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ABSTRACT

Semijoins have traditionally been applied for reducing the communication cost required for
distributed query processing. Semijoins whose execution will reduce the amount of data
transmission required to perform a join sequence are termed beneficial semijoins for that
join sequence. Beneficial semijoins include conventional profitable semijoins and gainful
semijoins that are not profitable themselves but become beneficial due to the inclusion of
join reducers. In this paper, based on the values of dynamic cumulative benefit (DCB), we
propose an efficient algorithm for finding beneficial semijoins, i.e., to interleave a sequence
of join operations with semijoins to reduce the data transmission cost. In this algorithm, a
dynamic weighted graph is constructed based on the correlated relationship among semijoins
where two semijoins are said to be correlated with each other if the condition for one to
be beneficial depends on execution of the other. Then, we compute the dynamic profit for
each subgraph, which is recursively constructed. When there are N vertexes in the initial
dynamic weighted graph, where each vertex represents a semijoin, our algorithm needs to
expand (N + 1) graphs to find a solution in the best case. From our simulation study, we
show that our strategy can efficiently find beneficial semijoins and requires a lower data
transmission cost than does the profitable semijoin approach.
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1 Introduction

In a wide area network, under the assumptions that each site contains one relation, that
there is only one copy of each relation, and that the cost of local processing is negligible
compared to the transmission cost, a query is usually processed in the following three
phases [16]: (1) the local processing phase, which involves all local processing such as
selections and projections, (2) the reduction phase, where a sequence of semijoins is used
to reduce the size of relations, and (3) the final processing phase, in which all the resulting
relations are sent to the site where final query processing is performed. Significant research
efforts have been focused on the problem of reducing the amount of data transmission
required for phases (2) and (3) of distributed query processing [1, 3, 13, 14]. The semijoin
operation especially has received considerable attention and has been extensively studied in
the literature [2, 5, 15, 9]. The semijoin operator takes the join of two relations, R and S,
and then projects back out on the domains of relation R. For a semijoin to be performed,
only the projection of the joining attribute need be sent. If the size of these projections is
small relative to the amount by which R and S are reduced, then the preliminary semijoin
will be profitable.

The first algorithm using semijoins for distributed query processing was implemented
in SDD-1 in [3]. This SDD-1 algorithm is based on a hill-climbing strategy that produces
efficient, but not necessarily optimal, query processing strategies. Theoretical aspects of
semijoins were first studied in [2]. Simple queries were studied in [13]. Their algorithm
for general queries was improved in [1]. It has been proved that a tree query can be fully
reduced by using semijoins [2], and there has been much research on optimizing semijoin
sequences to process certain tree queries, such as star queries [6] and chain queries [11].
However, the determination of an optimal semijoin sequence to process certain tree queries
and general query graphs with cycles has been proved to be NP-hard [12]. Methods based
on dynamic programming to get an optimal semijoin sequence for tree queries and chain
queries were studied in [10] and [11], respectively.

In addition to semijoins, join operations can also be used as reducers in distributed query
processing to further reduce the communication cost [4, 7, 8]. Moreover, the approach of

combining join and semijoin operations as reducers can result in more beneficial semijoins



due to the inclusion of joins as reducers [7]. (Note that such semijoins are referred to
as gainful semijoins.) Both profitable semijoins and gainful semijoins are called beneficial
SeMLJoINs.

In this paper, based on the values of the dynamic cumulative benefit (DC B), we propose
an algorithm for finding beneficial semijoins, i.e., to interleave a sequence of given join
operations with semijoins to reduce the total data transmission cost. In this algorithm,
a dynamic weighted graph G = (V, F) is constructed based on the correlated relationship
among semijoins, where V is the set of semijoins (i.e., each vertex represents a semijoin)
associated with its dynamic cumulative benefit (DCB) and F is the set of correlated edges.
Note that two semijoins are said to be correlated with each other if the condition for one
to be beneficial depends on execution of the other [8]. Based on the values of DC B, there
is a dynamic profit associated with the whole graph. Then, the graph is transformed to
another graph by a vertex shrinking. A vertex shrinking is done by eliminating a certain
vertex and connecting correlated edges. This transformation is recursively executed and
the related dynamic profit is updated at the same time until all vertexes are shrunken or
all the values of DCB associated with vertexes are negative. When the algorithm stops,
the set of semijoins which provide the maximum total dynamic profitis the set of beneficial
semijoins. When there are N vertexes in the initial dynamic weighted graph, where each
vertex represents a semijoin, our algorithm needs to expand (N + 1) graphs to find a
solution in the best case. Moreover, since the DCB values of vertexes will be dynamically
updated in the process of a vertex shrinking, it will speed up the execution and reduce the
large space requirement of the proposed recursive algorithm in general cases. From our
simulation study, we show that our strategy can efficiently find beneficial semijoins and
requires a lower data transmission cost than does the profitable semijoin approach.

The rest of the paper is organized as follows. In Section 2, we give some definitions used
in this paper. In Section 3, we present our proposed algorithm. Finally, in Section 4, we

give a conclusion.



Figure 1: A query graph ¢4.

2 Background

In this section, we describe assumptions and definitions used in the paper, which are mostly
adapted from [7, 8] since the concept and properties of gainful semijoins and beneficial

semijoins were proposed and discussed in [7, 8].

2.1 Query Graphs, Joins and Semijoins

Given a query () with qualification ¢, we define its corresponding query graph Gg(Vg,FEq)
as follows:
Vo = the set of all the relation names referenced by ¢;

Eqg ={(t, j)|© # j and some clause of ¢ references both R; and R; }.

Figure 1 shows the query graph for the following query, where R;.B is the target list.
select R,.B
from Ry, R,, R3
where R1.A = R3.A and R,.B = R,.B and R,.C = R3.C

We assume that we have the following information about the relations.

For each relation R;, i=1,2,....m,
| R;|: number of tuples;

wp,: size (e.g., in bytes) of R;.



For each attribute A of relation R;,

|R:(A)|: cardinality;

pi.a: selectivity;

WR,(A): Size (e.g., in bytes) of the data item in attribute A of relation R;.
The cardinality of attribute A of relation R;, denoted as |A[, is the number of distinct values
in attribute A of relation R; and the selectivity p; 4 of attribute A is defined as the number
of different values occurring in the attribute divided by the number of all possible values
of the attribute.

A join clause “Ry joins Ry on A” is denoted by R; A Ry, where Ry and R, are rela-
tions, and attribute A is the joining attribute. Associated with this join are two semijoins:
Ry by Ry on A, and Ry by Ry on A, denoted by R, A, Ry, and Ry A, R,, respectively.
Ry A, Ry entails shipping Ri(A), attribute A of Ry, to the site where Ry resides and
joining Ry(A) with Ry. We denote the resulting relation by R, (and R; is unchanged).
After the semijoin R; A, R; is executed, then the parameters of relation R; are changed

in the following way:

|Rj| & |R;| * pia;
PiA < PiA* PiAs

| B (A)] — [R;j(A)] % pi,a-

2.2 Cost and Benefit of Semijoin Reducers

We assume that the transmission cost is given by cost(n) = ¢o + ¢ * n, where n is the
amount of data transmitted and ¢y and ¢; are constants. Let the transmission cost be
one per data unit transmitted. Consider a semijoin R; A, R; when R; and R; are
at different sites. Then, the cost of the semijoin is (sizeof R;[A]), and the benefit is
(stze_of Rj before semijoin — sizeof R; after semijoin), where the sizes of the re-
lations are measured in bytes. A semijoin R; A, R;, is called profitable if its cost of
sending R;(A), wpr,a)|Ri(A)| = wp,(a)|A|pi a, is less than its benefit, wg, |R;| — wr, [ R;|pi 4
= wr, | B7;|(1 — ps a), where wr,|R;| and wg,|R;|p; 4 are the size of R; before and after the
semijoin, respectively. In addition, we assume that the values of attributes are uniformly

distributed over all the tuples in a relation, and that the values of one attribute are inde-
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pendent of those in another attribute. Thus, as in most prior work [1, 2], we assume in this
paper that the selectivity and the cardinality of a non-semijoin attribute remain the same

after a semijoin operation to simplify our discussion.

2.3 The Effect of Join Operations

To determine the effort of a join operation specified by a query graph, the following theorem

was described in [7].

Theorem 1 Let Gy = (Vj, Ey) be a join query graph. Gp = (Vg, Eg) is a connected
subgraph of Gjy. Let Ry, Rs,...,R, be the relations corresponding to nodes in Vg, lel
Ay, Ay, Ay be the distinet attributes associated with edges in Eg, and let m; be the num-
ber of different nodes (relations) to which edges with attribute A; are incident. Suppose R*
is the relation resulting from the join operations between relations in Gg, and that Np(Gp)

is the expected number of tuples in R*; then

im1 R
q |j4'mi—1 : (1)
=1 7

Nrp(Gp) =

For the query shown in Figure 2, the expected number of tuples in the resulting relation

is (|Rul| Rol|Bs ]| Bal) /(| APIBIICI | D).

2.4 Join Reducers and Gainful Semijoins

The application of join operations as reducers may mean that more profitable semijoins
will be available. Those semijoins which become profitable due to the use of join reducers
are termed gainful semijoins [7]. Consider the query graph ¢4 shown in Figure 1 with its
profile in Table 1 as an example. It can be verified that the semijoin Rj A, Ry i1s not
profitable since wg,(4)|Rs(A)| > wr, (1 — p3,.4)|R1]. Note that although this semijoin is not
profitable, it is gainful if we perform Ry = Ry and R, = Rj after this semijoin operation,
where Ry = R, means shipping Ry to the site where R, resides and joining R; with R,. It

can be obtained that for the total communication costs required,

|Rs(A)| 4+ 2| R1|ps.a + 3| R join Ra|psa =~ 2190 < 2|Ry1| 4 3| Ry join Ry| = 2542,



meaning that it is advantageous, as far as the cost of data transmission is concerned, to
perform Rj A, Ry, R} = R, and then R}, = R, instead of performing directly Ry = R,

and R, = Rs. Thus, it can be seen that whether a semijoin is gainful or not depends on

Figure 2: A query graph ¢p (adapted from [8]).

the subsequent join operations.

‘ Relation R; ‘ | R ‘ Size wp,|R;] ‘ Attribute X ‘ | R:(X)] ‘ Selectivity p;» | Wx ‘
I I
Ra |00 | 1400 T on
R . -

Table 1: Profile for query ¢4, where |A| = 500, |B| = 1000, and |C| = 600 (adapted from

[7)-
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(adapted from [T7]).
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Figure 3: A rooted tree: (a) T (b) T,

2.5 A Join Sequence Tree

Every edge in a tree is directed, and all the arrows in edges are away from a single node,
which is called the root of the tree [7]. Note that a rooted tree can be viewed as a partial
order set. We denote n; > nj, if there is a path along the arrows in the tree from n;
to n;. In such a case, node n; (n;) is called an offspring (ancestor) of n; (n;). We use
n; > nj to mean n; > n; and n; # n;. Let T,, denote the subtree formed by n; and
its offspring (ancestor) in a rooted tree T, and let S(7T},,) be the set of nodes in T,,, i.e.,
S(T,) = {nj|n;i >nj, n; € S(T)}. We define the lowest common ancestor of two nodes
n; and n; in a rooted tree, denoted by n; V n;, to be the node that is an ancestor of n; and
n; and for which none of its offspring is an ancestor of n; and n; [7].

For example, for a rooted tree T shown in Figure 3-(a), T, is given in Figure 3-(b), and
S(T,,) = {n2, ns, ng, ns}t. Also, ny Vns = ny and ns Vny = ny in Figure 3-(a). In
addition, when n; > n; in a rooted tree T', we use P(n;, n;) to denote the set of nodes that
are on the path from n; to n; excluding n;, i.e., P(n;, n;) = {ng | n; > ng > n; and i #
k, ¥n, € S(T)}. In the rooted tree shown in Figure 3-(a), P(n2, ny) = {ns, n4} and
P(nq, ns) = {n2, ns}.

A join sequence tree is obtained from a join sequence [7]. Once a join sequence is

determined, it can be mapped into its corresponding join sequence tree, which is defined



as follows [7].

A join sequence tree is a rooted tree where each node denotes a relation and each edge
implies a join between the two relations to which the edge is incident. The tree represents a
sequence of join operations which are performed in such a way that each relation in a node

is sent to its parent node in the tree for a join operation in the bottom-up sense.

Given a query shown in Figure 4-(a) and a join sequence Ry = R, Rs = R:, R = R,
Rs = Rg, Ri = Ry, R¢ = Rj, the corresponding join sequence tree is shown in Figure 4-
(b). Recall that Ty, is the subtree formed by R; and its offspring in the join sequence tree,
and that S(Tg,) is the set of nodes in Tg,. The weight of a relation R; in the join sequence
tree, denoted by W(R;), is defined as the size of the relation resulting from joining all the
relations in S(7Tg;) (and is computed by Equation 1 as described in Section 2.3). For the
join sequence tree shown in Figure 4-(b), W(Rr) = wr|R:| and W(Rs) = wpy | [, where
R’ is the relation resulting from joining R4, Rs, and R, and Ry is the one resulting from
joining Rs, R4, Rs, Rg, and R;. For convenience, the weight of the root of a join sequence
tree, which corresponds to the final site, is defined to be zero. Also, to facilitate our study
on the effect of semijoin operations, we define the configuration of a query, Jo(SM.J), to be
the structure of the query and its profile associated after the set of semijoins SMJ has been
performed. When it is necessary, we use W(R;, Jo(SM.J)), instead of W(R;), to mean the

weight of R; after the semijoins in SMJ are performed.

2.6 Properties of Beneficial Semijoins

A relation is said to be reducible by a semijoin S.J; if the size of the relation in the join
sequence tree is affected by the execution of the semijoin. Then, the set of reducible relations

of a semijoin under a join sequence tree can be determined by the following theorems [7]:

Theorem 2 Given a join sequence tree T, the set of reducible relations of a semijoin

R, — R;, denoted by RA(R;, — R;), is P(R; V R;, R;).

For example, suppose Figure 4-(b) is the join sequence tree derived from Figure 4-(a);

then, Rd(Rl — R4) = {R4,R6,R7}, Rd(R4 e Rg) = {Rg} and Rd(RQ — Rg) =



@ (b)

Figure 4: An example: (a) a query graph Ggx1; (b) the related join sequence tree (adapted
from [7]).

{Rs, Re}.

Theorem 3 A semijoin SJi, R; A, R; in the configuration Jo(SMJ) is beneficial if
and only if wr, )| Ri(A)| < (1 = pia) Xryerassy Wy, Jo(SMJT)).

Corollary 1 Suppose that R; and R; are two relations in a join sequence tree T and

R, > R;. Then, R; — R; is notl a beneficial semijoin for T.

Two semijoins are said to be correlated with each other if the condition for one to be
beneficial depends on execution of the other. Thus, using Theorem 3, we can determine
by the following corollary [7] whether two semijoins are correlated with each other in a join

sequence tree.
Corollary 2 In a join sequence tree, two semijoins, SJ; and SJy, are correlated with each

other if and only if RA(S.J;) N Rd(SJy) # 0.

3 The Algorithm for Beneficial Semijoins

Given a join sequence, we can map the join reducer sequence into the corresponding join

sequence tree. According to Theorem 2, we can derive reducible relations from the join

9



sequence tree. Based on the relationship among these reducible relations, we propose a new
algorithm for interleaving a sequence of join operations with semijoins, i.e., for locating
beneficial semijoins. The proposed algorithm is based on a value, called the dynamic
cumulative benefit, which will be defined later.

Let SMr be the set of possible semijoins in the given join sequence tree T' except those
semijoins [f; — R; which occur between two relations R; and R; in the join sequence
tree T and R; > R; (i.e., R; is an ancestor of R;). (Note that, based on Corollary 1,
we do not want to include these non-beneficial semijoins in SMyp.) Let SM.J be the set
of beneficial semijoins identified so far. Initially, SMJ is an empty set. We define the
dynamic cumulative benefit of a semijoin S.J; (R A, R;), denoted by DCB(SJ;), as
the amount of reduction minus the cost of semijoin S.J; if this semijoin is applied to the
execution of a given join sequence and the profile of the semijoin is the one resulting from
the semijoin executions S.Jy, for SJ, € SM.J. That is, DCB(SJ;) = DCB(Ry A, R;) =
(1 = pra) Xryeristy Wy, Jo(SMJ)) — Cost;. Given the query graph shown in Figure
4-(a) with its profile shown in Table 2, Table 3 shows SMy and the value of DC' B for each
semijoin.

For all semijoins in SMrp, the sets of reducible relations of semijoins can be further
classified according to whether the semijoin is correlated with some other semijoins or not
based on Corollary 2. We assign those semijoins which are correlated to the same group.
For example, given a query graph shown in Figure 4-(a), Figure 4-(b) shows the related join
sequence tree, and Tables 4-(a), (b), and (c) shows three groups of semijoins which belong
to SMr and are correlated in the same group. Moreover, some semijoins in S M7 may not
be correlated with some other semijoins. If such a semijoin exists and it is beneficial (i.e.,
DCB > 0), we add such a semijoin into SM.J.

For those semijoins which are in the same group, we want to find a good combination
of beneficial semijoins such that we can obtain the largest profit and then add them into
SM.J. For each group GP; of semijoins S.J; with DCB(SJ,) > 0, we construct a dynamic
weighted graph. Given a GP;, a dynamic weighted graph G = (Vgp,, Eqp,) is constructed
based on the correlated relationship among the semijoins, where Vip, is the set of semijoins

with positive values of DCB (i.e., each vertex represents a semijoin) associated with its
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| Relation R; | [R;] | Size of relation | Attribute X | [R;i(X)] | Selectivity | Wx |

A 420 0.70 1
Ry 1150 2300 - — 0 :
A 300 0.50 1
Ry 1200 2400 . o T -
D 585 0.65 1
s 850 1700 E 550 0.55 1
B 300 0.60 1
Ry 1100 3300 D 105 0.45 1
F 770 0.55 1
R 900 900 G 585 0.45 1
C 490 0.70 1
R 900 2700 E 400 0.40 1
17l 525 0.50 1
F 630 0.45 1
R~ 1000 3000 G 650 0.50 1
H 630 0.60 1

Table 2: Profile for query graph Gpx1, where |A| = 600, |B| = 500, |C'| = 700, |D| = 900,
|E| = 1000, |F| = 1400, |G| = 1300, and |H| = 1050.

[ Semijoin SJ; [in §My [ DCB(SJ;) |

Ri— Ry N -
Rl — R4 Y 2753
R2 — Rl Y &850
R2 — R6 Y 863
R3s — R4 Y 1522
Rs — Rg N -
R4 — Rl Y 620
R4 — R3 Y 530
Ry — R~ N -
Rs — R~ N -
Reg — Ry N -
R6 — R3 Y 620
Rs — Rr Y 835
R7 — R4 Y 1185
R; — Rs Y -200
R7 — Rg N -

Table 3: SMyr for query graph Ggx.
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| No. | Semijoin (5/;) | Reducible relations |

1 Rl — R4 { R4, R6, R7 }
2 R2 e R6 { R6 }

3 R3 e R4 { R4, R7 }
4 Rs — R+ { R}

5 R7 e R4 { R4 }

(a)

‘ No. ‘ Semijoin (5J;) ‘ Reducible relations

1 Re — R3 { R3}
2 Ry — R3 { R3}

(b)

| No. | Semijoin (5/;) | Reducible relations |

1 Ry — Ry { R}
2 Ry — Ry { R}

()

Table 4: Four groups in SMy: (a) GPy; (b) GPy; (¢) GPs.
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Figure 5: A dynamic weighted graph for G P;.

dynamic cumulative benefit (DCB), and FEgp, is the set of correlated edges. A correlated
edge exists between two vertexes v; (denoting S.J;) and v; (denoting S.J;) such that the
intersection of the sets of reducible relations of these two semijoins represented by v; and
v; is not empty. As an example, Figure 5 shows the dynamic weighted graph for group
G'P; shown in Table 4-(a).

Given the dynamic weighted graph G, GG, is a graph constructed from G by eliminating
vertex p and connecting correlated edges (p, x) and (p, y), where the intersection of the
sets of reducible relations of these two vertexes @ and y (representing two semijoins) is not
empty. The step of constructing GG, from G is called a vertex shrinking. Figure 6 shows two
examples of vertex shrinking for the dynamic weighted graph shown in Figure 5. After the
process of vertex shrinking, the DC B values of those vertexes which are correlated with the
shrunken vertex in the group are also updated. (Note that the DC B values of the vertexes
will be the same or be smaller in each update.) We define the dynamic profit (denoted as
DP(()) of the most profitable set of semijoins for a given dynamic weighted graph G as

follows:

DP(G) = mezgi{DP(Gp) + DCB,},
P

where we always consider positive values of DCB only. (Note that when the DCB value

13



il adeleted edge
\__' ashrunken vertex ————— anorigina edge
anew added edge

Figure 6: A vertex shrinking: (1) vertex 1; (2) vertex 2.

of a vertex is negative, we will give up the vertex shrinking for this vertex in this G,.) For

group Py, according to the above formula, we illustrate the process of finding the largest

profit DP(G) from Figure 7-(a) to Figure 7-(m).

DP(G) = max {DP(G1)+ 2753, DP(G2) + 863, DP((5) + 1522,
DP(Gy4) + 835, DP(Gs)+ 1185};
DP(Gy) = max {DP(Gq,) + 2317, DP(Gh, ) + 1522, DP(Gy,) + 835,
DP(Gy, ) + 1185},
DP(Gy,) = max {DP(Gy,, ) + 785, DP(Gy,, ) + 359, DP(Gy, )+ 550};
DP(Gy,,) = 137; DP(Gy,,) = 550; DP(Gy, ) = 32.
Thus
DP(Gy) = 922, and DP(Gy) = 3239.
Consequently,
DP(G) = max { 3229, 3239, 3051, 2960, 2081 } = 3239.

14



542 5 )7\ 4 5/12 5 2
SRRl

1 1 1

v 3 3

(o)

4 5 4 5 /‘ @4
(w) () ()
() (k) () (m)

Figure 7: A dynamic weighted graph and its subgraphs: (a) G; (b) Gy; (¢) G (d) Gis; (e)
Gy (f) Gs; (g) Goy; (h) Gay; (1) Gays (§) Ga, (k) Gy (1) Goy, s (m) Gy,
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That is,
DP(G) = DP(G2) + DCB,
= DP(Gy,) +DC By + DC By
= DP(Gy,)+ DCBs+ DCB, + DC B,
= DCBs+ DCBs + DCBy + DCUB,

Therefore, for group G'P; shown in Table 4-(a), the most profitable set of semijoins (i.e.,
SM.Jy)is { R1 — R4, Ry — Rs, Rs — Ry, R — R4 } (= {SJ1,5J2,5J3,5J5}). Similarly,
for the groups shown in Table 4-(b), Table 4-(c), the most profitable sets of semijoins are {
Rs — Rs } (= SMJ3), { Ry — Ry } (= SMJ3), respectively. Therefore, SM.J = SM.J; U
SMJy U SMJs. Finally, we interleave those semijoins in SMJ in the given join sequence
such that every semijoin R; — R, precedes every related join R; = Ry.

Note that when the dynamic weighted graph does not have any correlated edge or when
the values of DCB of all the vertexes are negative, we stop the execution of DP(G).
Moreover, when a vertex shrinking is executed, those related DC' B of semijoins will be
updated.

Let’s consider the following three cases to compare our strategy (Case 3) with other
strategies for distributed joins, where we use the query graph shown in Figure 4 with its

profile shown in Table 2.

e Case 1: Using profitable semijoins.
Execute profitable semijoins Ry — Ry, Ry — Ry, R4 — Rs3, R — Rs, Ry — Ry,
Ry — Ry, Rr — Ry, Ry — Rs, Re — R: based on the strategy proposed in [3].
Then, send relations Ry, Rs, R4, Rs, Re, R; to the site containing R;. The total
transmission cost is 300 4+ 300 4 405 4 400 + 325 + 585 + 630 + 385 + 525 + 690
+ 306 + 626 + 900 + 1485 + 1500 = 9362.

e Case 2: Applying join operations as reducers without semijoins [7, 8].
Execute the join sequence Ry = R;, Rs = R7, R. = Rs, Rs = Rs, Ry = Ry,
R; = R;. The total transmission cost is 3300 4 900 + 2720 4+ 1700 + 2772 + 2300
= 13692.
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o Case 3: Interleaving a join sequence with semijoins.
Execute Ry — R4, Rs — R4, Rr — Ry, R, = R:, Rs = R:;, R- = Rs, Rs — Rs,
R, = Re, Ry — Re, Ry = Ry, Ry — Ry, R] = R,. The total transmission cost is
325 4 585 + 630 + 627 + 900 4+ 1150 4 400 4+ 680 + 385 + 259 + 300 + 1150 =
7391.

(Note that in cases 2 and 3, we use the join sequences derived from the given join
sequence tree as shown in Figure 4-(b).) From the above comparison, we show that the
data transmission cost by using our strategy can be less than that by using profitable
semijoins only or by using join reducers only. In general, in our algorithm, when there are
N vertexes in the initial dynamic weighted graph, where each vertex represents a semijoin,
our strategy needs to expand 1+ N!*(1/(N—=1)!+1/(N=2)!+1/(N=3)I4---+1/2!+1/1!)
graphs to find the solution in the worst case and (N + 1) graphs in the best case. Since
in the worst cast, there is no vertex with a negative value of DC'B, it results in (1 + N
+ (N*(N-1)) + (N*(N-1)*(N-2))+ .. + NI)graphs, where there is one initial
graph in level 0 and there are (N! / (N - ¢)!) graphs in the ¢th recursive execution, 1 < ¢ <
N. While in the best case, after executing a vertex shrinking for each vertex in the initial
graph, each resulting graph contains vertexes with all negative values. Therefore, (1 + N)
graphs are created. (Note that only those semijoins which have positive values of DC'B
will be included as a vertex in the initial graph.) For the initial state shown in Figure 4
with its profile shown in Table 2, we need to expand 75 graphs to find the solution where
206 graphs are needed in the worst case with some other profile.

Table 6 shows a comparison of the data transmission cost using five different profiles,
where Profile C is the one shown in Table 2. For Profiles A and B, we increase the
selectivity in all the attributes of Profile C to 0.2 and 0.1, respectively. For Profiles C and
D, we decrease the selectivity in all the attributes of Profile C to 0.1 and 0.2, respectively.
From the above comparison, we can see that the data transmission cost using our strategy
can be less than that using profitable semijoins only or using join reducers only. Table 7
shows a comparison of the number of states created in one case of our algorithm, which
was chosen randomly, the worst case of our algorithm and exhaustive search. From this

table, we can see that our strategy is very efficient.
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In [7], Chen et al. have proposed a heuristic algorithm to interleave a sequence of
join operation with semijoins. In their algorithm, they define the cumulative benefit of
a semijoin S.J; (Ry A, R;), denoted by CB(S.J;), as the amount of reduction if it is
applied individually prior to the execution of a given join sequence, i.e., CB(S.J;) = (1 —
Pk.A) Xryerassy Wy, Jo(0)). In this algorithm, they use the cumulative benefit (CB)
as a heuristic to determine the set of semijoins to be interleaved into a given join reducer
sequence. However, in their algorithm, C'B depends on a static profile of semijoins; while
in our approach, DC' B depends on a dynamic profile of semijoins. Based on those dynamic
values of DC B, we can have fewer computation steps than Chen et al.’s algorithm [7] if
there exists vertexes with negative values of DC' B. Moreover, our algorithm can find better
solution than their algorithm. For example, for the same query graph shown in Figure 4
with its profile shown in Table 2, their algorithm will execute Ry — R4, Rs — R4, R, = Rr,
Rs = R:, R. = Rg, Re — Rs, R, = Rgs, Ry — Rg, Ry = Ry, Ry — Ry, Ry = R,. The
total transmission cost is 325 4 585 + 1395 + 900 + 1150 + 400 4 680 + 385 + 259 +
300 + 1150 = 7529, which is larger than our solution.

In [4], based on the heuristic values of DCB, we have proposed a variant of the A*
algorithm to find beneficial semijoins. In the variant of the A* algorithm, which is a well-
known heuristic search method, the search is controlled by a heuristic function f(z)(=
g(x) + h(x)). The state @ chosen for expansion is the one which has the largest value of
f(xz) among all the generated states that have not been expanded so far. In this strategy, a
state is defined as a set of correlated semijoins; i.e., it is represented by a dynamic weighted
graph. When a state = is expanded, all the states that can be reached from state z by
a vertex shrinking are generated. (Note that vertex shrinking can be executed only when
the vertex has a positive value of DC'B.) Among those leaf nodes & which have not been
expanded thus far, the one with the largest f(x) value will be chosen for future expansion.
This procedure is repeated until the goal state is reached. The initial state is the given
dynamic weighted graph, and the goal state is a dynamic weighted graph which does not
have any correlated edge or in which the values of DCUB of all the vertexes are negative.
Let SMJi(x) be the set of beneficial semijoins applied to the initial state to reach a state
z in GPg, and let C(SMJi(x)) be the total DCB values for the semijoin operation in
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— Profile A | Profile B | Profile C | Profile D | Profile E
Case 1 13891 11519 9362 7383 5327
Case 2 13692 13692 13692 13692 13692
Case 3 12005 9210 7391 4604 3510

Table 5: A comparison.

[3[4[5 ] 6 ]
18] 75 | 614
41 | 206 | 1237

the number of vertexes in the initial state (N)

the states created in one case of our strategy 4
10

the states created in the worst case of our strategy

Table 6: The number of states.

SM.Ji(x). Then, at a state x, we let g(a) = C(SMJp(x)). Let h(x) be the largest profit of
future semijoins obtained in reaching the goal state from x. Let DW((G) be the dynamic
weight of the set of semijoins for a given dynamic weighted graph G, which is defined as

follows:

DW(G) = {DW(G,) + DCB,},

where p € G, DCB, is the largest value among all the current DC'B; in G, and where we
always consider positive values of DC'B,, only. Then, at a state x, we let h(x) = DW (x).
For the same query graph shown in Figure 4 with its profile shown in Table 2, the set of
beneficial semijoins found by this heuristic strategy [4] is the same as Chen et al.’s [7].
As compared to the performance of our previous proposed heuristic strategy which is also
based on the values of DCB, although the heuristic strategy will expand fewer states than
the new proposed one, our new proposed strategy can find better solution than the heuristic

one.

4 Conclusion

In this paper, based on the values of dynamic cumulative benefit (DC B), we have proposed
an algorithm for finding beneficial semijoins, i.e., to interleave a sequence of join opera-
tions with semijoins to reduce the data transmission cost. In this algorithm, a dynamic

weighted graph is constructed based on the correlated relationship among semijoins. When
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there are N vertexes in the initial dynamic weighted graph, where each vertex represents a
semijoin, our algorithm needs to expand (N + 1) graphs to find a solution in the best case.
Moreover, since the DCB values of vertexes will be dynamically updated in the process of
a vertex shrinking, it will speed up the execution and reduce the large space requirement
of the proposed recursive algorithm in general cases. From our simulation study, we have
shown that our strategy can efficiently find beneficial semijoins and require a lower data
transmission cost than does the profitable semijoin approach. In addition, this interleaving
a join sequence with semijoins approach can reduce the communication cost further by
taking advantage of the removability of pure join attributes, where pure join attributes are

those which are used in join predicates but not part of the output attributes.
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