiments
were generated by randomly creating a number of
synthetic clusters and their associated subspaces
are the same as [24]. The range of points is [0,
100]. When generation cluster +VU 5 , about a half
of its correlated dimensions are chosen from the
associated dimensions of cluster + . This is intended
to model the fact that different clusters often share
some dimensions.

The number of dimensions associated with a
cluster given by a Poisson random variable with
mean e , which has the additional restriction that
this number must be at least 2 and at most

�
. Once

the number of dimensions
� M for the cluster + is

generated, the dimensions for each cluster are cho-
sen using the following technique: the dimensions
in the first cluster are chosen randomly. The dimen-
sions for the + th cluster are generated by choosing
E�+ � w � Mô¤ a � M SI�@z dimensions from the ( + -1)th cluster
and generating the other dimensions randomly. This
iterative technique is intended to model the fact
that different clusters frequently share subsets of
correlated dimensions. The number of points in a
cluater is WDX � W�g � 5 OZY=[ ¢"\ã+])�^ & . Then, the number
of points in cluster + is given by W_XZg`^ M S � ±M��  ^ M ,^x , ^"� , ..., ^"± be the � random variables. We use
these datasets to run our algorithm, and compare
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Fig. 24. A comparison of the execution time ( ® = 0.2 ¯ = 0.2)

the execution time and accuracy with the FPC
algorithm.

B. Experiment Results
First, we compare the execution time between

our PRPC algorithm and the FPC algorithm. The
values of � , j and � is set to 0.2, 0.2 and 20.
The number of points in the dataset is from 1000 to
10000, and the number of dimensions in the dataset
is 20. We show that the execution time in our PRPC
algorithm is shorter than that in the FPC algorithm
shown in Figure 24. Moreover, as the number of
points increases, both of the execution time of our
algorithm and the FPC algorithm increase, because
the time of finding maximum large itemset in-
creases. Our PRPC algorithm chooses the medoid
only once, so the execution time of our algorithm
increases slowly. As the number of points increases,
the difference between our PRPC algorithm and the
FPC algorithm will increase.

Next, we show the comparison of the accuracy
between our PRPC algorithm and the FPC algorithm
in Figure 25. The detailed result is shown in Table
II. The values of these parameters which we set
are form 0.15 to 0.3. The number of points in this
dataset is 10000, and the number of dimensions
is 20. We show that the accuracy of our PRPC
algorithm is higher than that of the FPC algorithm.
When the value of parameter � is not given appro-
priately, the accuracy will be terrible. The reason is
that some points of the cluster will be ignored. It is
very important for the user to give an appropriate
value of these parameters. When � � 0[#$5 	 , for
example, the accuracy is low in both our PRPC
algorithm and the FPC algorithm. However, our
PRPC algorithm still has higher accuracy than the
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Fig. 25. A comparison of the accuracy

TABLE II
A COMPARISON OF THE ACCURACY�ba Ó PRPC FPC

0.15 0.986 0.926
0.2 0.992 0.989

0.25 0.995 0.994
0.3 0.99 0.986

FPC algorithm. In this dataset, the appropriate value
of parameter � is 0.25. When � � 0[#Â� 	 , both of
our PRPC algorithm and the FPC algorithm have
high accuracy, However, the accuracy of our PRPC
algorithm is higher than that of the FPC algorithm.
The reason is that we use a weight refinement
formula to refine the result of clustering.

Figure 26 show the comparison of the accuracy
between our PRPC algorithm and the FPC algorithm
with outliers. The value of these parameters which
we set is 0.2. The number of points in this dataset
is 10000, and the number of dimensions is 20. The
percentage of outliers which we set is from

	dc
to

� 	dc . We show that the accuracy of our PRPC algo-
rithm and the FPC algorithm. As the number of the
outliers increases, the accuracy will decrease. The
reason is that the outliers will affect the choosing of
the medoid. If the number of outliers is too large, the
median of our PRPC algorithm will be affected. If
the median is not decided appropriately, the medoid
that we choose will be bad. The medoid will affect
the accuracy of the results. In the FPC algorithm, if
the number of outliers is too large, the probability
of choosing the outliers as the medoid will be high.
If the bad medoid is decided, the accuracy will
be affected. The accuracy of our PRPC algorithm
is always higher than that in the FPC algorithm,
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Fig. 26. A comparison of the accuracy with outliers

because we have an efficient way to choose the
medoid, the probability of choosing the outliers as
the medoid will be low.

Since there exists a relationship between param-
eters � and j according to our observation, we
try to adjust the difference between parameters �
and j to examine the quality of the results of
clustering in our algorithm. The quality measure
formula, e-� G	 )V &(� G g � i & ` is used to measure the
quality of the results. The formula considers the
number of points and the number of dimensions in a
cluster, and gives the different weight to each other.
It is be used to measure the quality of a cluster in
the density-based approach for projected clustering.
We use this formula to measure our results of the
clustering. Figure 27 shows our experiment results.
When the difference between � and j (i.e., � - j )
is -0.05, the quality is the highest one. The value
of � is between 0.1 and 0.3. If the value of � is
too large, it is not reasonable and there will be no
cluster outputted. It means that when the value of
� is smaller than the value of j and the difference
between these two parameters is small, the quality
of the result of the clustering is the best. When the
value of � is larger than the value of j , or the value
of � is equal to the value of j , the quality of the
clustering decreases. This is because the value of �
will affect the number of dimensions in a cluster.
The number of dimensions plays an important role
in the quality measure formula. When the difference
is -0.1, there are some points which not found. So,
the quality of case ( � - j = -0.1) is little less than the
quality of case ( � - j = -0.05).

As mentioned above, we observe that when the
value of � is less than the value of j , the quality
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Fig. 27. The quality of clusters with different differences between® and ¯
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Fig. 28. The quality of clusters with different ratios between ® and¯

will be higher than other situations. So, we further
try to adjust the ratio of j to � . Figure 28 shows our
experiment results. As the ratio increases, the value
of j increases, and the quality of cluster decreases.
Because the value of j will affect the weight of
the number of dimensions, a large value of j will
result in the weight of the number of dimensions
being decreased. According to these two experiment
results, we observe that if the value of � is less than
the value of j ( � : j ) and the ratio of j to � is
close to 1 (

ie © 5 ), the quality of the results of
clustering is high.

V. CONCLUSION

Projected clustering has become more and more
important, since it can discover interesting relation-
ships and characteristics in high dimension datasets.
An important problem of projected clustering is how
to find the relative dimensions of each cluster. In
this paper, we have proposed an efficient projected
clustering algorithm to find the relative dimensions
of each cluster with the mining frequent itemsets
algorithm, since it improves the way of finding the
medoid of the datasets. We also proposes a new



quality measure formula to improve the quality of
the result of clustering. By our simulation result,
we have shown that the execution time of our pro-
posed algorithm is shorter than the FPC algorithm.
Furthermore, we have shown that our algorithm has
higher quality of clustering than the FPC algorithm.
Moreover, our algorithm needs only two parameters,
which makes our algorithm efficient.
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